
DISS. ETH NO. 18034

EFFICIENT ALGORITHMS FOR THE
MICROSIMULATION OF TRAVEL BEHAVIOR IN

VERY LARGE SCENARIOS

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

DAVID CHARYPAR

Master of Science in Computer Science, ETH Zurich

born 03.02.1978

citizen of
Rudolfstetten, AG

accepted on the recommendation of

Prof. Kay W. Axhausen, examiner
Prof. Kai Nagel, co-examiner

Prof. Hani S. Mahmassani, co-examiner

2008

Contents

Abstract xi

Zusammenfassung xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Four Step Process . 3

1.2.1 Limitations of the Four Step Process 5
1.3 Agent Based Transport Modeling 7
1.4 Comparison of Four Step Models and Agent Based

Transport Models . 8
1.4.1 Parts of the Agent Based System Studied in this

Thesis . 9
1.5 Structure of This Dissertation 10

2 Generating Complete All-Day Activity Plans with Genetic Al-
gorithms 13
2.1 Introduction . 15
2.2 Problem Description 16
2.3 Related Work . 18
2.4 Idea: Genetic Algorithms 19
2.5 Implementation . 20
2.6 Utility Function . 24

2.6.1 Utilities for Performing Activities 25
2.6.2 Penalties . 27
2.6.3 Opening Times and Similar Constraints 28
2.6.4 Summary of Parameters 29
2.6.5 Examples of Utility Landscapes 30

Contents

2.7 Tests and Results for Complete Day-Plans 34
2.8 Discussion and Further work 44
2.9 Summary . 46

3 Q-learning for Flexible Learning of Daily Activity Plans 49
3.1 Introduction . 51
3.2 Q-Learning . 52
3.3 Q-learning for Daily Activities of Humans 55
3.4 The Test Example . 56

3.4.1 Description . 56
3.4.2 Results . 59

3.5 A More Realistic Example 61
3.5.1 Description . 61
3.5.2 Results . 63

3.6 Discussion and Further Work 65
3.7 Summary . 67

4 Implementing Activity-Based Models: Accelerating the Re-
planning Process of Agents Using an Evolution Strategy 69
4.1 Introduction . 71
4.2 The Microsimulation toolkit 72
4.3 Speeding up MATSim-T 74

4.3.1 Producing Better Plans 74
4.3.2 Using the Optimal Replanning Share 79
4.3.3 Making Iterations Faster 80

4.4 Test Scenario . 83
4.5 Results . 84

4.5.1 Comparison of Learning Performance Based on
Average Utility of Plans 84

4.5.2 Comparison of Results Using Network Loads . . 86
4.6 Conclusion and Outlook 89

5 An Event-Driven Queue-Based Traffic Flow Microsimulation 91
5.1 Introduction . 93
5.2 Related Work . 93
5.3 Classification of Traffic Flow Microsimulation Methods 95

5.3.1 Cellular Automata 95

ii

Contents

5.3.2 Queue-Based Simulations 95
5.3.3 Event-Driven Queue-Based Simulations 96

5.4 Improved Dynamics of the Event-Driven Queue-Based
Approach . 98

5.5 Software Design: Technical Description 100
5.5.1 Description of Travel Demand 100
5.5.2 The Traffic Flow Model 100
5.5.3 Simulation Output 101
5.5.4 Actors During the Course of the Simulation . . . 101
5.5.5 The Traffic Flow Model 102

5.6 Results . 104
5.6.1 Test Scenario 104
5.6.2 Test Setup . 104
5.6.3 Test Results . 105

5.7 Discussion and Outlook 105
5.8 Summary . 107

6 An Event-Driven Parallel Queue-Based Microsimulation for
Large Scale Traffic 109
6.1 Introduction . 111
6.2 Related Work . 112
6.3 Classification of Traffic Flow Microsimulation Methods . 114

6.3.1 Cellular Automata 114
6.3.2 Queue-Based Simulations 114
6.3.3 Event-Driven Queue-Based Simulations 115

6.4 Modifications to Queue Dynamics 116
6.5 Software Design: Technical Description 117

6.5.1 Description of Travel Demand 117
6.5.2 The Traffic Flow Model 117
6.5.3 Simulation Output 118
6.5.4 Actors During the Course of the Simulation . . . 118
6.5.5 The Traffic Flow Protocol 119

6.6 Parallelization . 121
6.6.1 Domain Decomposition 121
6.6.2 Communication 123
6.6.3 Technical Description 124

6.7 Results . 124

iii

Contents

6.7.1 Test Scenario 124
6.7.2 Computer System for Performance Analysis . . . 124
6.7.3 Test Results . 125

6.8 Discussion and Outlook 126
6.9 Summary . 127

7 Fundamental Diagram 129
7.1 Introduction . 129
7.2 Average Flow Characteristics 130

7.2.1 Test Network 130
7.2.2 Test Agents . 131
7.2.3 Measured Values 131
7.2.4 Results and Discussion 132

7.3 Instantaneous Flow Characteristics 133
7.3.1 Modifications to Measure Instantaneous Values . 133
7.3.2 Changes in Results and Discussion 134

7.4 Stochastic Flow characteristics 134
7.4.1 Stochastic Demand and Supply 135
7.4.2 Observations 135

7.5 Conclusions on Flow Characteristics 136

8 Green Time Fractions 139
8.1 Model . 140
8.2 Data Format . 141
8.3 Technical Description 141
8.4 Possible Use of the Method 143

9 Results 145
9.1 Activity Planning . 145
9.2 Traffic Flow Microsimulation 147

10 Further Work 149
10.1 Solving the Location Choice Set Problem 149
10.2 Finding an Efficient Within Day Replanning Approach . 150
10.3 Adaptive Global Replanning Policy 150
10.4 Java Implementation of Traffic Flow Microsimulation . . 151

Acknowledgments 153

iv

Contents

Bibliography 155

v

List of Figures

2.1 Encoding of activity pattern “241” 21
2.2 Illustration of the crossover operator 22
2.3 Utility of activity pattern home-work-leisure-home . . . 31
2.4 Utility of activity shop 33
2.5 Utility of activity pattern work-shop-work 34
2.6 Convergence graphs for different learning scenarios . . . 38
2.7 Best day plan for the “full10” scenario after 10 million

generations . 39
2.8 First alternative day plan for the “full10” scenario after

200,000 generations . 40
2.9 Second alternative day plan for the “full10” scenario af-

ter 200,000 generations 41
2.10 Best day plan found for the “houseman” scenario 43

3.1 Plot of the rewards per 15 minutes for different activities
in the more realistic example 62

4.1 Steps that were implemented to speed up the MATSim
toolkit . 75

4.2 The adaptation of the sampling distribution in CMA-ES . 77
4.3 Convergence plots for test runs performed to find the op-

timal replanning share 80
4.4 Visualization of a scenario run using the MATSim-T vi-

sualization tool . 84
4.5 Network load according to initial demand 85
4.6 The modified simulation system learns substantially

faster than in the original state. 86
4.7 Optimal demand assuming free speed on all links 87

List of Figures

4.8 Demand after 20 iterations of learning of the new simu-
lation system . 88

4.9 Demand after 70 iterations of learning of the original
learning system . 88

5.1 Interaction processes between elements of the traffic flow
microsimulation . 102

5.2 The traffic flow protocol 103

6.1 Illustration of interaction processes in our microsimulation 119
6.2 The traffic flow protocol 120
6.3 Domain decomposition of the road network of the federal

states of Germany, Berlin and Brandenburg 122
6.4 The software speed scales nicely with the number of pro-

cessors used. 125

7.1 A virtual test setup with agents living and traveling on a
ring test network . 130

7.2 The test networks are created at resolutions from 2 links
up to 256 links. 131

7.3 Average density to flow ratio 132
7.4 A short sensor link is added to measure instantaneous flow.134
7.5 Instantaneous values reveal same trapezoidal relation as

averaged values. 135
7.6 Using stochastic demand “inner states” can be reached. . 136

8.1 An example green time fractions file 142
8.2 Plot of example green time fractions for link 123 142

viii

List of Tables
1.1 Comparison of the four step process with agent based

transport models. 8

2.1 Activities of our test case 36
2.2 Opening times of the facilities 36
2.3 Best day plan for the “full10” scenario after 10 million

generations . 40
2.4 First alternative day plan for the “full10” scenario after

200,000 generations . 41
2.5 Second alternative day plan for the “full10” scenario af-

ter 200,000 generations 42
2.6 Best day plan found for the “houseman” scenario 43

3.1 Optimal day plan for the test example 60
3.2 Computational performance with the test example using

high initialization . 60
3.3 Travel times for the more realistic example 62
3.4 Optimal day plan for the more realistic example 63
3.5 Computational performance with the more realistic ex-

ample using high initialization 64
3.6 Computational performance with the more realistic ex-

ample using low initialization 64

5.1 Discretization schema of different microsimulation ap-
proaches . 98

6.1 Discretization schema of different microsimulation ap-
proaches . 116

Abstract
Our life is strongly influenced by travel which enables the mode of living
we are used to in the first place. This importance of travel and the re-
sulting desire for reliable and effective transportation drive the need for
predictive models concerning our use of transport infrastructure.

It is remarkable that usually travel is not an end in itself; that is, the
motion of traveling is most often not the reason for it to be performed.
Nearly always it merely serves the purpose to either transporting a person
or goods from one place to another, to enable new activities not available
otherwise.

This thesis follows the conviction that travel behavior can only be
modeled and conceived on the level of the individual as it is essential to
understand the reasoning behind travel. Therefore, the approach under
investigation herein is agent based traffic modeling. Agents, as com-
putational representations of real life individuals, act according to sim-
plified rules, by adhering to which they find useful daily activity plans.
Then, they execute these plans in a traffic flow microsimulation, produc-
ing emerging phenomena such as congestion. The resulting flow patterns
and the corresponding agents’ daily activity plans can later be used for
traffic and travel behavior analysis.

Representing regional travel behavior on the level of individuals cre-
ates major challenges in terms of computational costs of such methods.
The aim of this thesis is to present algorithms and implementations able
to reduce this high demand of resources, rendering agent based models
practicable for engineering consultants on standard computing hardware
available in most offices today.

Zusammenfassung

Unser Leben, so wie wir es gewohnt sind, wird stark durch Verkehr
beeinflusst, Verkehr, der unser Leben überhaupt erst möglich macht.
Die Wichtigkeit des Verkehrs und das daraus folgende Bedürfnis
nach effektiven Transportsystemen sind es, die den Wunsch nach ver-
lässlichen Vorhersagemodellen für unsere Nutzung der Verkehrsinfras-
truktur nähren.

Es stellt sich heraus, dass Verkehr kein Phänomen ist, das sich un-
abhängig von anderen Einflussfaktoren verstehen lässt. Reisen dienen
beinahe immer einem bestimmten Zweck: Einerseits bringen sie uns zum
Beispiel an einen Ort, an dem wir eine bestimmte Aktivität ausführen
können, die an unserem vorherigen Ort nicht oder nur eingeschränkt ver-
fügbar ist, andererseits ist vielleicht ein bestimmtes Gut an unserem jet-
zigen Aufenthaltsort nicht verfügbar, wärend es anderswo problemlos er-
hältlich ist.

Diese Dissertation folgt der Überzeugung, dass Verkehrsverhalten
nur auf der Ebene des Individuums verstanden werden kann, da es
essentiell ist, dazu die Beweggründe für eine Reise zu erfassen. Aus
diesem Grund wird in dieser Arbeit die agentenbasierte Verkehrsmodel-
lierung untersucht. Agenten - das sind die informatischen Entsprechun-
gen zu Individuen im realen Leben - verhalten sich nach vereinfachten,
ökonometrischen Gesichtspunkten. Dies führt sie letztendlich zu vernün-
ftigen Tagesplänen. Anschliessend werden diese Pläne in einer Verkehrs-
flussmikrosimulation ausgeführt, was zu emergenten Phänomenen, wie
zum Beispiel der Staubildung, führt. Diese Resultate und die dazuge-
hörigen Tagespläne können anschliessend für Analysezwecke verwendet
werden.

Der Wunsch, das Verkehrsverhalten in einer ganzen Region auf
Individuen-Ebene abzubilden, stellt eine grosse Herausforderung dar,

Zusammenfassung

was den Rechenaufwand solcher Methoden betrifft. Das Ziel dieser Dis-
sertation ist es, Algorithmen und deren Implementationen vorzustellen,
welche diesen Rechenaufwand soweit reduzieren, dass die agenten-
basierte Verkehrsmodellierung für Ingenieurbüros auf Standardrechnern,
die heute in den meisten Büros zur Verfügung stehen, anwendbar wird.

xiv

Chapter 1

Introduction

1.1 Motivation
Travel is a very important part of our life. We spend a lot of time trav-
eling, although in most cases we don’t like to do so. The reason for
traveling is the benefit associated with overcoming space. This enables
us, for instance, to perform activities at different places or to transport
goods from one spot to another. All this is associated with utility which
most often exceeds the various costs associated with travel.

People act mostly individually, without thinking too much about their
effect on the rest of the world. Such effects are, for instance, consump-
tion of resources of all kinds, pollution, congestion, price fluctuations,
and many more. A beneficial decision for one person or a group may
negatively affect other persons in one or another aspect. Overall, such
effects may lead to a negative development of some or all parts of our
life.

On the other hand, we have an inner need for our life to become better
and more comfortable: we want more money, more spare time and more
opportunities to use it. So, we have an incentive to try to prevent negative
consequences to the world and each individual. Even more, we can try
to promote positive effects. To sum up, we want to influence our world
to develop in a direction we want it to go, both on the long and the short
term.

No matter what the desired development, the question is what are the
right actions to take to achieve that goal. It is clear that if we refuse to
decide hit or miss, we need an expectation of the effect on the future of

Chapter 1. Introduction

a specific measure. This expectation can be seen as the generalization of
the concept of prediction. Unfortunately for the modeler, life is complex:
everything might have an effect on everything else, and therefore, asking
for a prediction (or a predictive model) is much easier than coming up
with one. We can, of course, turn to experts and request their view of fu-
ture development, but the base of such predictions is difficult to formalize
apart from the obvious potential of neglecting substantial aspects. There-
fore, to get reliable predictions based on explicit assumptions, we need
to create models covering all relevant aspects of human life in society.

If we want to make traffic forecasts, we need to know the relevant as-
pects in life contributing most to travel. For this, one observation is cru-
cial: travel does almost never happen without reason. Instead, the benefit
of travel lies in the increase of opportunities achieved. Quite often, it is
an activity unavailable otherwise that drives the need for travel. Realiz-
ing this, we can say, from the modeler’s point of view, we “only” have to
create a model of person activities together with the selected location to
get a sophisticated travel demand model. Traffic can then be looked at as
an emerging phenomenon of such an integrated activity model.

It is a striking fact that traditional aggregated traffic models lack such
an explanation of traffic. They merely treat travel demand as a primary
and inevitable need that does not react to changes in the world and has
no reasoning behind it apart from reproducing statistics.

Many aspects of life influence the activity planning process. There
are simple ones like the weather, a persons salary or the fuel price, and
there are more complex ones like birth of children, social relationships or
moving. In general, the more aspects are reflected in a model the better
the predictions potentially are and the wider the field of applications of
the model will become. On the other hand, it is clear that we cannot
simulate all processes in our model if we want to get results at reasonable
costs. Too complex models will need a lot of time and money to be
developed, and the required data to run these models will be difficult and
expensive to acquire. Also, in such a universal model, many sub-models
will have little to no influence on the phenomenon under investigation
raising the question if we really need such a model. The bottom line is
that we need to find a compromise between refinement of the model and
effort to develop it.

2

1.2. Four Step Process

Within this work, we hold the view that the most important part of
life influencing the short term (up to 3 years) travel demand is activity
planning. This includes deciding on activity type and order, selecting the
location, choosing the start and end times, deciding on travel modes, and
many more. By assigning an expected utility to each activity and using
the concept of utility maximization, people select useful activities while
taking into account the expected travel costs.

We believe that modeling such complex processes on an aggregated
level describing zones as a whole is cumbersome and also difficult to ana-
lyze in the end. Instead, we choose the approach of agent based modeling
representing every virtual person (the so called agent) individually. This
simplifies the model a lot, since we only have to model the individual
decisions instead of complex multi-person decisions.

At the end of running such an agent based model, the global result-
ing patterns are all emerging phenomena arising from the large amount
of decisions made by the predominantly uncoordinated individuals mod-
eled.

1.2 Four Step Process
Traditional aggregated modeling, for example, Sheffi (1985); Ortúzar and
Willumsen (2001), usually starts by subdividing the region of interest
into traffic analysis zones. These zones can be chosen geometrically, ge-
ographically, politically, population based or based on any other suitable
measure. These zones then need to be connected to the underlying road
network using connector links.

In the first step of the process, for each of the zones the number of
originating and arriving trips is computed. To do this, sociodemographic
data is used. For instance, the number of residents in a zone together with
employment data might be used to estimate the number of originating
work trips from that zone. Similarly, the number of jobs in a zone can be
used to estimate the number of arriving work trips. Using similar ideas
for other trip purposes, the total amount of originating and arriving trips
can be calculated. This step is normally referred to as trip generation.

From this point on, it is fixed how many trips will be starting and end-
ing in each individual zone. However, this does not make any statement

3

Chapter 1. Introduction

on where the trips are going or where they are coming from. Finding
an answer to this question is the objective of the second step of the four
step process, trip distribution. Assuming an equal total amount of orig-
inating and arriving trip, for each origin destination pair the number of
trips has to be computed. Most often a gravity model is used to provide
the missing information. Gravity models make the assumption that the
probability of using a specific origin destination pair is depending solely
on the number of originating and arriving trips in the respective traffic
analysis zones and the (average) costs to travel from the originating zone
to the destination zone. Basic gravity models do not necessarily repro-
duce the desired totals of originating and arriving trips. If reproduction
of totals is desired—and most often it is—the gravity model has to be
constrained on both sides by use of an iterative process. The result of trip
distribution is called the origin destination matrix (or shortly OD-matrix)
which contains for each origin-destination pair the number of executed
trips.

Having the totals of the trips, the next question addressed is the mode
choice per origin destination pair. There is a wide range of ways to solve
the mode choice problem from very simple to more sophisticated ones.
One common approach is based on the estimated (average) costs of travel
per origin destination pair using the different modes at hand. Addition-
ally, general preferences and quality of service assumptions may be used.
All this is then used to run some sort of discrete choice model to find the
desired percentages per mode. If the real modal split is known from
survey data it is often required to reproduce this specific number, then,
additional measures have to be taken.

The last step is the iterative assignment process. Here, for each origin
destination pair, the trips are distributed along all possible routes con-
necting the corresponding zones. Most often, the basic requirement is
to reach a user equilibrium. For each OD-pair this means that all routes
from a zone A to a zone B that are loaded with traffic need to realize the
same travel costs (see for example, Wardrop, 1952). The travel costs on
the route are approximated by a sum of continuous functions that use link
capacity and link load as input and return the corresponding link travel
time. To find the correct link loads, an iterative optimization process
is run. The resulting loads on each link can either be used directly for
traffic analysis and planning, or indirectly by converting the loads into

4

1.2. Four Step Process

equivalent estimated travel times and travel costs per origin destination
pair.

1.2.1 Limitations of the Four Step Process
There are a number of limitations or challenges when using the four step
process for transport planning. Most of them emerge from the basic de-
sign of the approach, others are less fundamental and rather represent a
problem of specific implementations.

• Memory demand with increasing resolution: When using a traffic
model with N traffic analysis zones, the origin destination matrix
will have N × N cells. During the assignment step, each of these
cells has to store a multitude of routes connecting the zones in-
volved. With increasing resolution and area of interest, the number
of zones will go up very quickly as will the average route length
and number of alternative routes between two cells. This imposes
severe limitations to how well the approach scales to larger prob-
lem sizes.

• Attachment of zones to network: The zones need to be attached
to the modeled road network by using so called connector links.
The placement of these connector links defines where the travel
demand enters the network and can strongly influence the outcome
of the computation. In general, connecting the zones to the road
network requires expert knowledge, is time consuming and costly,
and has similar scaling problems as the OD-matrix.

• Trip-based structure: The whole approach described above is es-
sentially trip based. There are no activities involved and therefore
no activity chains can be observed.

• Missing explanation of trips: For the same reason, trips in the
model lack any explanation of why they take place.

• No utility of trips: The reason for this lack of explanation is that
there is no utility assigned to the trip (or rather the activity requir-
ing the trip). Furthermore, this utility is important for many analy-
ses when trying to understand travel behavior.

5

Chapter 1. Introduction

• No feedback between steps: Each of the four steps stands for itself
and there is no feedback from a later step to the earlier ones. This
missing feedback is a very strong simplification of reality. It even
presents a laxity in the definition of the four step process, as in
fact, both, trip distribution and mode choice need an estimation of
travel times between zones which is not available until the traffic
was assigned to the network in step four. This gap is often filled
with some other estimate of the travel times, for instance, the travel
distance, but this cannot be regarded as a good solution.

• Static nature: The described process only handles overall volumes
without any notion of time of day. As a result, many interesting
questions involving temporal patterns cannot be answered using
this method.

• Fixed demand: As travel demand is derived solely from sociode-
mographic factors, it cannot be used to predict changes in demand
based on a change in the road infrastructure. Especially the num-
ber of trips will stay the same as long as the base data for the trip
generation process remains the same.

Some of the described limitations can be overcome by extending the
presented model. For instance, there are extensions to get hold of the
dynamic nature of traffic. Basically, this is done by running similar
processes as described above for every hour of the day and by linking
these hourly results accordingly. Unfortunately, with increasing resolu-
tion, this approach makes the memory problem even worse. Limitations
of the trip generation step can be alleviated by using so called activity
based models. Further on, successive re-execution of some of the steps
using results from previous iterations is a relatively simple method to
solve or at least lessen the missing feedback problem.

However, there are other limitations more difficult to deal with, such
as, missing activity chains in the final assignment, the above described
memory demand, and the prediction of change in total demand, based on
road infrastructure changes.

6

1.3. Agent Based Transport Modeling

1.3 Agent Based Transport Modeling

Agent based transport models follow a very different approach to trans-
port modeling by staying much closer to the individual and having rep-
resentations for all major parts of daily life that involve travel in some
way. Conceptually, each individual is represented by a virtual agent.
All agents together form a synthetic population in a virtual world. See
for instance, Nagel and Barrett (1997); Marchal (2001); Raney (2005);
Balmer (2007). Apart from the agents, this virtual world contains repre-
sentations of infrastructure, such as, the road network and facilities like
houses, working places, shopping malls, and recreational areas. Each
agent has a plan taking place in the virtual world. This plan is created by
the agent himself1 based on rational assumptions.

When planning is done, execution starts which is where the virtual
world comes to life. During execution, agents interact while using the
infrastructure, and the system’s response is what really happens during
the day, as opposed to what the agents planned. Common examples of
emerging phenomena through joint use of infrastructure are congested
roads or overcrowded malls and parks.

The plans and the system response can be quite different especially
when the assumptions made during the planning proved to be far off.
In this case, the affected agents need another chance to bring their plans
closer to the virtual reality. To provide such a mechanism, an integral part
of the model is iteration, where the results of the last execution are avail-
able as base for the replanning process. After convergence, the plans
contain the final travel demand, and the response of a fully developed
agent based transport model contains information about each agent’s de-
tailed trajectory during the day including activities and travel modes. By
post processing this data, aggregated information can easily be extracted,
like hourly traffic volumes and time dependent travel times for each link
or origin destination pair. But note: the result of an agent based transport
model contains much more than just traffic volumes on links. Rather,
something similar to very detailed person diaries (of virtual agents) is
generated.

1Throughout this dissertation, the female form (e.g., she, her, herself, etc.) is implicitly included in
the male form.

7

Chapter 1. Introduction

Four step process Agent based transport model
Trip generation Activity pattern generation + location choice
Trip distribution Location choice for activities
Mode choice Mode choice per activity pair
Traffic assignment Routing + plan execution + replanning

Table 1.1: Comparison of the four step process with agent based transport
models.

1.4 Comparison of Four Step Models and
Agent Based Transport Models

Let us compare the two approaches to transport modeling to see how
different parts take similar roles in the final methods. See Table 1.1 for a
comparison summary of the two models.

It can be seen that basically all parts of the four step process have an
equivalent counterpart in an agent based model: when an agent decides
to change his daily plans activity pattern, especially if a new activity is
added, and if the assigned locations differ from the preceding and the
subsequent activities, a new trip has to be carried out. This can be inter-
preted as a trip being generated. Similarly, the location choice process
as a whole is carrying out trip distribution functionality. Here again, the
net effect of location choice on trips depends on the locations. For sub-
sequent activities at the same location no trip is carried out, otherwise a
trip is created and at the same time “distributed”. In agent based traffic
models, mode choice can be carried out similarly to the four step pro-
cess, that is, for each pair of subsequent activities a travel mode can be
selected. However, care has to be taken not to create an illegal daily plan.
Many mode patterns are not feasible, as the mobility tool for each mode
might not be available at all locations. For instance, if the home to work
trip was carried out by train the opposed trip cannot be accomplished by
car, since the needed vehicle is still parked at home and not at the work
location. This is not a limitation of agent based models, however. Rather,
with traditional approaches, the production of such illegal mode patterns
can easily stay unnoticed, which is not a desirable situation. Finally, the
assignment step finds its counterpart jointly in the daily planning and

8

1.4. Comparison of Four Step Models and Agent Based Transport Models

in the traffic flow microsimulation: finding the routes is covered by the
agents, and computing travel times for these routes can only be done by
simulating the day.

1.4.1 Parts of the Agent Based System Studied in this
Thesis

One important part of an agent based transport model addressed in this
thesis is the replanning process, as it represents the virtual counterpart
of the real human decision making. The work presented here makes the
fundamental assumption that all human acting is based on reasoning ac-
cording to econometric aspects. That is, we assume that there is a utility
(or disutility) assigned to every action an agent can take, and the goal
of each agent is to maximize his own overall utility. While this is cer-
tainly a simplifying assumption, it also forms a sound base for this work,
as it turns the very complex human decision making into a well defined
optimization problem. This optimization has to take place in “planning
space” which is a high dimensional space consisting of discrete and con-
tinuous dimensions. The utility assigned to actions and the resulting op-
timization problem is addressed in Chapter 2.

The described approach treats daily plans as unchangeable during the
day. While this is an assumption useful for finding an equilibrium state
of agents routinely performing similar activities over and over again, it
is wrong if we look at responses to unforeseen events. One way of ap-
proaching this type of reaction is investigated in Chapter 3.

From the point of view of the overall system, agent learning needs
to be coordinated, as otherwise all agents adapt their plans in each itera-
tion leading to overshooting effects, and the system would not be able to
converge to any point of rest. In the simplest version, random selection
of a certain fixed amount of replanning agents per iteration will solve the
problem and make the system operational. However, Chapter 4 shows
that the overall performance of the system can be greatly improved by an
optimized learning strategy.

Plan execution creates the link between plans and virtual reality and
therefore is one of the most important parts of the overall system. The
traffic flow microsimulation takes on this job, and very often, it represents
the most expensive part of the whole system in terms of computational

9

Chapter 1. Introduction

effort. How this can be alleviated and optimized by simulating discrete
travel events and through parallelization, as well as how the dynamics of
the microsimulation can be improved is discussed in Chapters 5–8.

1.5 Structure of This Dissertation

The largest part of this thesis is formed by papers published in journals
or presented at conferences. These papers were newly typeset to fit into
the formatting of the presented work.

In Chapter 2, we demonstrate an approach to agent based daily plan-
ning restating the task as an optimization problem of daily utility. A util-
ity function of activity execution is defined, and the final optimization
is carried out using a genetic algorithm (GA). GAs are population based
stochastic optimization algorithms from the field of evolutionary com-
putation. Borrowing from nature, possible solutions to the optimization
problem at hand are encoded in a genome which is then modified using
mutation and crossover operators. From the resulting new candidate so-
lutions the bad ones are sorted out by a selection step, thereby driving
the set of candidates towards an optimum. The final program is tested for
performance using selected artificial test problems which include optimal
learning of very busy and rather quiet days.

Chapter 3 works on an extension to daily replanning: within day re-
planning. The approach followed is to create a more extensive daily plan,
namely a plan including the best reactions to all possible delays during
the day. By formulating this task as a reinforcement learning problem,
it can be solved by the Q-learning method from the field of artificial in-
telligence. By using a balance between exploring the space of possible
states and exploiting knowledge acquired before, this method can find
globally optimal solutions to the problem at hand. Computational results
complete this chapter.

Replanning is again the focus of Chapter 4. First, the time alloca-
tion part of daily replanning is approached using the covariance matrix
adaptation evolution strategy (CMA-ES). CMA-ES has shown to per-
form well on a variety of optimization problems including such with
noisy and distorted search spaces. This efficiency makes it possible to
use the real time-dependent travel times in the replanning step. Second,

10

1.5. Structure of This Dissertation

the surrounding learning strategy, namely the percentage of replanning
agents per iteration, is investigated. We show that a decreasing percent-
age can improve the overall learning speed significantly, cutting down
the number of iterations needed by at least a factor of five.

A new microscopic queue-based traffic flow simulation is presented
in Chapter 5. Extending the traffic flow model already used in our group
by introducing the notion of backwards traveling gaps, it uses the discrete
events of interest (the times when cars enter or exit links) to actually drive
the simulation forward in time. By doing so, it eliminates inefficiencies
present during off-peak times and on very congested roads. This makes
it possible to run large traffic flow microsimulations with more than one
million agents on planning networks in less than ten minutes on single-
CPU desktop computers.

Chapter 6 goes even further and shows how the same model can be
parallelized to run on 64 processors or more. This is done by appropriate
load balancing and by minimizing interfaces between processors. These
small interfaces lead to reduced communication needs. The final parallel
microsimulation, using a shared memory machine with 64 CPU-cores,
can simulate a 24 hours scenario with 7 million agents on a 28k links
network in 87 seconds.

The properties of our extended traffic flow model are investigated in
Chapter 7 using a ring test network and stochastic demand. The resulting
flow-density-diagram has a trapezoidal form and can be described as a
stylized form of fundamental diagrams known from real world measure-
ments.

Using queue-based microsimulations for urban traffic can be difficult
since signaled intersections have a big impact on observable flow pat-
terns. To alleviate this problem, we extend our traffic flow model by time
dependent green time fractions in Chapter 8. The idea is that the main
use of traffic lights—apart from regulating intersection use—is mainly to
adjust the available flow capacity on intersecting roads. Exactly this, the
percentage of green time per link, can now be controlled directly using
the presented extension of our microsimulation model.

Finally, in Chapter 9, the results of the presented work are summa-
rized, and Chapter 10 gives an outlook on future work.

11

Chapter 2

Generating Complete
All-Day Activity Plans
with Genetic Algorithms
Authors

David Charypar
Institute for Transport Planning and Systems, ETH Zurich, Switzerland
Email: charypar@ivt.baug.ethz.ch

Kai Nagel
Institute for Land and Sea Transport Systems, TU Berlin, Germany
Email: nagel@vsp.tu-berlin.de

Publication

This paper was presented at a conference (Charypar and Nagel,
2003) and later published in a journal (Charypar and Nagel, 2005).

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

Abstract
Activity-based demand generation constructs complete all-day activity
plans for each member of a population, and derives transportation de-
mand from the fact that consecutive activities at different locations need
to be connected by travel. Besides many other advantages, activity-based
demand generation also fits well into the paradigm of multi-agent simu-
lation, where each traveler is kept as an individual throughout the whole
modeling process.

In this paper, we present a new approach to the problem, which uses
genetic algorithms (GA). Our GA keeps, for each member of the pop-
ulation, several instances of possible all-day activity plans in memory.
Those plans are modified by mutation and crossover, while “bad” in-
stances are eventually discarded.

Any GA needs a fitness function to evaluate the performance of
each instance. For all-day activity plans, it makes sense to use a utility
function to obtain such a fitness. In consequence, a significant part of the
paper is spent discussing such a utility function. In addition, the paper
shows the performance of the algorithm on a few selected problems,
including very busy and rather non-busy days.

Keywords:Activity generation; Utility functions; Genetic Algorithms;
Location choice; Multi-agent traffic simulation

14

2.1. Introduction

2.1 Introduction
The larger context of the work presented in this paper is the attempt to
build an integrated multi-agent simulation model for transportation plan-
ning, “multi-agent” meaning that each traveler in the simulation is in-
dividually resolved. Multi-agent simulations can be employed on many
levels, from housing choice down to driving behavior. Our own initial
goal is to replace the four-step process by a multi-agent simulation. This
implies the following modules and methods:

• The process starts by generating a synthetic population from cen-
sus data (e.g. Beckman et al., 1996).

• Next, for each synthetic person of the synthetic population a plan
is generated. Plans consist of activity patterns, activity locations,
activity times, mode choice, route, etc. (e.g. TRANSIMS, 2006;
Pendyala, 2004; Bhat et al., 2004).

• Up to here, the computations of the agents are essentially indepen-
dent, apart from possible small-scale coordination problems such
as household coordination or ride sharing. In contrast, in the mo-
bility simulation, all agents’ plans are simultaneously executed and
the results of interaction are computed (e.g. MATSim-T, 2004; DY-
NASMART, 2003). One important interaction result is congestion.
– Note that most traffic micro-simulations do not truly execute
agent plans at the route level, but rather keep the travelers’ des-
tinations and have the routing done by the network.

• As is well known, the causal relation between the modules goes
into both directions. For example, if many agents choose activi-
ties at many different and far apart locations, then this will cause
congestion. This congestion will cause them to select activities
which necessitate less travel. The typical way to solve this prob-
lem is to use iterations between the modules (e.g. Cascetta, 1989;
Kaufman et al., 1991; Nagel and Barrett, 1997). This can be either
interpreted as relaxation or as human learning.

For this approach, many collaborating modules need to be designed,
implemented, and tested. An important part of those modules concerns

15

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

activity generation: for each synthetic individual, a sequence of activi-
ties is generated, including activity location and activity times. Activity-
based demand generation is a very active field of research. The mainstay
of activity-based demand generation are random utility models (RUMs)
(Ben-Akiva and Lerman, 1985; Bowman, 1998; Pendyala, 2004; Bhat
et al., 2004). RUMs, however, arguably have the disadvantage that they
are behaviorally not very realistic. In consequence, alternatives are also
investigated, such as behaviorally or rule-based approaches (e.g. Arentze
et al., 2000; Miller and Roorda, 2003).

The question that will be considered in this paper is in how far Ge-
netic Algorithms (GA) can contribute to the field of activity generation.
GA are biologically inspired optimization methods that are relatively
inefficient computationally but extremely flexible. In consequence, the
question to be treated in this paper is if this flexibility can be stretched to
include activity generation, and what the resulting computational burden
is.

The paper starts with a more precise problem description (Sec-
tion 2.2), followed by a short review of previous work in the area of
activity generation (Section 2.3). Section 2.4 then discusses a concept of
how GA could be used to generate daily activities; Section 2.5 contains
details about our specific computational implementation. GAs work by
maintaining a population of solutions; they improve the best known so-
lution by mutating and combining members of that population. In order
for this to work, individuals need to be given scores. This is normally
called a fitness function; in social science research, it is plausible to use
utility functions instead. In consequence, Section 2.6 describes the re-
quirements that a utility function for the GA approach needs to fulfill,
and which particular utility function we selected. However, any function
that gives scores to activity chains will work. Section 2.7 then contains
tests and results for several illustrative examples. The paper is concluded
by an outlook on future work (Section 2.8) and a summary (Section 2.9).

2.2 Problem Description

The problem of activity planning is the task to generate a complete ac-
tivity plan for an agent from a set of possible activities (an activity reper-

16

2.2. Problem Description

toire). A complete activity plan stores which activities are to be executed
and in which order, it assigns a location to each activity and also an exe-
cution time and a duration.

Activity planning divides into three subproblems:

• The first subproblem is to select activities to be executed and to
decide in which order they should be executed. We refer to this
subproblem as activity pattern generation.

• The second subproblem is to find the places where the activities
are going to be executed. We call this location selection. The
location selection has to fulfill a number of constraints in order
to be meaningful. For instance children should be fetched from
school at the same place where they were dropped off before.

• The third subproblem is to decide when the activities have to be
executed and for how long. We call this time allocation. Once
again, time allocation is subject to several restrictions. The most
simple one is that the execution times should be ordered in corre-
spondence with the activity pattern.

In reality, all of us do activity planning every day with sufficient speed
and satisfactory results. Nevertheless this problem is quite difficult to
solve automatically on the computer. The main problem with activity
planning is the huge amount of possible plans for a given set of activities.
Even if one is just concentrating on activity pattern generation for a list
of ten activities, there are almost 10 million possible solutions. It is clear
that we get even more problems if we want to include location selection
and time allocation.

To make the problem even worse, it would be desirable to extend
the length of the activity plan to a week or even a month because day
plans are not independent in general as some activities do not have to be
executed every day. For instance you do not have to go shopping every
day, but you also cannot omit shopping for a longer period.

Since the space for possible solutions scales exponentially with the
length of the desired activity plan, generating complete week plans is a
problem that is several orders of magnitude more complex than generat-
ing day plans.

17

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

2.3 Related Work

There are many models tackling the same problem. One can maybe dif-
ferentiate the following directions:

(1) A possible way to solve this problem is to use a nested multi-
nomial logit model. One such system is described by Bowman (1998).
The decision is decomposed into many hierarchical levels, such as: the
choice between different activity patterns, the choice between different
locations, the choice between different starting times for the patterns, etc.
This method demands that approximations of the lower level results are
available at the upper levels: for example, in order to decide between
different activity patterns, it is necessary to have a performance estimate
for each pattern, which can only be obtained if the algorithm has some
idea about the locations and times that will be chosen for each pattern.
In practice, this is achieved via the so-called logsum terms, which back-
propagate the lower level solutions to the higher levels. That is, the algo-
rithm starts at the leaves of the decision tree. There, it computes, for each
given activity pattern and location choice, utilities for each possible time
choice. It then calculates the expected utility from this, and passes this
on to the location choice level. The location choice level then calculates,
for each given pattern, the expected utility for each location choice and
passes the resulting expected utility for each pattern one level up, etc.
Once the algorithm is at the highest level, it selects between the patterns
according to the utilities. Once the pattern is selected, for this given pat-
tern it selects between the locations. Once the locations are selected, it
decides on the time-of-day when the pattern is started.

Discrete choice models have a similar conceptual approach as our
model in that they make choices based on utilities. The two main differ-
ences are that, at least conceptually, discrete choice models enumerate
all possible alternatives, and that they do not choose the option with the
best utility but they choose between options with probabilities which are
related to utilities. The first aspect means that a huge number of options
needs to be considered; the second (behaviorally somewhat justified) as-
pect means that efficient search methods such as branch-and-bound can-
not be used because even “bad” branches of the search tree have a prob-
ability that they will be selected.

18

2.4. Idea: Genetic Algorithms

(2) An arguably related approach is STARCHILD and successors. In-
stead of making a probabilistic choice between different options, it finds
the optimal solution. Because of this simplification, methods from math-
ematical programming can be applied (e.g. Recker, 1995).

(3) Jara-Diaz and Guerra (2003) look at complete daily schedules in
terms of an econometric interpretation. For example, the ratio of the
durations of work versus non-work is explained by a combination of the
value of time and the wage rate.

(4) All approaches mentioned so far always look at the complete
schedule. As an alternative, a traveler may build the schedule as he/she
goes. An extreme version of this is PCATS (e.g. Kitamura, 1996), which
conditions decisions on the past history, but does not look into the future.
The advantage is much more manageable computational complexity; the
disadvantage is that the algorithm does not pick up scheduling constraints
which lie in the future.

(5) The work by Doherty and coworkers (e.g. Doherty and Axhausen,
1998) implies that real-world activity scheduling is a combination of the
above aspects, i.e. that some decisions are made a long time in advance
while others are rather spontaneous. An implementation of this approach
is ALBATROSS (e.g. Arentze et al., 2000).

(6) Miller has attempted to build a model that is considerably more
process-oriented than typical RUM models. It was applied to the Toronto
metropolitan area (Miller and Roorda, 2003).

2.4 Idea: Genetic Algorithms
Trying to solve the problem by enumerating all possibilities—a com-
plete search—is infeasible. This is especially true if one has only very
limited computer time for program execution, as is the case with large
scale multi-agent implementations. Furthermore, for our problem it is
not absolutely necessary to find the global optimal solution. In fact, in
many cases what people use as their plan is far from being optimal. It
would be sufficient to find a “good” solution.

19

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

The idea for this paper is to use a Genetic Algorithm (GA) to find
good all-day activity plans. GAs have been used for many problems
with huge search spaces; a suggestion to use them in the context of
transport/land-use research is by Abraham and Hunt (2002). GAs main-
tain a population of solution instances during the search process, and
search progress is made by mutation, crossover, and selection, as ex-
plained below. In our case, the population of solution instances consists
of many possible day plans for a single given traveler. The quality of
such a day plan is rated by a fitness function which uses information and
restrictions known about the activities, and estimates how well the day
plan meets them.

A random population of such day plans is created at the beginning
of the algorithm. New individuals are created by crossover between two
good day plans (the “parents”) and mutating the offspring.1 When a bet-
ter day plan is found, then the worst plan is removed, keeping a popula-
tion of constant size. This procedure is repeated a number of times. At
the end, the best day plan is used as solution of the problem.

Note that “population” of “individuals” is used with two different
meanings in this text: first, there is a population of travelers that popu-
lates the multi-agent traffic simulation, but second, there is also a popu-
lation of solution instances within the GA. In the remainder of the text,
the second meaning will be used if not stated otherwise.

2.5 Implementation
As mentioned above, crossover, mutation and selection are vital compo-
nents of each GA. Before these operators can be defined, it is necessary
to come up with a way of representing a solution instance in the com-
puter. This way of representation is referred to as encoding. Encoding is
of prime importance for the definition of crossover and mutation and it
has a large influence on the potential performance of a GA.

For our problem of activity planning, we used a combination of bi-
nary encoding, permutation encoding and value encoding in the follow-
ing way (Figure 2.1):

1In this paper, the word “parents” is only used in the computational sense, never in the biological
sense.

20

2.5. Implementation

32 4 5 11 2 3 4 5

ordermembership

2 4 1

resulting pattern

Figure 2.1: Encoding of activity pattern “241”

• Each activity (of a given and fixed set) can be either included
in the day plan or excluded from it (binary encoding). This
information—which we will refer to as membership information
later on—is stored in an array of bits, where each bit holds this
information for one activity. If a bit is set to one the corresponding
activity is included in the day plan (i.e. it is a member of the day
plan), if it is set to zero the corresponding activity is excluded from
the plan.

• A second array stores the order of the activities (permutation en-
coding). It holds always a full set of activities, regardless of which
activities are actually member of the day plan and which not. When
evaluating the day plan, the positions with disabled activities are
ignored.

• Our day plans also include information about the location choice.
In our model we assume that there exists a facility that is assigned
to each activity. This facility can be thought of as a type of build-
ing or place that is needed in order to perform the activity. For in-
stance, for the activity “go shopping” one needs the facility “shop”.
We also assume that for each facility there exist multiple locations
as for example there are multiple shops in a city where shopping
can be done. The concept of facilities makes it possible to have lo-
cations of activities that depend on each other. For instance, this is
needed to take care of the fact that one has to fetch his children at
the same school as one has dropped them off before. The day plan
has to store the selected location for each facility. This informa-
tion is held in a third array storing the ID of the location for each
facility (value encoding).

• The activity durations are stored in a fourth array which stores
floating point numbers (once more value encoding); in addition,

21

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

2315 4

5234 1

5/234 1

2/534 1

14 532 parent 1

offspring with collision (*)

offspring with correct sequence (**)

parent 2 (selected for precedence)

final offspring

Figure 2.2: Illustration of the crossover operator

there is an entry which contains the starting time of the day plan.
Activity starting times of the allocated time slots are a result of
adding up all previous durations and travel times (see below).

The parents for a new individual are selected at random out of the
current population. When the offspring is better than the currently worst
member of the population, then the worst member is replaced by the new
offspring. Otherwise, the offspring is not kept. Since there is no selec-
tion at the parent level, all existing solutions except the worst are treated
equivalently, which maintains a relatively large degree of diversity in the
population. Slow progress towards better solutions is made by removing
the worst member.

The implementation of the crossover operator is built of three parts:

• First, the array which stores the membership information is pro-
cessed using uniform crossover. That is, each membership bit is
copied randomly from either one of the parents.

• Second, we crossover the arrays that store the order information
(Figure 2.2). Before we start, we decide randomly which parent
should precede (i.e. which parent’s activity should come first) in
case of a collision. For each activity (“1” to “5” in Figure 2.2),
we randomly select a parent and put the activity at the same posi-
tion in the offspring as it was in the selected parent (see “(*)” in

22

2.5. Implementation

Figure 2.2). If there are collisions (i.e. two activities in the same
cell), then first, their sequence is decided (see “(**)”), and then,
the resulting new sequence is copied into its correct location. This
somewhat involved algorithm was developed since it does not de-
pend on the sequence in which it goes through the activities, and
therefore it does not introduce a bias caused by the ordering in
which the activities are processed in this sub-step.

• Third, for each activity, one of the the two parents is randomly
selected, and the new duration is set to the duration of the same ac-
tivity in the selected parent. Note, that this makes it quite possible
that the position of an activity in the sequence order is taken from
one parent, but the duration of the activity from the other parent.

Note that standard single point crossover would not work. In single point
crossover, the offspring is created from the parents by taking their repre-
sentations, choosing a random crossover point and copying the first part
up to this point from the first parent and the second part beginning at this
point from the second parent. However, for sequencing problems such as
ours, this approach does not work since in general, in the offspring some
activities will be performed twice while some others will have vanished.

A solution, coming from GA encoding for the Traveling Salesman
Problem, is to take the first part verbatim from the first parent, and
then to fill up the remaining spots with the remaining activities in the
sequence they are in the second parent, skipping activities which are
already present in order to avoid duplicate activities in the offspring.
That encoding has, however, the disadvantage that it only looks at the
sequence and not at all at time-of-day. In contrast, in our implementa-
tion, activities have a tendency to stay at their position within the day
plan. In addition, our crossover operator shuffles the activities more than
a single point crossover would, and our tests showed that this yields a
more stable—although slower—convergence. This is desirable, because
our experience with GAs shows a considerable tendency to keep stuck in
local optima when using single point crossover.

The mutation operator is split into four parts: First, for each ac-
tivity, the membership information is flipped with a probability pmut.
Second, the order of the activities is permuted: With a probability pmut
two activities, both chosen at random, are exchanged. This is done n

23

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

times where n is the total number of activities. Using the same idea
as in the crossover operator, the activities are exchanged ignoring the
membership information. Third, the duration of each activity is changed
by multiplying it with a factor f = eX , where X is drawn uniformly
from the interval [−pmut/2, pmut/2]. Fourth, a new start time of the ac-
tivity plan is calculated by adding a random time uniformly drawn from
[−pmut · 12h, pmut · 12h].

2.6 Utility Function

As already mentioned earlier, our GA needs to rate the quality of the day
plans in the population. For that purpose one has to define a fitness func-
tion which somehow defines what a “good” day plan is. An important
advantage of using a GA is that the fitness function can be changed very
easily according to the preferences of the user.

We use a fitness function that is the sum of the utilities of all activities
that are performed, plus the sum of all travel (dis)utilities:

F =
n∑
i=1

Uact(typei, starti, duri) +
n∑
i=2

Utrav(loci−1, loci) (2.1)

Here, typei is the type of the activity, starti is the starting time of the
activity, duri is the amount of time allocated to the activity, and loci is
the location of the activity. In the following part, we will discuss all
aspects of our utility function in detail.

In our model, the utility of an activity depends on the following vari-
ables:

• The time of day when the time slot for the activity starts

• The allocated time to the activity

• The location where the activity takes place

• The location where the last activity took place.

24

2.6. Utility Function

The utility of an activity i is—in our model—the sum of four terms,
each of which is modeling a certain aspect of the utility function.

Uact,i = Udur,i + Uwait,i + Ulate.ar,i + Uearly.dp,i + Ushort.dur,i . (2.2)

Udur,i denotes the utility of executing the activity for a certain duration,
Uwait,i denotes the (dis)utility of waiting (for instance waiting for a shop
to open), Ulate.ar,i and Uearly.dp,i denote penalties for coming too late or
leaving too early, respectively, and Ushort.dur,i is a penalty if an activity is
performed for too short a time.

Utrav denotes the (dis)utility of traveling from the last location to the
next one.

This approach has the consequence that when removing an activity,
the travel terms at both ends are modified. That is, if an activity is far out
of the way, then dropping that activity will reduce overall travel consider-
ably, while dropping an activity that is on the way will have a negligible
effect on travel times.

In the following, the different terms and their parameters will be dis-
cussed in detail. All terms except Udur are modeled to be linear in the
time needed for that activity. Despite the detailed discussion, it should
be kept in mind that the technology of using a GA is entirely independent
from the specific utility function. If a different utility (or general scoring)
function is desired, it is very simple to replace it.

2.6.1 Utilities for Performing Activities
Although fitness functions can be easily replaced in GA approaches, a
specific fitness function needs to be selected in order to run tests. We
decided to use a logarithmic function as utility of duration:

Udur(tdur) = βdur · t∗ · ln(
tdur

t0
) . (2.3)

Here, tdur is the duration of the activity as it is actually performed, and
βdur, t∗, and t0 are parameters, to be explained later.

Logarithmic utility functions where introduced by Bernoulli (1738)
as a solution to the St. Petersburg paradox. They have the property that
the marginal utility of doing more of the same activity is decreasing with

25

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

longer durations, but it is always positive. This may seem implausible
because then there is nothing that limits the execution time of activities.
However, considering more than one activity and a limited time budget,
the available time will be distributed in order to achieve a higher overall
utility, thus limiting the time spent at each individual activity.

In the absence of other restrictions such opening times, the optimal
time allocation for an activity pattern is reached if all activities have the
same marginal utility of duration. Otherwise, the agent could gain by
reallocating time from activities with small marginal utilities to activities
with large marginal utilities.

t∗ is the duration at which the marginal utility is βdur, as can be seen
by taking the partial derivative:

∂U

∂tdur
(tdur) =

βdur · t∗

tdur
, (2.4)

and setting tdur = t∗ yields indeed βdur for the marginal utility. t∗i gives
the typical duration of activity i. Or more precisely: the t∗i yield the ratios
of the durations of different activities in equilibrium.

t0 is the duration at which the utility starts to be positive. It plays a
double role:

• It determines the minimum duration of an activity. If the duration
falls below this value, then it is more beneficial to drop the activity
and do nothing instead.

• It determines the priority of an activity: The marginal utility at
tdur = t0 is

∂U

∂tdur
(t0) =

βdur · t∗

t0
. (2.5)

If one sets t0 proportional to t∗, i.e. t0 = α t∗, then the proportional-
ity factor α will decide over the marginal utility at t0 and therefore
over the priority with which an activity is maintained when time
gets tight.

In our case, the specific form of

α = e−200e/(t∗·p·βdur) (2.6)

26

2.6. Utility Function

was used, where p is the priority. This specific form has the con-
sequence that all activities of the same priority have the same utility at
tdur = t∗.

Note that even activities with a high priority can be dropped if they
are very inconvenient. As we will see later, this has sometimes implausi-
ble results, such as picking up a child from kindergarten but never drop-
ping it off. On the other hand, it is certainly true that schedules can
become so tight that even high priority items are dropped, for example
by asking someone else to help out. For that reason, making high priority
activities completely obligatory seems not plausible.

2.6.2 Penalties

All penalty terms follow the penalty terms of the Vickrey model of de-
parture time choice (e.g. Arnott et al., 1993) in that they are modeled to
be linear in their time consumption:

Utrav(ttrav) = βtrav · ttrav ,

Uwait(twait) = βwait · twait ,

Ulate.ar(tstart) =

{
βlate.ar(tstart − tlatest.ar) if tstart > tlatest.ar
0 else

(where tstart is the starting time of the activity and tlatest.ar is the latest
possible starting time for the activity),

Uearly.dp(tend) =

{
βearly.dp(tearliest.dp − tend) if tend < tearliest.dp
0 else.

(where tend is the ending time of the activity and tearliest.dp is the ear-
liest possible ending time for the activity), and

Ushort.dur(tstart, tend) =

{
βshort.dur(tshort.dur − (tend − tstart)) if tend < tshort.dur
0 else.

27

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

(where tshort.dur is the shortest duration for the activity),
At this point, one could discuss plausible relations between the differ-

ent β, for example using the typical Vickrey scenario values of −6e/h,
−12e/h, and −18e/h for βwait, βtrav, and βlate.ar, respectively. How-
ever, as will be discussed in Section 2.8, in our framework there are in-
teractions between the marginal utility of doing activities and the effec-
tive marginal utility of the penalty terms, so that the effective marginal
utilities that guide behavior are more complicated than one would as-
sume by the above numbers. This is caused by the fact that some of the
penalized items, such as waiting and traveling, also incur the additional
penalty of not being able to earn positive utility from doing an activity
at the same time (opportunity cost). The other penalized items—arriving
late, leaving early, or staying for too short—do not have this property.
Therefore, the values used in the tests will just be stated in Section 2.6.4
and be used without further comment except for the discussion in Sec-
tion 2.8. – Once more, please note that this paper describes a prototype
implementation rather than an operational model.

2.6.3 Opening Times and Similar Constraints

Many activities can only be carried out during certain times of the day.
For instance shopping can only be done when the stores are open. The
question is what utility we want to assign to activities which violate these
constraints.

One possibility would be to assign a very low utility to those activi-
ties, e.g. minus infinity. This policy would be very efficient in avoiding
invalid day plans. But it would not make very much sense, for the fol-
lowing reason: Assume that you have to compare two time allocations for
the activity “shop”. In the first scenario you go shopping at 7:59am and
shop for two hours. In the second scenario you go shopping at 8:00am
and shop also for two hours. The shop opens at 8am. The first time allo-
cation is invalid because you try to shop while the shop is closed. So the
utility of the first scenario would be very low. The second scenario, how-
ever, has a very high utility. With this policy, the minimal change of one
minute in time allocation would produce a huge change in utility which
is certainly not realistic. In reality, we would have waited one minute in

28

2.6. Utility Function

front of the shop. That means that one should set parameters such that
both utilities are almost the same.

Based on these reflections, we come up with the following constraint
handling policy:

• At the beginning of the allocated time slot, we assume that the
agent travels from the location of the last activity to the location of
the new activity. The time spent for traveling yields a (dis)utility
according to the section about travel costs.

• From the moment of arrival at the activity location until the end of
the time slot, as much time as possible is spent actually performing
the activity.

• If for some reason, for instance because of opening hours, it is
not possible to use all this time for performing the activity, the
remaining time is spent waiting. Waiting yields a negative utility
of βwait · twait.

• Since we use a logarithmic function for the utility of duration, it is
possible that this utility becomes negative. If this is the case, and if
it is more efficient to spent the whole time waiting2, the activity is
not executed at all. It may sound weird to travel to an activity that
is not executed. However, it is important to note that we need to
calculate meaningful utilities for no matter which day plans the GA
generates, because this is the material the GA works with. Since
traveling to an activity location without executing the activity does
not make sense, the GA will eventually find a better solution, such
as either completely dropping the activity, or allocating sufficient
time for it.

2.6.4 Summary of Parameters

The following is a listing of all parameters of our utility function and the
values that were used.

2The second if-condition is only relevant if βwait is different from zero. As will be discussed in
Section 2.8, it makes much sense to set it to zero, in which case this condition is no longer relevant.

29

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

Marginal utility of any activity(βdur): 20e/h
Marginal utility of travel time(βtrav): −12e/h
Marginal utility of waiting(βwait): −6e/h
Marginal utility of coming late(βlate.ar): −18e/h
Marginal utility of leaving too early(βearly.dp): −6e/h
Marginal utility of staying too short(βshort.dur): −6e/h

These parameters were selected in order to match the typical Vickrey sce-
nario values of −6e/h, −12e/h, and −18e/h. Upon further reflection,
one does, however, recognize that the above values in conjunction with
our approach do not do this, since when traveling or waiting, one incurs
the additional penalty of time that one could spend doing an activity, at
the “cost” of −20e/h (opportunity cost). Section 2.7 discusses better
values.

2.6.5 Examples of Utility Landscapes

In order to show some properties of the utility landscape, we exemplarily
analyze plots of some activity patterns. Because of the limited number
of displayable dimensions, our choice is restricted to very short activity
patterns with a maximum of four activities.

Now, if we would use full length day plans with such a limited num-
ber of activities, the resulting day plans would be rather slack, and as a
result of that, many of the typical problems with activity planning would
not arise.

Our way out of this problem is to use shorter time budgets for our
example activity plans. In consequence, the plans that we are going to
talk about here are no longer complete day plans but rather partial plans.
However, since the calculation of the utility values is completely additive,
having a look at partial plans does make sense.

As a further simplification, we assume during this part of our inves-
tigations that all activities can be carried out at the same location. By
applying this simplification, we do not have to define a lot of location
related parameters. However, the problems that can be observed in this
simplified context have the same complexity as with traveling enabled.
This is due to the fact that our travel times are independent of time of day
and because they are linear in the geometric distance of the locations.

30

2.6. Utility Function

0 2 4 6 8 10 12 14 16

work [h]
0

5

10

15

home [h]

150

200

250

300

350

400

450

500

utility [EUR]

0

2

4

6

8

10

12

14

16

home [h]

2 4 6 8 10 12 14 16
work [h]

(a) 16 hours time budget

0 2 4 6 8 10 12

work [h]
0

5

10

home [h]

150

200

250

300

350

400

utility [EUR]

0

2

4

6

8

10

12

home [h]

2 4 6 8 10 12
work [h]

(b) 12 hours time budget

Figure 2.3: Utility of activity pattern home-work-leisure-home. t∗ of
work, leisure and home set to 8, 2, and 4 hours, respectively.

31

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

We first show the typical utility landscape of an activity chain with
four activities home, work, leisure and home. The t∗ for work, leisure
and home had been set to 8, 2, and 4 hours, respectively. There were no
additional constraints that had to be fulfilled except that the total length
of the plan was fixed to 16 hours (Figure 2.6.5).

The utility function as a function of the two parameters duration of
work and duration of leisure has one clean global optimum. It should be
easy to find the global optimum of this activity pattern even with standard
optimization techniques. At the borders of the domain, there exist small
regions where the utility increases again. This is due to the definition of
the utility function which has a cutoff at very short durations. For exam-
ple, when the duration of work becomes less than two hours, it becomes
better not to work at all, in which case the additional leisure time makes
a positive contribution.

In order to show the effect of the time budget on the time allocation,
we show another plot of the same activity pattern but this time with a
desired plan length of 12 hours (Figure 2.6.5). The optimum is shifted
towards shorter times and the utility of the optimum is roughly 100 lower.

The utility landscape of activities with opening hours is more com-
plex. As an example we show the utility of shopping in a store that
is open during the morning from 9 until 11 and in the afternoon from
14 until 17. Without opening hours the landscape would be very smooth
and completely independent of time of day. With the opening hours some
interesting new properties can be observed.

In figure 2.4 we see that now there exist three local optima. The
global optimum (top left) corresponds to showing up in the shop at 9 in
the morning and staying there until 17 in the evening. The lunch break is
spent waiting. The two local optima in the morning and the afternoon are
much more meaningful. The early local optimum corresponds to coming
at 9am when the shop opens and leaving the shop at 11am when it closes.
The late local optimum corresponds to coming at 14 when the shop opens
and leaving at 17 when it closes.

The structure of the fitness (utility) landscape becomes even more
complex when we consider an activity chain that includes a complex
activity with opening hours. Figure 2.5 shows the utility of the activity
pattern work-shop-work. t∗ was set to eight hours for the total working
duration and two hours for the shopping activity. The overall plan was set

32

2.6. Utility Function

0

2

4

6

8

10

duration [h]

8 10 12 14 16
start time [h]

Figure 2.4: Utility of activity shop. Shop open 9–11, 14–17. There is no
constraint on the total length of the partial plan.

to start at 8 and last until 17. One sees that good plans set the shopping
time to 1.5 hours; the overall work time will then be set to 7.5 hours.

The utility for this activity pattern shows two equivalent global op-
tima. They correspond to go shopping in the morning for almost two
hours and to go shopping in the afternoon. The optimum in the afternoon
is wider, because the shop is open for three hours in the afternoon.

33

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

8

10

12

14

16

shop start time [h]

0

2

4

6

8

shop dur [h]

0

100

200

utility [EUR]

(a)

0

2

4

6

8

shop dur [h]

810121416
shop start time [h]

(b)

Figure 2.5: Utility of activity pattern work-shop-work. The shop is open
9–11 and 14–17. For the calculation of the utility of work only the total
working duration is regarded. That is, the sum of working duration before
shopping and after shopping is first calculated and then the utility for
work is calculated. Note also that the axes in this plot are reversed for
visibility reasons.

2.7 Tests and Results for Complete Day-Plans

In this section, we want to show the general ability of our model to gen-
erate complete day plans. For that purpose, we designed a simple city. In
our city there exist a number of different facilities including apartments,
working places, shops, kindergartens and recreational areas. For each
of these facilities, there exist three different locations between which an
agent can choose. The different locations of the facilities are summarized
in a map. See, e.g., Figure 2.7.

A possible oddity of our examples is that all locations can be changed
on the same time scale. That is, even the home location can change be-

34

2.7. Tests and Results for Complete Day-Plans

tween different solutions. It is, however, very easy to keep some of these
things fixed by just reducing the choice in the corresponding category
to one. This would also allow to run the algorithm at several levels, for
example:

• Run the algorithm while long-term locations (e.g. home, work,
kindergarten) are fixed in order to determine the short-term flex-
ible parts of a daily schedule.

• Run the algorithm, say, for a possible new home location in order
to test if an agent could improve its daily utility function by mov-
ing to this location (Abraham and Hunt, 2002). In this situation,
the algorithm would model the “what-ifs” of humans when they
consider alternative options without actually executing them.

• Clearly, any intermediate level is possible as well, for example
when home and work are kept fixed but a kindergarten location
is searched for.

For our tests we assume that travel times are proportional to the ge-
ometric distance between two locations and that the travel speed is con-
stantly 10km/h.

We want to test our algorithm for different kinds of agents with differ-
ent lists of activities that they would like to accomplish. For this purpose,
we defined three different scenarios. Each scenario is defined by a set of
activities that are available. The scenario “full10” is the one with the
largest set and consist of ten activities which are listed in Table 2.1. The
other two scenarios use a subset of these activities.

All facilities needed by the activities except for the facility “home”
are not open during the whole day. The opening times used for our in-
vestigations are summarized in Table 2.2.

The three scenarios are defined as follows:

• As mentioned above, the “full10” scenario defines a scenario
with set of ten activities. This scenario consists of the activities
“sleep”, “breakfast”, “lunch”, “dinner”, “early work”, “late work”,
“bring children to kindergarten”, “fetch children from kinder-
garten”, “shop”, and “leisure”. The purpose of this scenario is to
show the performance of our algorithm if there are very many ac-
tivities to perform.

35

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

Name Priority t∗1 tlatest.ar
2 tearliest.dp

3 tshort.dur
3 Facility

sleep 1 8.0 25.0 29.0 6.0 home
early work 1 4.0 9.0 11.0 3.5 work
late work 1 4.0 14.0 15.0 3.5 work
breakfast 3 0.5 10.0 0.25 home
lunch 2 1.25 14.0 12.0 0.75 work/home4

dinner 2 2.0 21.0 18.0 0.75 home
bring to kindergarten 1 0.25 9.0 8.5 0.25 kindergarten
fetch from kindergarten 1 0.25 16.0 15.5 0.25 kindergarten
shopping 3 2.0 0.5 shop
leisure 3 2.0 1.0 leisure

1 t0 (not shown in table) is derived from the priority and t∗. See Section 2.6.1 and Eq. (2.6).
2 Latest starting time. If the activity starts later a penalty is applied. See Section 2.6.2
3 Both tearliest.dp and tshort.dur address the problem of not executing an activity enough long. If the
activity is ended before tearliest.dp a penalty applies. The same penalty applies if the duration of the
activity is shorter than tshort.dur. See Section 2.6.2
4 Depending on the scenario, the facility of the activity “lunch” was either work or home. See
description of the scenarios.

Table 2.1: Activities of our test case

Facility Name Opening Times
Home 00:00-24:00
Work 06:00-20:00
Kindergarten 8:30-9:00 15:30-16:00
Shop 09:00-19:00
Leisure 14:00-24:00

Table 2.2: Opening times of the facilities: An activity can only be carried
out when the required facility is open. Note facility “Kindergarten” has
two opening times. The first one defines when children can be dropped
off and the second when they can be picked up.

• In the “houseman” scenario, the agent has only eight of the ten ac-
tivities of the “full10” scenario to choose from, leaving out both
work activities. That is, the remaining activities are: “sleep”,
“breakfast”, “lunch”, “dinner”, “bring children to kindergarten”,
“fetch children from kindergarten”, “shop” and “leisure”. Since in
this scenario the agent does not have a work location, we changed

36

2.7. Tests and Results for Complete Day-Plans

the facility for eating lunch from “work” to “home”. This scenario
simulates a rather dense day plan of a non working person.

• In the “pensioner” scenario, the set of activities consists only of
5 activities; these are “sleep”, “lunch”, “dinner”, “shopping” and
“leisure”. As in the “houseman” scenario, the facility for having
lunch was changed to “home”. With this scenario we want to show
how our model deals with day plans with a large freedom in time
allocation.

In all these scenarios, the set of activities is endogenous to the model.
This is discussed in Section 2.8.

We do two separate investigations for each scenario. In the first inves-
tigation, we run the algorithm for a long time in order to rate the quality
of the best solution that the algorithm possibly produces. In the second
investigation, we want to rate if the algorithm is capable of finding usable
day plans within a limited time, therefore, we run the program for a short
time. This second question is especially important if we want to generate
day plans for a large number of agents.

For the quality investigation, we run the algorithm for 10,000,000
generations with a GA-population size of 300. The execution takes be-
tween 140 and 230 seconds on a 2.4GHz Pentium 4 Laptop. For the
usability and speed investigation, we change the parameters in order to
achieve a higher convergence speed taking into account that we sacrifice
some stability for that reason. The GA-population size is reduced to 50
and the number of generations is limited to 200,000. Here, the execution
takes between 3 and 5 seconds.

The quality test for the “full10” scenario was run with 5 different
initializations. At the end of each run, the day plan with the highest util-
ity value was always identical in terms of generated pattern and location
selection. Only the time allocations differed, but the differences were
within very few minutes. In Figure 2.6(a) we show a typical convergence
graph for the quality tests. The best day plan found for the “full10” sce-
nario in the quality test is shown in figure 2.7. Note that the children are
not dropped off at home before continuing with the day plan; especially
“leisure” is performed together with the children. This can be observed
in almost all generated day plans. There is nothing that would force the

37

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

 500
 600
 700
 800
 900

1000
1100
1200
1300
1400

 100 1000 10000 100000 1e+06 1e+07

U
til

ity
 [E

U
R

]

Generation

max utility
avg utilitiy

(a) “Full10” scenario with 10 million generations in order to get the best possible
quality of the resulting day plan. The graph shows the maximal and average
utility of the population of a typical long run.

 400
 600
 800

1000
1200
1400
1600

 100 1000 10000 100000

U
til

ity
 [E

U
R

]

Generation

max utl worst run
max utl best run

(b) “Full10” scenario with only 200,000 generations to test the performance of the
algorithm if there is only limited time for finding a good day plan. The graph
shows the maximum utility of the population for the best and the worst short
run.

 0
 100
 200
 300
 400
 500
 600
 700
 800

 100 1000 10000 100000

U
til

ity
 [E

U
R

]

Generation

max utl
avg utl
min utl

(c) “Pensioner” scenario for a typical short run. In this test, the goal was to find a
good day plan within limited time.

Figure 2.6: Convergence graphs for different learning scenarios

agents to drop children off before starting with the next activity. How-
ever, if desired, this could be easily included in the utility function.

In the five short runs for investigation of speed and usability for the
scenario “full10” three times a solution was found that is identical to

38

2.7. Tests and Results for Complete Day-Plans

home

work

leisure

shop

kindergarten

2km

1

0

0

1

2

1

0

2

2

0

2

1

1

2

0

Figure 2.7: Map of the best day plan for the “full10” scenario after
10 million generations. The total utility is 1284.93. See Table 2.3 for
the corresponding schedule.

the one shown in Figure 2.7 in terms of generated pattern and selected
locations. Only the time allocations were not as sophisticated. The total
utility varied between 1277.54 and 1278.84. In the two remaining runs,
two different solutions were found. The solution shown in Figure 2.8
differs only in terms of location selection and time allocation while the
solution shown in Figure 2.9 differs also in the generated pattern. Note
that in this day plan the activity “bring children to kindergarten” is left
out. In Figure 2.6(b) we compare the convergence of the best and the
worst short run.

In all runs for the “pensioner” scenario (five long runs and five short
runs) the same day plan was found with respect to the generated activity
pattern and the selected locations. The time allocations to the differ-
ent activities was also very similar. The similarity of the day plans can
also be seen when looking at the total utility which was always between
638.483 and 638.514 —a very narrow interval. The only difference be-
tween the plans was their starting time which varied in the range from
10:33am to 11:45am. This is due to the lack of constraints for the activ-

39

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

Activity Name Travel Time Execution Time Location
Breakfast 06:56–07:26 home 0
Bring children1 07:26–08:30 08:30–08:40 kiga3 2
Early work 08:40–08:46 08:46–11:52 work 2
Lunch 11:52–12:40 work 2
Late work 12:40–15:40 work 2
Fetch children2 15:40–15:46 15:46–16:00 kiga3 2
Shop 16:01–16:43 16:43–18:26 shop 0
Leisure 18:26–18:48 18:48–20:27 leisure 1
Dinner 20:27–21:03 21:03–23:02 home 0
Sleep 23:02–06:56 home 0

1 Bring children to kindergarten.
2 Fetch children from kindergarten.
3 Kindergarten

Table 2.3: Schedule of the best day plan for the “full10” scenario after
10 million generations. The total utility is 1284.93. See Figure 2.7 for a
graphical summary.

home

work

leisure

shop

kindergarten

2km

1

0

0

1

2

1

0

2

2

0

2

1

1

2

0

Figure 2.8: Map of the first alternative day plan for the “full10” scenario
after 200,000 generations. The total utility is 1276.46. See Table 2.4 for
the corresponding schedule.

40

2.7. Tests and Results for Complete Day-Plans

Activity Name Travel Time Execution Time Location
Breakfast 07:27–07:56 home 0
Bring children 07:56–08:30 08:30–08:42 kiga 1
Early work 08:42–09:03 09:03–11:54 work 0
Lunch 11:54–12:49 work 0
Late work 11:54–12:49 work 0
Fetch children 15:18–15:39 15:39–15:57 kiga 1
Shop 15:57–16:33 16:33–18:13 shop 0
Leisure 18:13–18:35 18:35–20:26 leisure 1
Dinner 20:26–21:02 21:02–23:30 home 0
Sleep 23:30–07:27 home 0

Table 2.4: Schedule of the first alternative day plan for the “full10” sce-
nario after 200,000 generations. The total utility is 1276.46. See Fig-
ure 2.8 for a graphical summary.

home

work

leisure

shop

kindergarten

2km

1

0

0

1

2

1

0

2

2

0

2

1

1

2

0

Figure 2.9: Second alternative day plan for the “full10” scenario after
200,000 generations. The total utility is 1107.89. Note, the activity
“bring children to kindergarten” is left out. See Table 2.5 for the cor-
responding schedule.

41

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

Activity Name Travel Time Execution Time Location
Breakfast 06:14–06:46 home 0
Early work 06:46–06:59 06:59–10:56 work 1
Lunch 10:56–11:59 work 1
Late work 11:59–15:04 work 1
Fetch children 15:04–15:51 15:51–16:00 kiga 1
Shop 16:00–16:37 16:37–18:26 shop 0
Leisure 18:26–18:47 18:47–20:27 leisure 1
Dinner 20:27–21:03 21:03–23:06 home 0
Sleep 23:06–06:14 home 0

Table 2.5: Second alternative day plan for the “full10” scenario after
200,000 generations: The total utility is 1107.89. Note, the activity
“bring children to kindergarten” is left out. See Figure 2.9 for a graphical
summary.

ities. That is, it does not matter at which time inside the range the day
plan starts.

It seems that our algorithm has no problems to find a good solution
for the “pensioner” scenario. In order to test this assumption we show the
convergence graph of one of the usability runs in Figure 2.6(c). One can
see that the algorithm converges already very early. In fact, a solution
identical to the one found in the end in terms of generated pattern and
selected locations is already found after 30,000 generations—which is
only 15% of total number of generations.

In all five long runs for the “houseman” scenario and in four of the
five short runs the same day plan was found with respect to the generated
activity pattern and the selected locations. The time allocations were
also very similar, they all lay within ten minutes. The resulting utilities
vary between 1040.51 and 1043.04. We show the best day plan found in
Figure 2.10.

The day plan found in the remaining short run is topologically dif-
ferent from the other day plans. It leaves out the activity “leisure” (not
shown).

The resulting day plans for all three scenarios are plausible. All as-
pects of activity planning—activity pattern generation, location selection

42

2.7. Tests and Results for Complete Day-Plans

home

work

leisure

shop

kindergarten

2km

1

0

0

1

2

1

0

2

2

0

2

1

1

2

0

Figure 2.10: Map of the best day plan found for the “houseman” scenario.
The total utility is 1043.04. Note, that the agent fetches the children and
performs activity “leisure” with them. The reason why it does not drop
them off at home before is that there is no constraint forcing it to do so
and the presented day plan minimizes travel time. See Table 2.6 for the
corresponding schedule.

Activity Name Travel Time Execution Time Location
Bring children 08:08–08:42 08:42–08:59 kiga 1
Breakfast 08:59–09:33 09:33–10:17 home 0
Lunch 10:17–12:02 home 0
Shop 12:02–12:23 12:23–14:58 shop 0
Fetch children 14:58–15:35 15:35–15:52 kiga 1
Leisure 15:52–16:19 16:19–18:51 leisure 1
Dinner 18:51–19:27 19:27–22:02 home 0
Sleep 22:02–08:08 home 0

Table 2.6: Schedule of the best day plan found for the “houseman” sce-
nario. The total utility is 1043.04. Note, that the agent fetches the chil-
dren and performs activity “leisure” with them. The reason why it does
not drop them off at home before is that there is no constraint forcing it to
do so and the presented day plan minimizes travel time. See Figure 2.10
for a graphical summary.

43

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

and time allocation—are taken care of. The convergence of the genetic
algorithm seems to be very stable, as for each scenario at the end of al-
most all test runs the same good solution is found. It seems, that our tests
have not yet pushed our algorithm to its limits, it would be interesting to
see how it performs on generating complete week plans.

2.8 Discussion and Further work
The values for the marginal utilities (Section 2.6.4) were selected to
match typical values of the Vickrey scenario (e.g. Arnott et al., 1993).
It turns out, however, that in our framework the effective penalties of
traveling or waiting are not the values of Section 2.6.4, but they are those
values plus the utility lost by not doing any activity, i.e.−20/h (opportu-
nity cost). This means that the effective marginal disutilities of traveling
and waiting are −32/h and −26/h, respectively. The correct values of
our system to obtain the typical Vickrey penalties of −6, −12 and −18
for waiting, traveling, and being late, respectively, are thus

Marginal utility of any activity(βdur): 6e/h
Marginal utility of travel time(βtrav): −6e/h
Marginal utility of waiting(βwait): 0e/h
Marginal utility of coming late(βlate.ar): −18e/h
Marginal utility of leaving too early(βearly.dp): −18e/h

These are the values we will use in some of our future research.
An interesting consequence of the above observations is that it is not

necessary to assume any disutility (negative utility) of travel at all. As
long as there are activities whose marginal utilities are more strongly
positive than the marginal utility of travel, agents will still attempt to
minimize travel time. And if one wants to introduce a more sophisti-
cated utility function for travel, for example first positive and then be-
coming negative, then this could be easily done. This means, in par-
ticular, that our approach will not have any problems with the recently
discussed “positive utility of travel”. Clearly, such work should be done
in conjunction with survey data that can then be used to estimate and test
models.

In all scenarios of Section 2.7, the set of activities is endogenous to
the model. Such sets could for example come from separate models of

44

2.8. Discussion and Further work

activity repertoires. However, our algorithm is in principle capable to
drop low priority activities, although that was not systematically inves-
tigated. Therefore, one could imagine to start from a maximum set of
activities, possibly with the desire of intermediate home stops between
any two activities, and then have the algorithm drop intermediate home
stops and/or low priority activities. The priorities could even be coupled
to household or weekly agendas, discussed below.

Genetic algorithms are known as rather inefficient, but very flexible
search methods. This flexibility means that extensions can be easily in-
troduced. Examples for such possible extensions are:

• The present model for the estimation of travel times between dif-
ferent locations is not very realistic. It would be possible to use
travel times from a simulation in order to increase realism. With
time dependent travel times, phenomena like congestion avoidance
within the day plans should emerge.

• The paper pretends that all activity scheduling problems can be
solved with a single utility function. This is improbable, and
variations of the relevant coefficients could be easily introduced.
Such coefficients could for example be obtained from estimated
econometric models of daily activity schedules (e.g. Jara-Diaz and
Guerra, 2003). That paper also explains how such econometric
explanations relate to random utility theory.

• Aspects of limited information could be modeled by only mak-
ing subsets of possible locations available to the algorithm. Such
sets would need to be generated by other methods, for example by
random sampling, by information transmission via social networks
(Marchal and Nagel, 2005), or by using mental maps (Arentze and
Timmermans, 2005; Kistler, 2004).

• The paper assumes that each agent optimizes for him-/herself. This
reflects our observation that simple copying of partial strategies
from other people does not work in the real world. For example,
I cannot simply copy the shopping location from my neighbor be-
cause in all probability he/she works somewhere else and so this
may not be convenient. A possible approach might once more

45

Chapter 2. Generating Complete All-Day Activity Plans with Genetic Algorithms

be the use of social networks (Marchal and Nagel, 2005) which
ensures that information is primarily passed between people who
share some similarities.

• One interesting aspect of activity planning is to generate activity
plans for households and/or for full weeks instead of generating
them for single agents and single days. This problem is more com-
plex than simply generating individual day plans for each of the
occupants of a household since the activity plans of different occu-
pants or of consecutive days depend on each other. For instance,
only one of the agents living in a household has to go shopping, or
shopping only needs to be done once a week. An investigation of
this has been done by Meister et al. (2005b).

More complicated would be the interaction of agents that do not
live in easily identifiable groups, such as the coordination of shared
rides or of leisure activities. Here, some other method would first
have to provide the social links (e.g. Marchal and Nagel, 2005).
However, even once social links are known, the GA approach
would probably fail since too many agents would have to be co-
ordinated at the same time. A sequential activity planning process,
such as described by Doherty and Axhausen (1998), possibly com-
bined with a GA, might be a possible approach.

2.9 Summary

A genetic algorithm (GA) was presented that constructs all-day activity
plans. It uses as input a set of possible activities, and a utility function
to score activity schedules. The GA attempts to construct good solutions
which maximize the utility function. It does that by maintaining a popu-
lation of solution instances, which are mutated, and which, importantly,
breed new solutions by crossover. Crossover means that two solution in-
stances are selected, and part of the new solution comes from one parent,
and the other part from the other parent.

The algorithm is then run on several examples. It is shown that the
algorithm generates plausible solutions both for crowded and for relaxed

46

2.9. Summary

activity sets, and that it can do so even when the computation time is
restricted.

The most important aspect of this work is that arbitrary utility func-
tions can be used. A GA does not guarantee optimal solutions, but it
will nearly always generate plausible solutions. Given that humans do
no better, this may be sufficient for many travel forecasting purposes.

Acknowledgments
Kay Axhausen helped us with numerous pointers to all-day utility func-
tions. Nevertheless, the responsibility for our choices remains with us.

47

Chapter 3

Q-learning for Flexible
Learning of Daily Activity
Plans
Authors

David Charypar
Institute for Transport Planning and Systems, ETH Zurich, Switzerland
Email: charypar@ivt.baug.ethz.ch

Kai Nagel
Institute for Land and Sea Transport Systems, TU Berlin, Germany
Email: nagel@vsp.tu-berlin.de

Publication

This paper was published in a journal, see Charypar and Nagel
(2006).

Chapter 3. Q-learning for Flexible Learning of Daily Activity Plans

Abstract
Q-learning is a method from artificial intelligence to solve the reinforce-
ment learning problem (RLP), defined as follows: An agent is faced
with a set of states, S. For each state, there is a set of actions, A(s),
which the agent can take and which takes the agent (deterministically
or stochastically) to another state. For each state, the agent receives
a (possibly stochastic) reward. The task is to select actions such that
the reward is maximized. Activity generation is for demand generation
in the context of transportation simulation. For each member of a
synthetic population, a daily activity plan needs to be found, stating
a sequence of activities (e.g. home - work - shop - home), including
locations and times. Activities at different locations generate demand
for transportation. Activity generation can be modeled as RLP with the
states given by the triple (type of activity, starting time of activity, time
already spent at activity). The possible actions are either to stay at a
given activity, or to move to another activity. Rewards are given as utility
per time slice, which corresponds to a coarse version of marginal utility.
Q-learning has the property that, by repeating similar experiences over
and over again, the agent looks forward in time, i.e. the agent can also
go on paths through state space where high rewards are only given at the
end. This paper presents computational results with such an algorithm
for daily activity planning.

Keywords: Activity Planning; Q-Learning; Activity Generation; Within
Day Replanning; Multi Agent Travel Simulation

50

3.1. Introduction

3.1 Introduction

It is a recent trend in transportation research to use activities in order to
generate demand for transportation. Transportation demand is naturally
derived from performing activities at different locations. For each syn-
thetic individual, a sequence of activities is generated, including activity
location and activity times. Activity-based demand generation is a very
active field of research. The mainstay of activity-based demand genera-
tion are random utility models (RUMs) (Ben-Akiva and Lerman, 1985;
Bowman et al., 1999; Pendyala, 2004; Bhat et al., 2004). RUMs, how-
ever, arguably have the disadvantage that (a) they are behaviorally not
very realistic, (b) only heuristic approaches exist for reducing the choice
set when faced with a very large number of options, (c) they need to be
re-computed when a traveler is thrown off its optimal dayplan. In con-
sequence, alternatives are also investigated, such as behaviorally or rule-
based approaches (e.g. Arentze et al., 2000; Miller and Roorda, 2003).

This paper investigates if a certain approach from machine learning,
called Q-learning, is applicable to activity generation. The two main
questions to answer at this state are: (a) Are the results plausible? (b)
Can they be obtained within reasonable time on a computer? A more
expansive research only makes sense if both questions can be answered
in the affirmative.

This paper concentrates on a module to generate the time allocation
part of activity plans, i.e. when activities should begin, how long they
should last, and when they should end. The method should, however,
also be capable to do location choice, or activity pattern selection. Some
discussion of this, and related methods that could be explored, can be
found in Section 3.6.

This paper starts with a review of Q-learning (Section 3.2), followed
by a section on how to apply this to activity generation (Section 3.3). The
method is first tested on an unrealistic but somewhat challenging test
example, and then with a somewhat more realistic case (Section 3.5).
The paper is concluded by a discussion (Section 3.6) and a summary
(Section 3.7).

51

Chapter 3. Q-learning for Flexible Learning of Daily Activity Plans

3.2 Q-Learning

The reinforcement learning problem (RLP) can be stated as follows:
Given a set S of states s, transitions between states s → s′, and rewards
R(s → s′) associated with each transition. At each state, the agent can
select between different actions a ∈ A(s), which influence the transition
probabilities between states. The task of the agent is to select actions
a(s) such that some expected discounted reward,

E

(∑
t

βtRt

)
, (3.1)

is maximized. β < 1 is the discount factor, and Rt is the reward being
obtained at each time step t.

Rewards can be high, low or even negative. They may come with a
delay, in the sense that some transition may not lead to immediate high
reward, but possibly to a high later reward which cannot be reached by
any other sequence of transitions.

β models the effect of how far the agent looks into the future. A β
close to one means that rewards in the far future carry large weight; a
small β means the opposite.

Q-learning (Russell and Norvig, 1995, e.g.) is a method to solve the
RLP. In Q-learning, an agent learns action-values giving the expected
utility of taking a certain action in a given state. These action-values
are also called Q-values. In each state, the agent has several options for
actions it could execute. For each state-action-pair, the agent stores an
individual Q-value Q(s, a) that is used for the decision process. The Q-
value for a given state-action-pair corresponds to the expected cumulative
reward, Equation 3.1, that can be collected by taking the action.

Q-values are defined the following way:

Q∞(s, a) = R(s′) + βmax
a′

Q∞(s′, a′) , (3.2)

where R(s′) is the reward for arriving at s′, and s′ is the state that is
the result of executing action a in state s. If the transition after taking
s is probabilistic (i.e. several different s′ can result), then some suitable

52

3.2. Q-Learning

average needs to be taken. β is again the discount parameter, in the range
[0..1[.

Equation 3.2, when expanded, leads to a solution of type
∑

t β
tRt. If

an agent always takes the action a ∈ A(s) which maximizes Q∞(s, a),
then the agent maximizes that sum. When deviating from that path, the
reward will be reduced. This shows that always taking the action with
the highest Q-value solves the RLP.

Note that for low discount parameters, Q∞ depends almost entirely
on the current state action pair, resulting in a very greedy search for the
optimal solution. In contrast, large discount values correspond to very
long time horizons which means that the agent can look ahead and make
its decisions on more global reflections. Some further insight is gained
by assuming, for the moment, constant rewards R(s) ≡ R̄(∀s). In that
situation, all Q∞ need to be the same, and therefore Q̃∞ = R̄ + β Q̃∞
and thus

Q̃∞ =
1

1− β
R̄ . (3.3)

By this argument, one sees that the final Q-values are proportional to the
average reward, and the proportionality factor is 1

1−β . For β <∼ 1, the
factor is very large, and for β → 1, it goes to infinity.

So far, we have only described the steady state of Q-learning, that is
the final solution after learning. However, the steady state is not initially
known, and therefore, it is crucial to have a look at the actual learning
process. The algorithm that we use in order to approximate the steady
state (the actual Q-learning algorithm) is the following:

1. Initialize the Q-values.

2. Select a random starting state s which has at least one possible
action to select from.

3. Select one of the possible actions. This action will get you to the
next state s′.

4. Update the Q-value of the state action pair (s, a) according to the
update rule (Equation 3.4) below.

53

Chapter 3. Q-learning for Flexible Learning of Daily Activity Plans

5. Let s = s′ and continue with step 3 if the new state has at least one
possible action. If it has none go to step 2.

The update rule is given by

Qt+1(s, a) = (1− α)Qt(s, a) + α [R(s′) + βmax
a′

Qt(s
′, a′)], (3.4)

where Qt(s, a) is the Q-value at the current time-step and Qt+1(s, a) is
the updated value. α is the learning rate and is a parameter of the algo-
rithm. The proper selection of α is crucial in many applications. Watkins
and Dayan showed that the Q-learning algorithm converges to the steady
state if α converges to zero with certain mathematical properties (Watkins
and Dayan, 1992). However, in our cases we achieved good results with
α = 1 , which is probably because we have deterministic rewards.

In each state the agent basically can choose from two kinds of behav-
ior: either it can explore the state space or it can exploit the information
already present in the Q-values. By choosing to exploit, the agent usually
gets to states that are close to the best solution so far. By this it can refine
its knowledge about that solution and collect relatively high rewards. On
the other hand, by choosing to explore the agent visits states that are far-
ther apart from the currently best solution. By doing so, it is possible that
it finds a new, better solution than the one already known.

We use a parameter - the exploration rate pexplore - to set the behavior
of our Q-learning algorithm. In every step, with a probability of 1 −
pexplore the agent exploits the information stored in the Q-values, with
probability pexplore the agent chooses a random action in order to explore
the state space.

Now assume that the agent has learned some Q-values for this situa-
tion, either Q∞ according to Equation 3.2 or some other values. Assume
that now exploration is switched off (i.e. pexplore = 0), that is, at every
state s the agent selects the action a which maximizes Q(s, a). Can one
say anything about the long-term behavior in this situation?

In fact, this describes a discrete dynamical system. Let us also as-
sume that the number of state action pairs is finite. Since this is now a
deterministic system, the trajectory needs to go to an attractor, which is
either a fixed point or a cycle. This is due to the following reason: as
the system is discrete and finite, the trajectory eventually needs to come

54

3.3. Q-learning for Daily Activities of Humans

back to a state where it was before; since the system is deterministic,
from then on it will do exactly the same as in the previous cycle.

3.3 Q-learning for Daily Activities of Humans

How can the problem of daily activity planning be encoded in a way
that it becomes a RLP? For this, assume that the day is segmented into
a number of time slices, t =1..T ; this paper will investigate time slices
of 15, 30, and 60 minutes. Possible states at each time slice are possible
activities, e.g. Home, Work, Shop, etc. At each time slice, the agent
needs to decide if it stays at the current activity, or moves on to a different
one. If the sequence of the activities is fixed, then this is a binary choice
between stay and switch; otherwise, it gets a bit more complicated.

To make the model realistic, a state needs to consist of the activity
itself, the current time-of-day, as well as the duration that the agent has
already spent at that activity. Activity type and current time only are not
sufficient: being at work at 3pm but having arrived at 8am is different
from being at work at 3pm but having arrived at 11am. These rewards
are easiest defined in terms of reward tables for each activity, which, for
each arrival time and each duration, give the reward for staying one more
time slice. If the reward is taken as utility, then the reward tables are
the same as a discretized marginal utility, multiplied by the duration of a
time slice.

The time structure is assumed to be periodic, that is, at t = T the
agent is connected to t =1, and over the transition it can stay or switch
as it can do with any time increment. Now assume once more that the
agent has learned some Q-values and now does exploitation only, i.e. it
always chooses the action a which maximizes Q(a, s) at any state s. Be-
cause of the time structure, the system cannot go to a fixed point, and
so under normal circumstances it will describe a cycle through the 24-
hour state space. If the RLP was completely solved, then for β → 1 that
path maximizes the score (utility) per 24 hours. For smaller β, the situa-
tion is similar, but not exactly the same. If the RLP was not completely
solved, i.e. some of the Q-values do not correspond to the steady state
values, then the agent will nevertheless find a cycle, albeit possibly not
the optimal one.

55

Chapter 3. Q-learning for Flexible Learning of Daily Activity Plans

Note that those cycles can also be multiples of 24 hours. For example,
an agent can have one full day where it gets up early and goes to bed
late, alternated with a less full day where it gets up later and goes to bed
earlier.

An interesting side-effect of the structure of Q-learning is that the re-
sult of the computation is not only the optimal cycle through state space,
but also the optimal paths if the agent is pushed away from the optimal
cycle. For example, if a transfer between activities takes considerably
longer than expected, the Q-values at the arrival state will still point the
way to the best continuation of the plan.

3.4 The Test Example

3.4.1 Description

For testing purposes, the following task was designed: given an activity
pattern of four activities - Home, Work, Shop and Leisure - we want to
solve the time allocation problem, i.e. find starting and ending times
for these 4 activities such that the resulting overall utility is maximal;
the overall utility is thereby defined as the sum of the utilities of the
individual activities.

We define the utility function of the activity Home to be independent
of the starting time. It is a step function of the duration with the step
being at seven hours. The utility of being at home for less than 7 hours
is defined as being zero, the utility of staying at home for seven hours or
longer is 7.

The activities Shop and Leisure both use the same utility function. It
is of the same type as the one of Home but the step is at 2 instead of 7
hours. Also the height of the step is set to 2 instead of 7.

The utility function of activity Work - other than the ones above - is
starting time dependent. Only if the agent starts working at 8:00 in the
morning and stays there for at least 9 hours it will get a utility of 9. If
it starts earlier or later or if it stays for a shorter time the utility of Work
will be 0.

We have intentionally designed the utility functions above in a way
that it is difficult to find the optimal solution. In order to do so, the agent

56

3.4. The Test Example

has to look very far in the future as the rewards for correct behavior are
not given until the end of an activity. Integrating activity Work into the
daily plan is even more difficult as not only the duration of the activity
has to be long enough but also the starting time has to be chosen correctly.
If the agent decides to start working only 15 minutes earlier - or later - it
will lose all the reward given in case of work starting at 8:00.

These reward tables describe a difficult case for the search algorithm,
since there is no indication at all that a certain path will lead to a good
reward later. However, these reward tables do not model reality. More
plausible reward tables for activities generally are smoother and give re-
wards already at earlier times of activity execution.

In order to keep the number of states finite, the maximum duration of
any activity is restricted to 12 hours. Depending on the resolution this is
equivalent to setting the maximal number of consecutive states spent in
the same activity to 12, 24, or 48, respectively.

Finally, we have to specify how we derive the reward tables from the
utility functions. This can be done by calculating the discretized version
of the marginal utility function. This is equal to the differences between
utility values at consecutive positions in the utility function of a particular
activity. These consecutive positions are placed according to the time
resolution chosen.

To account for the fact that an agent usually has to travel from one
location to another between activities we define a constant travel time
between different activities. We choose it to be 60 minutes. The utility of
travel is set to be zero. One might argue that the utility of travel should be
negative. However, as all our activities have positive utilities per time it is
already desirable to minimize travel time s. As mentioned earlier, there
are basically 3 parameters playing a role for Q-learning: the discount
parameter β, the learning rate α and the exploration rate pexplore.

The first problem we would like to solve is to find a reasonable value
for the discount parameter β. In principle we would like to choose a
value close to one for this parameter as we are interested in finding the
day plan which maximizes the cumulative reward or utility. For the utility
of a plan it does not matter when a certain reward is earned only that it
is earned. As a result the discount parameter that corresponds best to the
problem is β = 1. Unfortunately, this leads to diverging Q-values.

57

Chapter 3. Q-learning for Flexible Learning of Daily Activity Plans

On the other hand, for efficiency, low discount parameters are best as
they reduce interdependency of the Q-values and therefore lead to higher
learning speeds. But, low discount parameters inherently prefer short
activities. This can be to an extent that long activities (such as Work) are
left out completely while short activities (such as Shop) are repeated over
and over again.

Knowing all that, one has to find a compromise. Our preliminary
tests showed that for time-slots of 60 minutes a discount parameter of
β = 0.96 works fine. When the time resolution increases, the length
of the activities in terms of number of states also increases and, as a
consequence, the discount parameter β has to be increased accordingly.
In order to have comparable results at different time resolutions, we want
the discount per time t to be the same for all times t > 0 independent of
the time resolution tres. This leads to

β
(1

tres1
)

res1 = β
(1

tres2
)

res2 , (3.5)

and then

βres2 = β
(

tres2
tres1

)
res1 . (3.6)

For βres1 close to 1.0 and tres2 < tres1, one can approximate this by

≈ 1− (1− βres1)
tres2
tres1

. (3.7)

With βres1 = 0.96 and tres1 = 60min one obtains

βres2 = 1− 0.04tres2
60min

, (3.8)

where tres2 is the desired time resolution in minutes.
Since our reward tables are completely deterministic, we choose the

learning rate α to be 1.0. This leads to the highest possible convergence
speed. However, depending on the value of the discount parameter, the
convergence can be slow.

The initialization of the Q-values has a large effect on the learning
speed and the quality of the result. In general, initializations with high

58

3.4. The Test Example

initial Q-values lead to more exploration of the state space as the agent
has to find out first for each state that it has actually a lower Q-value.
Accordingly, low initializations lead to less exploration. If the Q-values
are initialized to low values, the agent finds one feasible solution very
soon and sticks with it very long. As some kind of a compromise, random
initialization in a reasonable range is very often used.

High and low are defined with respect to the final Q-values Q∞(s, a):
a high initial Q-value is larger than any final Q∞, a low initial Q-value is
smaller than any final Q∞. Some a priori estimates can be obtained from
Equation 3.3: Q-values are certainly high when they are above 1

(1−β)Rmax
,

where Rmax is the largest reward in the system. Q-values are certainly
low when they are below 1

(1−β)Rmin
, where Rmin is the smallest reward

in the system. This also makes clear that high and low depend on the
particular value of beta that was selected.

For our problem we used a high initialization with Q-values of 30.
This value is chosen such that it is higher than the highest Q-value in the
steady state resulting in a complete exploration of the state space.

The last parameter that we have to deal with is the exploration rate
pexplore. As exploration is basically already taken care of by our ini-
tialization, we decided to use a rather low exploration probability of
pexplore = 0.01.

3.4.2 Results

The above scenario was tested with different resolutions. In the coarsest
test we used a time resolution of 60 minutes with a discount parameter β
of 0.96. In the subsequent tests the resolution was increased by factors
of two resulting in 30, and 15 minutes respectively, with corresponding
β values of 0.98 and 0.99 according to Equation 3.8.

From the design of the utility functions for the four activities Work,
Shop, Leisure and Home, it follows that the optimal daily plan corre-
sponds to the one shown in Table 3.1. Note that the time between
activities is needed for traveling from one location to another.

We now compare the solutions found by the algorithm with the opti-
mal solution shown in table 3.1. On top of that, we look at the learned
Q-values and appraise the ability of the solution to recover from distur-

59

Chapter 3. Q-learning for Flexible Learning of Daily Activity Plans

work shop leisure Home
08:00-17:00 18:00-20:00 21:00-23:00 00:00-07:00

Table 3.1: Optimal day plan for the test example

Resolution tres Number of Iterations Running Time
60 minutes 50k 100ms
30 minutes 500k 546ms
15 minutes 5M 4.89s

Table 3.2: Computational performance with the test example using high
initialization: We show the number of iterations and the running time
necessary to converge to the optimal solution, shown in Table 3.1, with a
probability substantially higher than 50%.

bances. Only if fast and plausible ways of recovering are observed we
assume that the algorithm has converged to a good solution.

In table 3.2 we show computational results obtained by our tests. It
can be seen that doubling the resolution leads to an increase in the num-
ber of iterations needed to converge by a factor of 10. The table gives the
minimal number of iterations needed in order to converge with a proba-
bility higher than 50%. We considered the algorithm as having converged
if both the optimal daily plan corresponded to the one shown in table 3.1
and the agent was able to recover from disturbances in a reasonable man-
ner. The running times were measured on a Mobile Pentium 4 with 2.4
GHz. Our programs were implemented using Java.

One might worry about reliability of the algorithm. As was already
mentioned, table 3.2 says only something about the number of iterations
needed in order to converge with a probability of at least 50%. What if
we need a system that converges in at least 99% of the cases? It might be
necessary to increase the number of iterations to 10 times the indicated
value or even more. Fortunately, it does not seem to be this way. In fact,
we never observed a failure to converge if the algorithm was run for twice
the number of iterations stated in the table.

60

3.5. A More Realistic Example

3.5 A More Realistic Example

3.5.1 Description
The data used for our test example is not very realistic. The test example
was explicitly designed to be difficult to solve: since a reward for a par-
ticular activity is always given only at the end of the activity, the agent
has to look far into the future.

However, real life is different. Real activities already give rewards
at earlier times. For example, being at home pays off already very early
which corresponds to a reward table for the activity Home that has some
positive rewards for each hour that it is executed. Therefore, we introduce
new reward tables for all of the four activities:

• Activity Home (Fig. 3.1(a)): The reward for spending one hour at
home is independent of the time that was already spent there. The
reward only depends on the time of day, assuming that being at
home during the night (sleeping) pays off more than being at home
during the day.

• Activity Work (Fig. 3.1(b)): Work pays off most from 8:00 until
18:00. If the agent performs work outside this time window the
rewards per time slice get gradually reduced. The agent gets a
bonus for staying at work for more than 9 hours. However, the
reward is reduced if 10 or more hours are spent at work. Working
between 21:00 and 7:00 does not give any reward at all.

• Activity Shop (Fig. 3.1(c)): We assume that shops are open from
8:00 until 19:00. Therefore, shopping gives only rewards during
the day. Maximal shopping time is set to 45 minutes. If an agent
shops for a longer time, it does not get any reward for the additional
time.

• Activity Leisure (Fig. 3.1(d)): We define leisure similar to activity
Home. The reward for having one time slice of leisure is maximal
from 19:00 until 24:00 and independent of the time already spent
in this activity. It is minimal, although not zero, from 5:30 until
13:00. There is a smooth transition in between.

61

Chapter 3. Q-learning for Flexible Learning of Daily Activity Plans

0
4

8
12

16
20

24

0

4

8

12
0

5

10

Starting Time [h]

Duration[h]

R
ew

ar
d

(a) Home activity

0
4

8
12

16
20

24

0

4

8

12
0

10

20

30

Starting Time [h]

Duration[h]

R
ew

ar
d

(b) Work activity

0
4

8
12

16
20

24

0

4

8

12
0

5

10

Starting Time [h]

Duration[h]

R
ew

ar
d

(c) Shop activity

0
4

8
12

16
20

24

0

4

8

12
0

5

10

Starting Time [h]

Duration[h]

R
ew

ar
d

(d) Leisure activity

Figure 3.1: Plot of the rewards per 15 minutes for different activities in
the more realistic example: Rewards depend on the starting time of an
activity and the duration that it lasted so far.

ttravel for...
From To ...tres = 15min ...tres = 30min ...tres = 60min
Home Work 45min 60min 60min
Work Shop 15min 30min 60min
Shop Leisure 15min 30min 60min
Leisure Home 30min 30min 60min

Table 3.3: Travel times for the more realistic example, assumed to be
constant throughout the day.

Also the travel times between activities were changed, see table 3.3.
This was done in order to become comparable with earlier work of the
Group for Simulation and Modelling (Graf, 2003).

62

3.5. A More Realistic Example

Resolution work shop leisure home
60min 08:00-17:00 18:00-18:00 19:00-23:00 00:00-07:00

(skipped)
30min 08:00-17:30 18:00-18:30 19:00-23:30 00:00-07:00
15min 08:00-17:30 17:45-18:15 18:30-23:45 00:15-07:15

Table 3.4: Optimal day plan for the more realistic example

As with the test example, the algorithm was tested with the new re-
ward tables and travel times with time resolutions of 60, 30 and 15 min-
utes. All Q-learning parameters were set to the same values as in the test
example.

In search of a planning algorithm which is as fast as possible we
also tried to use a low initialization approach. As mentioned earlier, Q-
learning with low initialization quickly finds feasible solutions at the ex-
pense of slower convergence to the optimal solution. So if one is looking
for reasonably good results and does not depend on optimal solutions this
might be preferable.

With low initialization, we have to make sure that exploration is taken
care of by other means. We therefore use higher exploration rates in this
case as is also indicated in table 3.6. Depending on the time resolution
we use an exploration rate pexplore of 0.4, 0.2 or 0.1 respectively.

3.5.2 Results

First we ran the Q-learning algorithm multiple times for a long time in
order to reliably find a good daily plan for the given reward tables. This
was done for each resolution independently. The resulting solutions are
shown in table 3.4. Further on, we will refer to these solutions as the
optimal solutions.

Similar to the test example, we test the algorithm for time resolutions
of 60, 30 and 15 minutes respectively and identify the number of itera-
tions needed in order to converge to the best solution with a probability
greater than 50%. This we do both for the high initialization approach
and the low initialization approach. See table 3.5 for results using the

63

Chapter 3. Q-learning for Flexible Learning of Daily Activity Plans

Resolution tres Number of Iterations Running Time
60 minutes 50k 143ms
30 minutes 500k 545ms
15 minutes 2M 1.98s

Table 3.5: Computational performance with the more realistic example
using high initialization: We indicate the number of iterations needed to
converge to the optimal solution with a probability substantially higher
than 50%.

Resolution tres pexplore Number of Iterations Running Time
60 minutes 0.4 10k 78ms
30 minutes 0.2 50k 114ms
15 minutes 0.1 500k 559ms

Table 3.6: Computational performance with the more realistic example
using low initialization: We indicate the number of iterations needed to
converge to a reasonable solution with a probability substantially higher
than 50%. pexplore is the exploration rate.

high initialization and table 3.6 for results of the low initialization ap-
proach.

The number of iterations necessary to converge for the real world ex-
ample with high initialization and the test example are almost the same.
This makes sense as the high initialization results in a complete explo-
ration of the state space. As the state space is of the same size in both
cases, it is to be expected that the number of iterations needed to explore
it is roughly the same. Only at the highest time resolution there is an
observable difference: the real world example converges to the best so-
lution already after 2 million iterations compared to 5 million iterations
for the test example.

Compared to the high initialization tests, with low initialization daily
activity plans can be generated much earlier. It seems that usable plans
together with reasonable disturbance recovery are produced already af-
ter approximately 10% of the time needed using the high initialization
approach. However, these plans are not exactly the best daily plans iden-

64

3.6. Discussion and Further Work

tified by using the explorative initialization. Here, the engineer has the
freedom to choose the method which better suits his needs: if speed is
more limiting than quality of the solution, then he will probably choose
the low initialization, otherwise, if the best possible quality is needed
high initialization may be the choice.

In order to picture the meaning of the resulting Q-values we show
examples of how the agent would recover from disturbances. We first
look at what happens if the agent - for some reason - finds itself coming
home at 4:00 in the morning. Assuming the 15 minutes resolution case,
it stays at home until 07:15 and changes then to the next activity which
is work. From then on the agent is back on his usual daily plan. As
another example we want to have a look at what happens if the agent
comes to work late. Let us assume that it starts working at 10:00. Again,
looking at the Q-values, the agent decides to stay at work for 8 hours
(instead of 9.5 hours on a normal day) until 18:00 and then change to the
next activity which is Shop. Now activity Shop starts 30 minutes later
than in the optimal case namely at 18:15 instead of 17:45. The agent
now decides to spend 30 minutes shopping and to continue then with
activity Leisure. Arriving at the next activity at 19:00, the agent is still
30 minutes late compared to its optimal daily plan. Then, it spends 4
hours and 45 minutes with leisure activities saving 30 minutes. Finally,
the agent arrives at home at 0:15 catching up to its usual daily plan.

The second example reveals what it means to do within day re-
planning: the agent chooses a graceful way to get out of the undesired
situation. In our case, this is done by gradually saving time where it hurts
the least. The agent does not try to catch up with its optimal plan at any
cost.

3.6 Discussion and Further Work

It is interesting to know what kind of a problem Q-learning is trying to
solve. There exist nQ−values = nactivities ·nactions ·sizerewardtable Q-values
that we are trying to find the steady state for. For the case where the time
resolution tres is 15 minutes, nQ−values = 4 · 2 · 24 · 4 · 12 · 4 = 36864.
Therefore any algorithm will need at least 36864 steps to find the proper
Q-values.

65

Chapter 3. Q-learning for Flexible Learning of Daily Activity Plans

But it is to be expected that due to high discount parameters, it will
take longer to find the steady state. In order to get a feeling for the prob-
lem, let us consider the following fact:

The 10% time horizon - the number of states a reward has to be away
from the current state in order to affect it by less than 10% - for a discount
parameter of β = 0.99 is thorizon10%

= logβ0.1 ≈ 229, meaning that the
states 229 steps (or more than 2 days) in the future from the current state
still affect the Q-value of the current state substantially.

If we assume that a fictitious algorithm would know all the optimal
paths in the state space in advance (i.e. it would know in each state which
action maximizes the cumulative discounted reward) it would need 229
state transitions to calculate the proper Q-value for that state. Since the
rewards are transmitted against the direction in which the algorithm pro-
ceeds, the algorithm needs to take the whole optimal path/cycle 229 times
in order to have the reward propagated backwards to below the 10% level.
This argument indicates that an estimation of the number of necessary
learning steps is nQ−values · thorizon10%

, which is 36864 · 299 = 8.6mill
steps in our case. This is, however, a worst case argument which would,
e.g., be fulfilled if all good paths/cycles in the system were completely
parallel. In most cases, there will be more interdependence of the Q-
values. Also, we are not looking for exact Q-values, but only for good
daily plans. In our tests, the algorithm found good plans with only 2
million visits.

After understanding the structure of the problem a bit better, one
can in fact envisage much faster algorithms. As becomes clear from the
above argument, the slowness of Q-learning lies in the fact that rewards
are transmitted against the direction of the algorithm. It turns out that this
is in fact only necessary when the expected reward of a state-action-pair
is not known (Russell and Norvig, 1995) and the algorithm itself has to
do the averaging over the realizations. Since in our case they are known,
one can, for example, use faster techniques from Dynamical Program-
ming for the same problem (Karlström, 2004). Alternatively, one could
probably even use a generalized shortest path algorithm (Barrett et al.,
2000) and simply have it originate at all possible states at a given point
in time.

For our implementation of Q-learning, the reward tables need to be
filled. These have a large number of values to be defined (for tres =

66

3.7. Summary

15min there are 18432). The question is where to get these from. One
option is to use discretized utility functions. For example, one could
decide to use logarithmic utility functions, of the type Uact(d) = αlog d

d0

, where d is the duration and α and d0 are parameters. One could then fill
the reward tables by setting the reward for the first 15 minutes toUact(d =
15min), the reward for the second 15 minutes to Uact(d = 30min) −
Uact(d = 15min), etc. The reward tables would retain the advantage that
one could still introduce deviations from those mathematical equations
when desired, for example reducing certain rewards for certain times-of-
day. In our view, this leads to a very flexible tool.

As mentioned in the introduction, the problem of activity time selec-
tion is too easy for Q-learning, since it can also be solved by numerical
methods. However, the general method of expanding the day into possi-
ble states along the time axis is amenable to more complicated formula-
tions. For example, one could allow for skipping activities (i.e. have di-
rect transitions to the second-next activity), one could allow for arbitrary
activity sequences, and one could include a limited number of different
possible locations for each activity. We therefore believe that the general
approach - to see daily activity planning as the question to find good cy-
cles through space-time - provides many interesting avenues for future
research.

3.7 Summary

We used the Q-learning algorithm to generate flexible daily activity
plans. This was done using reward tables that give the utility per time
slot for executing an activity for an additional time slot. This utility per
time slot depends on the activity type, the time of day, and the starting
time, resulting in complex utility landscapes. The algorithm tries to find
an optimal circular path in the activity state space that corresponds to a
24 hours daily plan that can be executed repeatedly on consecutive days.

The solution found is not only an optimal daily plan but it also holds
all information necessary to react to unforeseen disturbances. In such a
case, the best reaction can be found directly in the table which contains
the agent’s daily plan.

67

Chapter 3. Q-learning for Flexible Learning of Daily Activity Plans

We applied our algorithm to an example with 4 activities Work, Shop,
Leisure and Home in order to generate daily plans of different resolutions.
With a time granularity of 15 minutes the convergence took no longer
than 2 seconds, for 30 minutes temporal resolution the algorithm had to
run for approximately 0.5 seconds to find the optimum.

Using this method in a multi agent travel simulation to plan the ac-
tivities of up to 10 mill agents seems feasible and the resulting within
day re-planning capabilities promise computational alternatives to true
within-day replanning.

68

Chapter 4

Implementing
Activity-Based Models:
Accelerating the
Replanning Process of
Agents Using an Evolution
Strategy

Authors

David Charypar
Institute for Transport Planning and Systems, ETH Zurich, Switzerland
Email: charypar@ivt.baug.ethz.ch

Kay W. Axhausen
Institute for Transport Planning and Systems, ETH Zurich, Switzerland
Email: axhausen@ivt.baug.ethz.ch

Kai Nagel
Institute for Land and Sea Transport Systems, TU Berlin, Germany
Email: nagel@vsp.tu-berlin.de

Chapter 4. Implementing Activity-Based Models: Accelerating the Replanning Process of Agents
Using an Evolution Strategy

Publication

This paper was presented at a conference, see Charypar et al. (2006).

Abstract
We present recent advances in accelerating our agent-based simulation
of travel demand by improving various modules of the simulation
system. First, the optimization algorithm used in the replanning module
is replaced by an evolution strategy that has shown to perform well on
a variety of optimization problems including noisy and distorted search
spaces. The replanning module is then extended by an accurate way of
estimating time-dependent travel times. This makes it possible for the
replanning module to produce better plans more quickly. Second, the
percentage of computational agents that replan their days is investigated
and a percentage that decreases with the iteration number is found to
improve the learning speed significantly. On top of these changes a new,
fast event-driven microsimulation of traffic flow is incorporated into the
model to make the execution of the overall system less time consuming.

Keywords: Daily plan optimization; agent-based travel behavior simu-
lation; evolution strategy

70

4.1. Introduction

4.1 Introduction

In transport planning, the commonly used aggregated models have limi-
tations in their predictive power as the aggregation process always entails
a lack of certain information about the traffic that is predicted. Usually
only aggregated values like total traffic volume on a link or average travel
times are computed. (Some of these problems can be addressed by us-
ing time dependent traffic assignment or disaggregated models.) Conse-
quently, it is interesting to find a transport planning method that is able
to predict all aspects of traffic including important information such as
distribution of trip purposes of the drivers that cause the congestion on
a road or the distribution of income of the people driving on a road dur-
ing rush hours and separately for off-peak times (or at any second of the
day).

Thinking about what such a model could be, we make the following
observation: the fully detailed travel demand—including all desirable in-
formation about the users of a network—derives naturally from the daily
plans of all people traveling in the study area. As a consequence, one
way to answer transport planning questions is to find the daily plans for
all people interacting in an area.

In order to provide a tool to produce the requested daily plans we are
developing the multi-agent travel simulation toolkit, MATSim-T, which
is an agent-based microsimulation system of daily demand. The basic
idea is to create a synthetic population of agents that live in a virtual
world that reflects data as the road network, land use data etc. The agents
have daily activity plans that they use to describe how they act in the
virtual world. Each agent has the desire to perform optimally according
to a utility function that defines what a useful day is1. Each agent can
change its daily decisions to get a higher overall utility. This can be
interpreted as learning. When the agents end up in a situation where
none is able to improve his plan they are in a user equilibrium and the
learning loop ends. Assuming that a user equilibrium is a state of the
system that we are looking for we get a set of daily plans of all agents
that represent a typical state of the world.

1Note that—at least theroretically—any scoring function would work that defines a cardinal ordering
of all daily plans.

71

Chapter 4. Implementing Activity-Based Models: Accelerating the Replanning Process of Agents
Using an Evolution Strategy

Such a learning system can be used for various predictive tasks: for
instance, it is possible to obtain the distribution of activity chains of peo-
ple being at the city center during lunch. Also, the utility of activities can
be judged that cause the traffic on certain links. Furthermore, using such
a system, road pricing policies can be simulated and their effect can be
accurately quantified.

While our current simulation system has proved to work (see for in-
stance Balmer et al., 2006a) there is still a substantial computational ef-
fort involved in simulating the learning of daily plans for all virtual per-
sons involved in a scenario. This is especially the case when looking at
large scale scenarios with 1 million persons or more.

In this paper, we show how the speed of the overall learning system
can be increased by improving the performance of individual modules
such as the replanning module (responsible for creating new plans for
each agent) and the traffic microsimulation.

The rest of this paper is structured as follows: in Section 4.2 we de-
scribe the overall design of our agent-based microsimulation of daily de-
mand; in Section 4.3 we introduce and explain the measures taken to
speed up this simulation system; in Section 4.4 we present the test sce-
nario that we use to compare the original and the improved system; in
Section 4.5 we discuss our results, and we conclude and give an outlook
on future work in Section 4.6.

4.2 The Microsimulation toolkit
The goal of the Multi Agent Travel Simulation Toolkit (MATSim-T) is
to simulate and predict the daily travel demand of a whole region with
one million inhabitants or more. The basic idea of MATSim-T is that
by representing each person in such a scenario with an individual agent
and simulating the daily behavior of such a person the travel demand is
generated as a byproduct.

Technically speaking, MATSim-T divides into several conceptual and
computational modules. A simulation agent holds several attributes like
age, car ownership, home address and suchlike. Additionally, he holds a
daily plan that represents his activity decisions throughout the day. This
information includes an activity pattern with activity types (like home-

72

4.2. The Microsimulation toolkit

shop-leisure-home), timing information, i.e. when each activity starts and
when it ends, the locations assigned to these activities, and the routes to
travel on the trip from one location to another.

When agents decide to change their daily plan, they call the replan-
ning module to modify their plan. The replanning module tries to im-
prove the agent’s plan. To do so, the utility of a plan is judged using
a utility function and the task is formulated as a maximization problem.
The utility function we use was presented in Charypar and Nagel (2005).
It defines the utility of a daily plan to be the sum of individual utilities of
each activity present in the plan. This utility of an activity consists of a
positive term for the duration that the activity is carried out and negative
terms for travel costs and penalties for coming late, leaving too early, etc.
Using the idea of penalties, environmental constraints, like shop opening
hours, can be handled as well.

Throughout a scenario run, the agents and their plans are held in
memory in the so called agent database. The interactions between agents
happen in the actual travel microsimulation where the daily plans of all
agents are executed. In the microsimulation, the agents travel from one
location to another as intended in their daily plans. As agents have to
use the same network, the links in the network become loaded, possibly
creating congestion and increasing the travel times on the heavily loaded
links. The agents then have the opportunity to change their daily plans to
reflect the new situation. The process is iterated and the system relaxes
to a point of rest that may be interpreted as a user equilibrium.

As the data format for in- and output to and from our simulation sys-
tem we use XML. Network, land use, and population data as well as the
agent’s daily plans are communicated and stored in the XML format. A
very important part of our microsimulation toolkit is the initial demand
modeling meta-module that comprises a great unified way of reading in-
put data in many different formats, fuse them in a consistent way and
store them in a clearly defined format to make it available to our dy-
namic simulation system. For information about this part of MATSim-T
see Balmer et al. (2006a)

In this paper we mainly modify three parts of the whole simulation
system. First, the replanning module is modified to use a different, more
sophisticated optimization algorithm for the search for the optimal daily
plan for a given agent under the constraints given by the world and the

73

Chapter 4. Implementing Activity-Based Models: Accelerating the Replanning Process of Agents
Using an Evolution Strategy

agent. To exploit the capabilities of this new optimizer, a new, accurate
estimation of time of day dependent travel times is included in the replan-
ning module to allow the quality of generated plans to increase. Second,
the percentage of the population that actually computes new plans is in-
vestigated and optimized for maximal performance of the overall system.
Third, a new event-driven microsimulation of traffic flow is implemented.

4.3 Speeding up MATSim-T
An important part of our work is to reduce the time needed for our sim-
ulation toolkit to converge to a point of rest at which all the agents are
executing a daily plan that they cannot improve significantly themselves.
To reduce this time there are a couple of approaches that one can take.
One way is to reduce the number of iterations of the whole system that
are needed to find a relaxed state. This can be done for instance by im-
proving the replanning module to produce better plans for the share of
agents that are replanning. Another way one can go is to find the optimal
percentage of agents selected for replanning in a particular iteration. A
completely different approach to improve the overall performance of the
system is to reduce the time needed to process a single iteration. This
can be done by optimizing the individual modules. On overview of the
improvements that were done during the work described in this paper can
be seen in Figure 4.1.

4.3.1 Producing Better Plans
The first approach to make our simulation system faster is to produce
better plans during the replanning process. Again, there were two tracks
investigated: first, we tried to improve the optimization algorithm used
in the replanning module, second, we made the replanning module aware
of the true time of day dependent travel times in the network.

4.3.1.1 A Better Optimizer for the Replanning Module: CMA-ES

So far, the optimization algorithm used in the replanning module of
MATSim-T was a specially made genetic algorithm (GA) (see Meister

74

4.3. Speeding up MATSim-T

include travel time
estimation (router)

new state

goal: reach final
state more quickly

produce better
plans in replanning

CMA-ES

make replanning
module aware of
real travel times

use better
optimizer

make modules
faster

use variable preplan
use event-driven

-simulation

use optimal
replanning fraction

Figure 4.1: Steps that were implemented to speed up the MATSim toolkit

et al., 2005a). Although its performance was generally sufficient to solve
the optimization problem at hand we assume that a more sophisticated
algorithm would yield better replanned daily plans or at least provide
them with less computational effort. We chose to use the covariance ma-
trix adaptation evolution strategy (CMA-ES) as described in Hansen and
Kern (2004) to replace our current GA.

Evolution strategies belong to the field of evolutionary computation.
In general, they represent stochastic population based optimization algo-
rithms for continuous space problems that use recombination and muta-
tion operators to produce new candidate solutions.

The particular evolution strategy used in this paper has certain desir-
able properties which make it attractive for us to use:

• Invariance of order preserving mappings of the objective function

• Invariance to linear mappings of the search space

• Ability to work well on noisy landscapes with steps and ridges

• Has been shown to work well as a global optimizer on many dis-
torted multi-modal test functions

75

Chapter 4. Implementing Activity-Based Models: Accelerating the Replanning Process of Agents
Using an Evolution Strategy

4.3.1.2 Description of CMA-ES

The covariance matrix adaptation evolution strategy (CMA-ES) is an iter-
ative stochastic population based optimization algorithm. It holds a pop-
ulation of candidate solutions where each candidate solution is a point in
n-dimensional vector space. n is referred to as problem dimension where
each dimension corresponds to an activity duration that has to be planned
by an agent. In our case n lies in the range of 2 to 5. CMA-ES also stores
a sampling distribution (consisting of a center point and a covariance ma-
trix) that is modified during the optimization process. In every generation
a new population of sampling points is generated, the best candidates are
selected and they are used to modify the sampling distribution accord-
ingly. Running CMA-ES consists of the following steps:

1. Initialize the center of the sampling distribution (this corresponds
to the starting point) and the global step size. Initialize the covari-
ance matrix to an identity matrix.

2. Sample the objective function using N sampling points according
to the current sampling distribution (consisting of center, covari-
ance matrix and global step size). N is a parameter of the algo-
rithm and was set to default values according to Hansen and Kern
(2004).

3. Evaluate the objective function on all sampling points.

4. Based on these evaluations, select the better half of the sampling
points.

5. Modify the sampling distribution according to the distribution
found in the selected samples.

6. Return to step 2 and iterate until a desired stopping criterion is met

For an illustration of the adaptation process of the CMA-ES please
see Figure 4.2.

4.3.1.3 Real Travel Times in Replanning

In the state of MATSim-T we were using until now, the replanning mod-
ule was only in charge of finding a good time allocation for the activities

76

4.3. Speeding up MATSim-T

(a) The search space is sampled according to the
current sampling distribution (blue circle).

(b) The objective function (isolines are shown as
dashed lines) is evaluated on the sampling
points and the best sampling points are selected
(red dots).

(c) The sampling distribution is adapted according
to the distribution of the selected samples (red
ellipse).

Figure 4.2: The adaptation of the sampling distribution in CMA-ES

77

Chapter 4. Implementing Activity-Based Models: Accelerating the Replanning Process of Agents
Using an Evolution Strategy

given in the activity pattern. The travel times were thereby assumed to be
constant and equal to the real observed travel times of the corresponding
plan executed in the last iteration. This simplistic assumption would of
course often prove to be wrong resulting in daily plans performing signif-
icantly worse during the execution of a microsimulation run than it was
anticipated by the rescheduling module. Strictly speaking, the replan-
ning module was not able to deliver the optimal plan for a given agent as
the information on the dynamic state of the road network was simply not
available to it. In order to find the real optimal daily plan for an agent the
replanning module needed the help of the agent database. This database
was holding a couple of daily plans per agent in memory, selecting the
plan actually executed during a run according to their respective utility
in the last executions. By replacing bad performing daily plans with new
plans the agent database would make sure that the whole system would
slowly move to better-performing regimes. For more details on the state
of MATSim-T as we were using it so far, please refer to Raney (2005)
and Balmer et al. (2006a).

Although using the agent data base for some aspects of the replanning
process has proved to be robust, it also takes very long for the whole
system to converge to a reasonable state. As a way around that problem,
it seems natural to provide the replanning module with all information
necessary to produce the optimal daily plans also in the real world of the
microsimulation.

To do so, we include a time of day dependent routing module in the
replanning module. For every new candidate plan that is produced while
the replanning module runs for a specific agent, the real travel time in
the loaded road network is calculated for each of the trips based on their
respective departure time. A similar approach is used in Meister et al.
(2006).

By including an estimation of the real travel times in the replanning
module the help of the agent database is no longer required to find good
daily plans for our agents. Consequently, the number of plans held in the
agent database can be reduced to one.

78

4.3. Speeding up MATSim-T

4.3.2 Using the Optimal Replanning Share

During a run of our simulation system, in every iteration a certain per-
centage of the population of agents is selected at random to produce new
daily plans. The rest of the agents (usually the larger part by far) reuse
plans that they came up with in an earlier iteration. This is important to
avoid oscillating effects and to make the system converge to the point of
rest.

Oscillations can be avoided best by using a very small replanning per-
centage. Although this is effective in producing a smooth trajectory, this
leads to a poor learning speed of the overall system. One would expect
that the system would learn more quickly—especially at the beginning—
if the replanning percentage would be held at a reasonable high value.

The question is which percentage to choose. What value is the opti-
mal trade-off between a stable solution without oscillations and a quick
convergence to the point of rest?

To answer this question we tested the system with different parame-
ter settings for the replanning percentage in the range from 2% − 50%.
The results can be seen in Figure 4.3. In good agreement with the reflec-
tions above we see that a replanning fraction of 50% produces a chaotic
behavior of the simulation system. In the area from 2% to 35%, one can
see that higher values lead to a faster learning process and lower values
lead to less noise in the solution. For a constant replanning percentage,
5% and 10% seem to be reasonable values.

Judging from the shape of the convergence plots for constant replan-
ning probabilities in Figure 4.3, we decided to use a decreasing replan-
ning probability to get the best of both worlds: a quick learning process at
early iterations and the maximal resulting average utility with low noise
at the end. After some empirical testing we found that varying the replan-
ning percentage according to following formula produced a significant
improvement in the learning performance of the system:

preplan = min(35%,
2.0

n+ 2
) (4.1)

where preplan is the replanning probability and n is the number of iter-
ation. This can be interpreted as an implementation of the method of
sucessive averages as described in Sheffi (1985), for instance. The com-

79

Chapter 4. Implementing Activity-Based Models: Accelerating the Replanning Process of Agents
Using an Evolution Strategy

 150

 152

 154

 156

 158

 160

 162

 164

 0 20 40 60 80 100

A
ve

ra
ge

 d
ai

ly
 u

til
ity

 [E
U

R
]

Iteration

p_replan = 0.02
p_replan = 0.10
p_replan = 0.35
p_replan = 0.50

p_replan = min(35%, 2.0/(iters+2))

Figure 4.3: Convergence plots for test runs performed to find the opti-
mal replanning share: The system was iterated using various parameter
settings for preplan, the replanning probability of an agent in each itera-
tion. The tests were performed for fixed values in the range 2% − 50%
and with a decreasing preplan = min(35%, 2.0

n+2), where n is the iteration
number.

parison of the learning performances with constant and variable replan-
ning probabilities shows that the latter can boost the overall performance
of the system by a factor of three or more.

4.3.3 Making Iterations Faster

Probably the simplest approach to improve the performance of our agent-
based system is to speed up the execution of the individual modules. If
we reduce the amount of time needed for the execution of one iteration,
obviously, the time needed to converge to the user equilibrium will re-
duce as well. We have adopted this approach and worked on the accel-
eration of the microsimulation of traffic flow that so far represented the
most time consuming part of the overall simulation system.

80

4.3. Speeding up MATSim-T

4.3.3.1 The Time-Step-Based Microsimulation of Traffic Flow

For the microsimulation of traffic flow we use queue-based car dynam-
ics on the links. The basic assumption is that especially in urban traffic
networks, the behavior of the cars on the roads is mostly dictated by limi-
tations in capacity of the intersections. Cars drive a link all the way down
until they reach the end of the queue of cars waiting to cross the next in-
tersection. From that moment on the car has to wait until all the cars in
front of it get “served” by the intersection. If a car becomes the first in
the queue in every time-step (usually one second) of the simulation it is
decided if there is room for it to cross the intersection and to enqueue at
the next link (this is only possible if the spill back on the next link is not
so large that it already filled up the whole link) and if the capacity con-
straints on this link allow it to leave the link (only a certain rate of cars
is allowed to leave a link). If both criteria are met the car can leave this
link and enter the following link; the next car on this link becomes first
in queue. It turns out that using these dynamics we do not need precise
information about the position of each car on the link. It is sufficient to
remember the order in which the cars entered the link and at what time
they would reach its end if they could travel at free speed. This kind of
microsimulation is very efficient and can be easily run in parallel. For
a more detailed look at the microsimulation of traffic flow as we were
using it so far see Cetin (2005).

4.3.3.2 The New Event-Driven Microsimulation of Traffic Flow

The microsimulation used until now has two computational issues: first,
links that are almost empty still need too much computing time, as even if
there is no car waiting at the front of the queue the link has to be checked
in every time-step; second, completely congested links also absorb a fair
amount of computing time as the simulation has to check in every time-
step if it is possible for the first car in the row to cross the intersection.
By looking at how to improve the speed of the present implementation of
the traffic microsimulation, one idea is to try to put the computing time
where the action is: simulate only where traffic is currently happening,
i.e. where cars enter and leave links. Consequently, empty links and cars
waiting on a link should not need any computing time at all. Completely
congested links should need almost as little computing time as empty

81

Chapter 4. Implementing Activity-Based Models: Accelerating the Replanning Process of Agents
Using an Evolution Strategy

links as the cars do not move on such links. One way to achieve these
requirements is to use an event-driven microsimulation. In our approach,
we use timers that are set by the agents for the time that they plan to enter
or leave the links. These times are estimated by collaboration of the agent
and the links involved. Our approach is similar to the work presented in
Marchal (2001) but in contrast, our simulation is fully microscopic also
on the supply side. Another event-driven simulation was used for the
simultaneous simulation of activity chains in Axhausen (1988).

A detailed discussion of the algorithms and concepts used in our new
microsimulation are beyond the scope of this paper but we would like
to describe an example situation and how computing time is saved in our
approach. Assume a car C traveling on link A and wanting to enter link B.
Let link B be completely congested and therefore, when the agent reaches
the end of link A, it cannot enter link B directly. Instead it registers his
desire to enter with link B. As long as no car leaves link B nothing is
going to happen and consequently no more computing time is needed
to handle the situation. But, as soon as—for any reason not described
here—a car leaves link B this creates a cascade of events. A new gap
is created at the front of link B. This gap travels backward through the
link at a fixed speed. As a consequence of the fixed speed, link B is able
to predict when the gap is going to reach the entry point of link B. As
car C is still registered with link B, this predicted time is communicated
to car C. Following this, the car C is going to create a timer for this
time and when it expires car C is going to leave link A and enter link B.
Note that computing time was only used for (1) registering to link B, (2)
computing the gap arrival time, (3) registering a timer, (4) leaving link
A, (5) entering link B. Apart from step (2), there is no overhead due to
the fact that the link is congested, or that there are many cars interacting
on the links.

It is difficult to compare our old microsimulation with the new event-
driven approach as the computing time depends on the scenario simulated
as well. But our first test show that for 24 hours simulations of scenarios
with about 1 million trips we gain roughly a factor of ten in terms of
computing time.

82

4.4. Test Scenario

4.4 Test Scenario

For all our testing we use a scenario of the canton of Zurich. The popula-
tion of agents was taken from Frick and Axhausen (2004) but the number
of agents was reduced from 550 808 to 12 225 using a sampling process.
This was done to make quick test runs possible even on single CPU main
stream desktop computers. The network capacities were reduced accord-
ingly to produce a fair amount of congestion in the network and make
the learning task more demanding. We believe that this setup shows sim-
ilar characteristics as the full size scenario. However, we want to test and
show the performance of our simulation system on the full-sized problem
in the future as well.

The network we use has approximately 20k links and covers all of
Switzerland. While it is possible for the agents to travel the whole net-
work (e.g. an agent could theoretically decide to drive from one location
in the canton of Zurich to another location in Zurich via Geneva, 300
kilometers away from Zurich) the part of the network that is used most
of the time only comprises roughly 4000 links. Figure 4.4 shows an ex-
tract of the network of the city of Zurich, Switzerland. The image was
produced using the MATSim-T visualization tool.

During initial demand modeling, the activity chains as well as the lo-
cations for these activities are generated according to micro census data,
a commuter matrix, and land use data. For details please refer to Balmer
et al. (2006a). The resulting initial demand for the learning loop of our
agent-based system is shown in Figure 4.5. Note that it shows some ob-
servable properties of normal urban traffic like a morning and an evening
rush hour but the the plans are very undifferentiated and certain proper-
ties are quite far from reality such as the evening peak that starts already
at 14:00.

The average number of car trips that is carried out by each agent
is 2.24 and the average trip length in number of links traveled is 6.94
after convergence to the user equilibrium. While the average number
of car trips is too low for a realistic scenario this does not represent a
limitation of our model but is due to the fact that the initial demand used
was originally designed for a different application and already shows this
property.

83

Chapter 4. Implementing Activity-Based Models: Accelerating the Replanning Process of Agents
Using an Evolution Strategy

Figure 4.4: Visualization of a scenario run using the MATSim-T visual-
ization tool. Shown: the city of Zurich, Switzerland. The colored dots
are cars driving through the network. Green, yellow, and red cars travel
at free, half, and low speed, respectively.

4.5 Results
We compare the learning performance of our agent-based simulation sys-
tem after incorporating the changes described in this paper to the state
before. To do so, we make a comparison based on the average utility of
the executed daily plans of the agents as well as a comparison of the load
profiles of the network during the day.

4.5.1 Comparison of Learning Performance Based on
Average Utility of Plans

To measure how well the agents in our simulation have learned to per-
form their activities and to adapt to the system under load we use the av-
erage utility of their plans as they were executed in the microsimulation
module. In the following plots, higher values mean a better adaptation
to the problem at hand. However, higher average values do not always
depict a better overall performance. One has to keep in mind that we
are looking for a user equilibrium while the average score would be at

84

4.5. Results

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 6 8 10 12 14 16 18 20 22

F
ra

ct
io

n
of

 a
ge

nt
s

tr
av

el
in

g

Time of day [h]

work or education to shop or leisure
shop or leisure to work or education

shop or leisure
education

work
all

Figure 4.5: Network load according to initial demand. This plot shows
the network load according to the initial daily plans of the agents before
iteration 0. Note that the demand cannot be executed in this way. The
plans of the agents assume an empty road network and corresponding
travel times. The real execution leads to a very congested network and
therefore to a big discrepancy between the planned daily plans and the
executed ones.

a maximum in the system optimum; these two are not necessarily the
same. Unfortunately, it is not easily possible to find out if the agents
are in a (stable) user equilibrium and therefore we nevertheless use the
average score to judge the performance of our simulation system.

In Figure 4.6, a comparison of our simulation system before any
changes and the current state can be seen. The system in the new state
learns substantially faster than the original system. The modified sys-
tem reaches the stable plateau close to the maximum after approximately
20 iterations. The original system shows a local maximum at about 70
iterations but continues to rise after iteration 100 and reaches a similar
average utility after approximately 900 iterations (not shown). If we take
iteration 70 as final result of the original setup this means that our new
system is a factor of 3.5 faster in terms of iterations.

85

Chapter 4. Implementing Activity-Based Models: Accelerating the Replanning Process of Agents
Using an Evolution Strategy

 140

 145

 150

 155

 160

 165

 0 20 40 60 80 100

A
ve

ra
ge

 d
ai

ly
 u

til
ity

 [E
U

R
]

Iteration

original learning system
learning system after modifications

Figure 4.6: The modified simulation system learns substantially faster
than in the original state.

4.5.2 Comparison of Results Using Network Loads

We are interested in the behavior of the agents after learning. In particular
we want to know when they travel and for what purpose. To investigate
these questions we plot the time dependent network load by purpose.

In Figure 4.7, we see a fictitious network load as it is planned by the
agents if they assume infinite network capacities and free speed travel
times. High values in this plot mean that many agents are traveling at
the same time. This plot can be used as an indication of how the agents
would plan their days if there was a guarantee of no congestion at any
time. Note the pointed morning and evening peaks and the relatively flat
distribution of shop and leisure trips throughout the day. It is interesting
to compare this “ideal” demand to the real executed demand shown in
Figure 4.8 using our new learning system after 20 iterations. It can be
seen that the morning and evening peaks are significantly broader (the
morning peak starts earlier and the evening peak ends later) and that peo-
ple on shopping and leisure trips systematically avoid these peak hours
for their travel. We conclude that our learning system is able to repro-
duce a typical behavior of people in daily life: they avoid peak hours for
travel to and from activities that are not bound to a specific time.

86

4.5. Results

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 6 8 10 12 14 16 18 20 22

F
ra

ct
io

n
of

 a
ge

nt
s

tr
av

el
in

g

Time of day [h]

work or education to shop or leisure
shop or leisure to work or education

shop or leisure
education

work
all

Figure 4.7: Optimal demand assuming free speed on all links. The de-
mand as it is planned if the agents assume free speed travel times on all
links. The morning and evening peaks present are very pointed. Note
that shop and leisure activities happen throughout the day and that they
do not interact with the rush hours. Assuming free speed there is no need
to avoid heavy traffic. It is clear that this demand cannot be executed as
planned, as the network would become totally overloaded.

In Figure 4.9, we show the same plot as above for the original, un-
modified learning system after 70 iterations. The peak hours look very
similar to Figure 4.8, but no interaction effects between shopping and
leisure activities and the peak hours can be identified. This shows that
the the original system needs significantly more time to reach a certain
solution quality. After further investigation we found that in iteration 200
the old system already has developed the avoidance effects partially, but
that it takes roughly 400 iterations before a similar structure can be ob-
served. The new system therefore needs 20 times less iterations to reach
the final solution quality than the old system.

Going into the other direction, and looking at the resulting network
load after 10 iterations of the new, modified learning system we found
that while not being as far as after 20 iterations the network load looks
already very similar. Especially the described drop of shop/leisure de-
mand can be clearly identified.

87

Chapter 4. Implementing Activity-Based Models: Accelerating the Replanning Process of Agents
Using an Evolution Strategy

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 6 8 10 12 14 16 18 20 22

F
ra

ct
io

n
of

 a
ge

nt
s

tr
av

el
in

g

Time of day [h]

work or education to shop or leisure
shop or leisure to work or education

shop or leisure
education

work
all

Figure 4.8: Demand after 20 iterations of learning of the new simulation
system: The agents have learned to avoid the morning and evening peaks
if possible. These peaks are still very dominant but significantly broader
than in the ”free speed” demand. Note how shopping and leisure trips
are carried out during off-peak hours to avoid congested roads.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 6 8 10 12 14 16 18 20 22

F
ra

ct
io

n
of

 a
ge

nt
s

tr
av

el
in

g

Time of day [h]

work or education to shop or leisure
shop or leisure to work or education

shop or leisure
education

work
all

Figure 4.9: Demand after 70 iterations of learning of the original learning
system: While the morning and evening peaks have developed, shopping
and leisure trips do no yet avoid the peak hours.

88

4.6. Conclusion and Outlook

4.6 Conclusion and Outlook
We have improved our agent-based iterative microsimulation of daily
travel demand by enhancing its replanning module in two ways: first,
an optimization algorithm that was shown to perform well on relevant
test problems (the covariance matrix adaptation evolution strategy CMA-
ES) was integrated; second, the power of this optimizer was exploited to
produce better plans for the agents by including an accurate travel time
estimation (a time-dependent routing module) into the evaluation func-
tion for daily plans. This makes it possible that the replanning module
directly reacts to peak hours and their high cost of travel. These mod-
ifications have the positive effect that they significantly reduce memory
needs as they eliminate the need for the agent database (another module
of our simulation system) to hold multiple plans in memory.

We have tested our new agent-based model with a reduced test sce-
nario with 12 225 agents and have shown that these modifications yield
an improvement of a factor of 20 in terms of iterations needed for the
agents to adapt to the network under load.

On top of the other modifications, a new event-driven microsimula-
tion of traffic flow was implemented and integrated into the system to
increase the speed of execution of a single iteration. This improves the
speed of execution of the microsimulation of traffic flow—a subtask of
one full iteration—by a factor of 10.

The current replanning module is only able to create optimal time al-
locations given a location choice decision and an activity chain. In the
future we would like to remove this limitation and enhance our replan-
ning module to incorporate the whole replanning problem.

89

Chapter 5

An Event-Driven
Queue-Based Traffic Flow
Microsimulation
Authors

David Charypar
Institute for Transport Planning and Systems, ETH Zurich, Switzerland
Email: charypar@ivt.baug.ethz.ch

Kay W. Axhausen
Institute for Transport Planning and Systems, ETH Zurich, Switzerland
Email: axhausen@ivt.baug.ethz.ch

Kai Nagel
Institute for Land and Sea Transport Systems, TU Berlin, Germany
Email: nagel@vsp.tu-berlin.de

Publication

This paper was presented at a conference (Charypar et al., 2007b)
and later published in a journal (Charypar et al., 2007c).

Chapter 5. An Event-Driven Queue-Based Traffic Flow Microsimulation

Abstract
Simulating traffic flow is an important problem in transport planning.
The most popular simulation approaches for large scale scenarios today
are aggregated models. Unfortunately, these models lack temporal and
spatial resolution. On the other hand, microsimulations are very inter-
esting for traffic flow simulation as they can accurately simulate features
requiring both high temporal and spatial resolution, including traffic
jams and peak hours. However, most microscopic approaches involve
high computational costs, requiring expensive large computers to run
them within reasonable time. In this work, we present possibilities for
reducing these costs by using a queue-based model and an event-driven
approach jointly. Our approach makes it possible to run large scale
scenarios with more than one million simulated person-days on networks
with 10k links in less than ten minutes on single CPU desktop computers
present in most offices today.

92

5.1. Introduction

5.1 Introduction
Traffic flow simulation is an important problem in transport planning, as
it represents the final link between the intangible description of travel de-
mand and the emergence of flow densities, volumes, and travel speeds.
In today’s practice, traffic flow is most often simulated using aggregated
models that are easy to use and well established in the community. How-
ever, compared to aggregated models, the traffic flow microsimulation
has certain clear advantages:

• Very high spatial and temporal resolution. Features like traffic jams
and rush hours can be captured much more accurately.

• Traffic is represented in a very natural way; vehicles traveling,
roads, and intersections are simulated directly.

• Traffic flow microsimulations can be easily coupled with other mi-
croscopic approaches, i.e. agent-based demand modeling.

• Inverse analyses can be carried out to determine where certain cars
are coming from and why they can be found at a specific road
network location.

However, these properties come at the price of high computational
burden. This very often makes it necessary to use complex software ar-
chitectures together with large parallel computers - an expensive process.
The other option is to use microsimulations only for small applications
and switch to the above-mentioned aggregated methods for large scale
problems. Unfortunately, these methods are so different that it is nearly
impossible to transfer know-how from one field to another.

This work aims to present a new event-driven queue-based approach
that makes the traffic flow microsimulation of large-scale problems fea-
sible on affordable, desktop computer hardware within reasonable time.

5.2 Related Work
In this section, we present a selection of previous work related to
our microsimulation. There are many different traffic flow simulation

93

Chapter 5. An Event-Driven Queue-Based Traffic Flow Microsimulation

approaches. The physically based microsimulations (e.g. AIMSUN
(Barceló et al., 1998; AIMSUN, 2006), MITSIM (Yang, 1997; MITSIM,
2006), VISSIM (VISSIM, 2006)) generally try to capture as many traf-
fic flow phenomena as possible. They simulate car following and lane
changing behavior and use a continuous representation of space and con-
stant very small time-steps to simulate cars on the roads.

A different microscopic, but less physical, simulation approach is
represented by cellular automata (e.g Brilon and Wu, 1998), used for
example in TRANSIMS (Nagel et al., 1998; Nagel and Rickert, 2001;
TRANSIMS, 2006). Here, cars move through cells that they can oc-
cupy like particles. Although we have a coarser level of detail in cellu-
lar automata, features like densities and travel speeds still emerge from
the cars’ simple direct interactions and are not computed at an aggre-
gated level. This changes when we move on to mesoscopic modeling. In
mesoscopic models (e.g. METROPOLIS (Marchal, 2001; de Palma and
Marchal, 2002), DynaMIT (Ben-Akiva et al., 1998; DynaMIT, 2006),
DYNASMART (Chang et al., 1994; DYNASMART, 2006), DYNEMO
(Schwerdtfeger, 1984), ORIENT/RV (Axhausen, 1988)) where vehicles
are still represented microscopically, travel times and speeds are calcu-
lated using aggregates.

The highest level of abstraction can be found in macroscopic models
that compute all traffic quantities on an aggregated level. One example
of a traffic simulation model as a one-dimensional incompressible fluid
is NETCELL (Cayford et al., 1997).

The work presented here builds on the approach of MATSim-T
(Cetin, 2005; MATSim-T, 2006). While using simplified, queue-based
dynamics to be computationally efficient, this model still estimates all
quantities microscopically, and thus should be located somewhere be-
tween mesoscopic approaches and cellular automata. The same holds
for the approach presented in Mahut (2000) where the spatial resolution
on the links is minimized by only calculating the entry and exit times of
vehicles.

Time-step based approaches have been more popular in the past than
event-driven approaches. It is not clear why, but one reason might be the
more straightforward implementation of time-step based simulations.

94

5.3. Classification of Traffic Flow Microsimulation Methods

5.3 Classification of Traffic Flow Microsimu-
lation Methods

5.3.1 Cellular Automata
Cellular automata are used in traffic flow microsimulation to accurately
model the behavior of cars traveling on a road network (see e.g. Chowd-
hury et al., 2000). The basic idea is to discretize space in cells of equal
size, each of which can be occupied by, at most, one vehicle. The cars
drive through these cells by choosing their speed according to the space
available in front of them. Cellular automata have the advantage of sim-
plicity while still retaining a fair amount of spatial resolution and there-
fore the general ability to simulate many interesting phenomena like car
following and lane changing as demonstrated in Brilon et al. (1998);
Nagel et al. (1998). An additional advantage is that link capacities are
generated from the properties of the links and the behavior of the drivers.

Although the above properties are generally desirable, the major
drawback of this method is its computational cost. Its high temporal and
spatial resolution is achieved by granting processor time to every simu-
lated agent in every simulated time-step (usually one second). This be-
comes impractical if the number of simulated agents rises above roughly
100k, especially if one wishes to simulate the traffic flow repeatedly;
perhaps as part of an iteration search for a steady-state solution. If we
want to stick with this kind of solution, the only way to achieve sufficient
speed for large problem sizes is to use massively parallel computers as
illustrated in TRANSIMS (2006). Adequate funding is an ongoing prob-
lem for this expensive approach.

5.3.2 Queue-Based Simulations
If the computational speed of cellular automata is not sufficient for a
certain kind of application, one way of achieving higher performance is
to simplify the model by using a queue-based approach as it is used in
MATSIM-T, see Cetin (2005); MATSim-T (2006). Here, the basic as-
sumption is that the main features of (at least) urban traffic can be mod-
eled by looking at the intersections alone. This assumption is based on
the observation that in urban traffic networks either: 1. traffic is flowing

95

Chapter 5. An Event-Driven Queue-Based Traffic Flow Microsimulation

more or less freely on the links, or 2. the cars are queuing in front of the
next intersection and waiting for the car in front of them to move. Based
on these assumptions, cellular automata can be modified as follows:

• Cars traveling through the network are no longer simulated di-
rectly; instead we change perspective and simulate the links be-
tween intersections.

• A queue stores the cars that enter each link and the entry time for
each car is stored in this queue.

• The link’s capacity and space available for cars are given as param-
eters.

• When a car wants to leave link A to enter link B in the next simu-
lation time-step, link A checks whether the car is able to leave the
link by monitoring various constraints (capacity, free speed travel
time, intersection precedence, and space available at the next link).
If all preconditions are met, the car leaves link A and enters link B.

An advantage of this model is the reduction in amount of information
processed by not having to compute the fine-grained stop and go inter-
actions between following cars. As the basic simulation unit is the road
segment, not the car, we gain approximately a 10 to 100 factor compared
to cellular automata.

5.3.3 Event-Driven Queue-Based Simulations
Although queue-based simulations are much faster than cellular au-
tomata, it is still a computing time challenge to simulate the traffic flow of
a whole region microscopically. One seeks even faster ways of comput-
ing the same information. One key element is the inefficiency of queue-
based simulations in areas where flow density is very low. Here, the links
have to be simulated in every time-step, even when there is little data to
compute: in most of the time-steps, the links only realize that there is
no car in the position to leave the link and enter the next. These empty
operations cost the simulation most computing time when simulating off-
peak and night hours. One of the goals is thus to speed up low-density
traffic simulation.

96

5.3. Classification of Traffic Flow Microsimulation Methods

In order to achieve higher computational efficiency, we chose to sub-
stitute constant time-step for the direct treatment of actions occurring on
the road network. Each such action is reflected by an event. Every time
a car enters or leaves a link, a corresponding event is processed. This
means that the number of events happening in a specific time period di-
rectly corresponds to the amount of traffic flow present on the network.
The computational effort is then proportional to the traffic load. The two
main advantages of the event-driven approach are:

• Processing time is assigned according to the traffic flow during any
time of the day. As a result, most computational time is spent
where traffic flow is maximal and almost no time is spent where
the traffic network is empty.

• The total computing time needed for simulation of a certain travel
demand (e.g. 1 million cars traveling from one part of a city to
another) is almost independent of the total amount of simulated
time needed to process the traffic demand of the scenario. In other
words, it does not matter if the cars travel during 24 hours or one
month. This is because the simulation cares only about the events
to be simulated; the total number of events in both scenarios is the
same.

When switching to an event-driven simulation, overhead costs (added
in situations where the system processes large numbers of events at one
time) might be a concern. These are the situations where time-step-based
approaches are usually very efficient. Such situations may well arise in
certain scenarios, and for these, the queue-based approach with constant
time-steps is the most efficient choice. However, such a scenario would
need to have full network load nearly everywhere. Our experience shows
that, in most simulation networks, there is a fair number of links that
experience little load even during rush hours. This might be the reason
that we have not yet found a scenario where the event driven approach is
slower than the time-step-based approach, even during the most heavily
loaded minute of the day. In our tests, the event-driven simulation ob-
tains an overall speedup factor of 20 or more over the time-step-based
implementation when simulating a 24-hour scenario.

In METROPOLIS (see de Palma and Marchal, 2002), a similar,
event-based approach is used. The important difference there is that

97

Chapter 5. An Event-Driven Queue-Based Traffic Flow Microsimulation

Spatial discretization Temporal discretization
Cellular Automata equidistant constant time-step
Queue-based
simulation

road segments constant time-step

Event-driven, queue-
based simulation

road segments adaptive, event-driven

Table 5.1: Discretization schema of different microsimulation ap-
proaches

travel times and speeds are estimated using aggregated values, while in
our implementation no aggregates are used.

A comparison of the simulation approaches’ spatial and temporal dis-
cretization schemas is shown in Table 5.1.

5.4 Improved Dynamics of the Event-Driven
Queue-Based Approach

Apart from the changes that were made to our model to switch from
fixed time-steps to event-driven information processing, we have also
incorporated several behavioral changes to the road segment dynamics.
We want to give an overview of these and briefly discuss the reasons for
the modifications.

• Gaps, gap travel times: In the classical queue-based approach used
until now in MATSIM-T (see Chowdhury et al., 2000), there is no
concept of gaps between cars. Assume a full road segment. If the
first car in the row is able to leave the road in one time-step, the
space available on the link will become visible upstream at the en-
try of the link exactly one time-step later. That is, congestion can
dissolve faster than usually observed because the backward travel-
ing speed of gaps is very high. In order to avoid that problem, we
have introduced a concept of backward-traveling gaps on the road
segments. These gaps travel in the opposite direction of the cars at
a predefined and parameterized speed. In order for a car to enter,

98

5.4. Improved Dynamics of the Event-Driven Queue-Based Approach

there needs to be a gap available at the inlet of a road segment.
Otherwise, the car needs to wait for the next gap to arrive. In this
way, it is possible to reproduce the typical behavior of backward-
traveling gaps on links during unloading.

• Capacity constraints at inlet: In the classical queue-based ap-
proach, link capacities were only enforced at the downstream end
of links. While this is certainly sufficient to reproduce the correct
capacities on a linear sequence of road segments, more complex
behavior can be observed at intersections: especially on converg-
ing Y-type connections with high capacity incoming roads and a
relatively low capacity outgoing road, one would expect to observe
breakdowns at the bottleneck. However, without limiting the in-
coming capacity of a road segment, the breakdown does not occur
until much later downstream. To avoid this problem, we have ex-
tended our model to account for the inflow capacity as well. Note,
however, that it is often not easy to get the corresponding data.
Setting incoming and outgoing capacities identically is usually an
unsatisfactory choice because real incoming capacity is often close
to the theoretical capacity of a link of a certain type while the out-
going capacity is often chosen taking traffic light timings into ac-
count.

• Handling of gridlock: One issue, not very apparent at first, for
all types of microscopic traffic flow simulations with predefined
routes, is gridlock. In heavily loaded road networks, it is possi-
ble that individual agents block each other when waiting for the
next link on their individual routes to become free. At a certain
point, this will result in gridlock, preventing the involved agents
from arriving at their desired locations. Thus, we must incorporate
some techniques for handling gridlock into the simulation model.
In our simulation, the problem is solved using a guaranteed mini-
mum capacity for each link. This can be, for instance, one percent
of the nominal capacity or any constant desired. The simulation
then simply guarantees that no matter whether a road segment is
already full or not, it will always accept incoming cars - at least
at this specified minimum rate. This can lead to overfilled links,
but effectively avoids a situation where cars stay in the simulation

99

Chapter 5. An Event-Driven Queue-Based Traffic Flow Microsimulation

forever. In our experiments, this method has proven to be practical
and quite simple to implement.

5.5 Software Design: Technical Description
In the following section, we present the different parts of our event-driven
queue-based traffic flow microsimulation and we will explain how these
parts work together to solve the simulation problem at hand.

5.5.1 Description of Travel Demand
Travel demand is the input for any traffic flow microsimulation and it is
therefore critical to find a consistent description for it. In this work, we
employ the same formalism used in Balmer et al. (2006b):

• We use a population of agents, each having a complete 24-hour
activity plan.

• An activity plan consists of an activity pattern describing the type
and order of activities executed, location choice information de-
scribing the activity in question should be executed, timing infor-
mation defining the time of day when the activities are taking place,
and routing information describing the sequence of road segments
taken to travel between subsequent activities.

Note that while we use a complete description of traffic demand, the
description of the activity type is not necessary for the traffic flow mi-
crosimulation.

5.5.2 The Traffic Flow Model
The basic concept of our traffic flow model is that we only simulate tran-
sitions of agents from one road segment to the next. During the time
spent on a specific road segment, very little information about the posi-
tion of the agent is available: only the position in the queue is stored and
the earliest time that the car could leave the link according to free speed
limitations. When the agent arrives at the end of a road segment, an event

100

5.5. Software Design: Technical Description

occurs and the agent leaves the road segment and enters the subsequent
one according to the route stored in his complete activity plan. However,
this can only happen if there is sufficient room left on the downstream
link to take the oncoming agent. Otherwise, the agent has to wait until
sufficient space is available.

Travel times derive from the behavior of the agents on the link: if a
link is empty, the travel time equals the time needed to drive down the
link at free speed. The travel time can lengthen if there are other agents
traveling in front of the agent. In this case, the agent cannot leave the link
before all agents in front of it have left the link. The reason for such a
delay is usually high demand coupled with limited outflow due to limited
outflow capacities or a blocked road network downstream. That means,
as expected, high demand and low supply will automatically lead to long
travel times.

5.5.3 Simulation Output

The primary output of our traffic flow microsimulation is a log-file that
lists each event during the course of the simulation run. The complete
description of an event consists of the absolute time of day when the
event happened, an agent-ID and a link-ID specifying which agent was
involved and where the event happened, respectively, and the type of
event e.g. entry or exit. Using simple post processing, this events-file can
be converted into count data, hourly volumes on links, person diaries, or
data similar to GPS floating-car data

5.5.4 Actors During the Course of the Simulation

In our simulation software, three basic elements combine to compute
traffic flow through the network (see Figure 5.1). These three elements
are:

• The road segment that holds the cars during their travel.

• The agent that 1. represents the object moving through the road
network and 2. stores all information about the travel demand.

101

Chapter 5. An Event-Driven Queue-Based Traffic Flow Microsimulation

Road
Segment

Agent Clock

set timer

wake upregister

enter / leave
time

Plan

Figure 5.1: Interaction processes between elements of the traffic flow
microsimulation

• The clock that handles registered timers and alerts the agents when
an action must be undertaken.

5.5.5 The Traffic Flow Model
The actors mentioned above all interact and communicate according to a
certain protocol explained and illustrated by the example in Figure 5.2,
where one agent wants to travel along a certain sequence of road seg-
ments. The protocol consists of the following steps:

1. The agent informs the road segment that it wants to enter. The road
segment stores this request chronologically together with all other
requests of this kind.

2. As soon as it is clear when a gap will be available for the agent, the
road segment sends this entry time to the agent.

3. The agent registers a timer for this time with the clock.

4. As soon as the timer expires, the clock sends a wake-up call to the
agent and informs it about the time.

5. The agent then enters the road segment. With this step, the first part
of the protocol finishes, and the agent continues to travel down the
road. Note that this does not require any actions to be taken by the
road segment, the agent, or the clock.

102

5.5. Software Design: Technical Description

Road
Segment

Time Time Time

Agent Clock

enter request

if space available
on segment enter time set timer

wake up callenter confirmation

if it is clear when
agent reaches end
of segment

leave time set timer

wake up callregister at next segment

if space available
on segment enter time set timer

wake up callleave segment

enter next segment

1

2 3

45

6 7

89

10 11

1213

14

Figure 5.2: The traffic flow protocol

6. When the agent moves up to first place in the road queue, the road
segment computes the time the agent is going to arrive at the end
of the road segment and sends this information to the agent.

7. Similar to step 3, the agent registers a timer with the clock.

8. After the timer expires, the clock calls the agent.

9. Now the agent is at the front of the road segment. It then checks
with its activity plan for the next road segment to travel and regis-
ters there.

103

Chapter 5. An Event-Driven Queue-Based Traffic Flow Microsimulation

10. When it is clear at what time there will be a gap available for the
agent to enter the next link, it receives a message with the predicted
entry time.

11. The agent again registers a timer for this time.

12. When the timer expires, the clock wakes the agent.

13. The agent informs the last road segment that it is leaving.

14. It also informs the next road segment that it enters. From here on,
steps 6 to 14 repeat until the last road segment of the trip is reached;
then, step 14 is left out and the protocol stops.

5.6 Results

5.6.1 Test Scenario
The test scenario we use to demonstrate the properties of our simulation
software consists of the following parts:

• The road network of the federal states of Germany Berlin and
Brandenburg. It consists of 11.6k nodes and 27.7k links.

• The synthetic population of the area consists of 7.05M people.
Each person has a complete daily activity plan with multiple activ-
ities and trips. That means we are simulating 7.05M person-days.

The average number of trips per agent in our demand is 2.02 and the
average length of a trip is 17.5 links. This leaves us with an overall daily
demand of 249M road segments to be traveled.

5.6.2 Test Setup
The test scenario was run on a server-system equipped with Dual Core
AMD Opteron Processors 275 with 2.2GHz. Only one core was used
during our test runs. The system was equipped with 4GiB of RAM of
which roughly 3.2GiB were used. The input file for the synthetic pop-
ulation and the daily demand uses 5.4GiB of disk space; the output file

104

5.7. Discussion and Outlook

generated, containing each event processed during the simulation, con-
sists of roughly 17GiB. Note that one reason for the considerable sizes of
our input and output files is the fact that we are using ASCII representa-
tions (XML in the case of the input files and line-based text files for the
output).

5.6.3 Test Results
We ran the test scenario on the machine mentioned above. An average
run took an overall execution time of 53 minutes. This time divides into
8 minutes for the reading in and parsing of the input data (network, syn-
thetic population, and complete daily plans), 37 minutes for the execution
of the plans (i.e. the actual traffic flow microsimulation), and roughly 8
minutes for the generation of the output files. Summing everything up,
this results in an overall real-time ratio of 27 for our test scenario on the
hardware described. This means that our simulation ran 27 times faster
than real-time. Compared to our original queue-based microsimulation
using fixed time-steps, we gained a speedup of more than a factor of 20.
Please note that the time needed for I/O could be easily reduced to about
two minutes by switching to a binary representation of the input and out-
put files.

5.7 Discussion and Outlook
An interesting question is how to derive a performance estimate for the
current microsimulation of the problem to be computed. Fortunately, this
is easy because the main factor affecting the computational effort needed
to simulate the traffic flow is the overall traffic volume. Judging from
our test results, it can be estimated that the average simulation speed
on the computer hardware described above is about 110k road segments
per second (not including I/O). This can be transferred into a runtime
estimate for a given problem: for instance, let us assume a large-scale
traffic simulation problem with a population of one million agents, each
executing 3 trips a day. Let the average trip length be 15 road segments.
The overall traffic volume is then given as V = a·t·l = 1M·3·15 = 45M,
where V is the total traffic volume, a is the number of agents in the

105

Chapter 5. An Event-Driven Queue-Based Traffic Flow Microsimulation

population, t is the average number of trips per agent, and l is the average
length of a trip in number of road segments. From r = V/v, where r is
the expected running time and v is the simulation speed in number of
traveled road segments per second, it follows that r = 45M/110ks−1.
We therefore expect that such a simulation will take about seven minutes
to complete on today’s computing hardware.

It is interesting to note that the dominant factor limiting scenario sizes
when using our microsimulation model is computer memory, not proces-
sor speed. Even though the large scenario used for our testing can be
simulated in only 53 minutes on affordable hardware, it needs roughly
3.2GiB of memory, meaning that it is impossible to double the scenario
size on a machine with 4GiB. This is not an actual problem with our
implementation, but arises from the sheer volume of the data describing
demand. It would be interesting to investigate how much the memory
requirements can be alleviated by using some sort of streaming of travel
demand: an agent could postpone loading its trips into memory until just
before they are executed. Another possibility might be using some sort
of compression algorithm to reduce the memory size needed.

A completely different way around the problem of memory sizes is
parallelization. We are developing a parallel version of our microsimu-
lation model that will make it possible to take advantage of a group of
cheap computers to simulate large scenarios that would not fit on any of
these computers alone. The other obvious advantage of such a parallel
implementation is the expected higher execution speed.

Concerning functional extensions, we are working on the explicit
modeling of intersections—not present in the current model where in-
tersections are modeled implicitly. The first track followed here is the
modeling of traffic signals. Our model can be extended to handle red
phases by simply reducing the outflow capacity of the corresponding link
to zero. During the succeeding green phase, the original capacity is then
restored. The second track is to incorporate general intersection dynam-
ics based on direct interactions between cars. The idea here is to limit
the total traffic flow through an intersection. As the maximum flow is
limited, all road segments crossing at an intersection are competing. A
large load in one direction will therefore reduce the maximal throughput
in all other directions.

106

5.8. Summary

5.8 Summary
We have presented a traffic flow microsimulation using a queue-based
and event-driven approach jointly. Compared to cellular automata, this
process does cause a certain reduction in spatial resolution. However,
that is acceptable compared to the very significant speedups gained by
this approach. Compared to earlier queue-based approaches, our event-
driven simulation saves time in areas of the road network where the traffic
load is moderate to small. Overall, a speedup factor of 20 can be expected
when compared to earlier queue-based approaches.

In addition to acceleration of the method, several other modifications
were undertaken. The simulation now accurately handles backward-
traveling gaps, limits the inflow capacities of all road segments in a mean-
ingful way, and handles gridlock in a new way in the simulation by using
a notion of guaranteed minimal capacities.

The final simulation was tested with a large-scale 24-hour scenario
with seven million simulated person-days on a network with 28k links.
The tests were undertaken on a single CPU workstation computer with a
current processor and 4GiB of RAM, of which 3.2GiB were used. The
simulation took about 53 minutes to finish, corresponding to an overall
real-time ratio of 27.

107

Chapter 6

An Event-Driven Parallel
Queue-Based
Microsimulation for Large
Scale Traffic
Authors

David Charypar
Institute for Transport Planning and Systems, ETH Zurich, Switzerland
Email: charypar@ivt.baug.ethz.ch

Kay W. Axhausen
Institute for Transport Planning and Systems, ETH Zurich, Switzerland
Email: axhausen@ivt.baug.ethz.ch

Kai Nagel
Institute for Land and Sea Transport Systems, TU Berlin, Germany
Email: nagel@vsp.tu-berlin.de

Published in

This paper was presented at a conference, see Charypar et al. (2007a).

Chapter 6. An Event-Driven Parallel Queue-Based Microsimulation for Large Scale Traffic

Abstract
Traffic flow microsimulations are interesting for transport planning
problems due to their high temporal and spatial resolution. Unfortu-
nately, most of them involve high computational costs making them
impractical for running large scale scenarios. We present a parallel
microsimulation software that uses queue-based link dynamics together
with event processing instead of time-steps. By introducing appropriate
load balancing and by minimizing interfaces between processors to
reduce communication needs as far as possible, our simulator requires
only 87 seconds on 64 processors to simulate a 24 hours test scenario
with 7 million simulated person days on a network with 28k links.

Notice to the Reader
The chapter at hand describes the parallelization of the traffic flow mi-
crosimulation the sequential version of which was presented in the pre-
vious chapter. Naturally, is contains some overlap with that chapter,
namely where the underlying model needs to be explained. This is in-
evitable as otherwise the parallelization steps cannot be properly under-
stood. The reader who has already read the previous chapter will profit
most of Sections 6.6, 6.7, and 6.8 of this chapter.

110

6.1. Introduction

6.1 Introduction
Traffic flow simulation is an important problem in transport planning, as
it represents the final link between the description of travel demand and
the emergence of flow densities, volumes, and travel speeds. In today’s
practice, traffic flow is most often simulated using aggregated models
that are easy to use and well established in the community. However,
compared to aggregated models, traffic flow microsimulation has certain
clear advantages:

• Very high spatial and temporal resolution. Features like traffic jams
and rush hours can be captured accurately.

• Traffic is represented in a natural way; vehicles traveling, roads,
and intersections are simulated directly.

• Traffic flow microsimulation can be easily coupled with other mi-
croscopic approaches, e.g. agent-based demand modeling.

• Inverse analyses can be carried out to determine where certain cars
are coming from and why they can be found at a specific road
network location.

However, in many cases traffic flow microsimulations have prohibitively
high computational burden especially for very large scale applications
with more than one million person days simulated on high resolution
networks. This is even true when using parallel machines to solve the
computational task. As a result, microsimulations are most often only
used for small applications and aggregated methods are used for large
scale problems.

This work aims to present a new event-driven queue-based approach
that is parallelizable and makes the traffic flow microsimulation of very
large-scale problems feasible on affordable computer hardware. To boost
simulation speed and size of the scenario the option exists to execute the
software on large parallel machines with processors added as necessary.
This also means that our code profits from multi-core processors which
are becoming common. We show that the software performance scales
nicely with the number of processors for systems with up to 64 proces-
sors, making it possible to run traffic flow microsimulations 200 to 500

111

Chapter 6. An Event-Driven Parallel Queue-Based Microsimulation for Large Scale Traffic

times faster than time-step based queue-based approaches on single CPU
computers.

6.2 Related Work

In this section, we present a selection of previous work related to
our microsimulation. There are many different traffic flow simulation
approaches. The physically based microsimulations (e.g. AIMSUN
(Barceló et al., 1998; AIMSUN, 2006), MITSSIM (Yang, 1997; MIT-
SIM, 2006), VISSIM (VISSIM, 2006)) generally try to capture as many
traffic flow phenomena as possible. They simulate car following and
lane changing behavior and use a continuous representation of space and
constant very small time-steps to simulate cars on the roads. AIMSUM
(Barceló et al., 1998) presented an implementation of a parallel traffic
simulation using threads. In their shared memory approach, all variables
are globally accessible by all processors. They simulated small scale sce-
narios on 8 CPUs and reached a speed-up of 3.5 compared to the single
CPU solution.

A different microscopic, but less physical, simulation approach is
represented by cellular automata (e.g Brilon and Wu, 1998), used for
example in TRANSIMS (Nagel et al., 1998; Nagel and Rickert, 2001;
Rickert and Nagel, 2001; TRANSIMS, 2006). Here, cars move through
cells that they can occupy. Although we have a coarser level of detail in
cellular automata, features like densities and travel speeds still emerge
from the cars’ simple direct interactions and are not computed at an ag-
gregated level. The parallel version of TRANSIMS (Nagel and Rickert,
2001; Rickert and Nagel, 2001) used message passing between proces-
sors, running midsized scenarios on 32 CPUs. Although the run times
were about 10 times faster than real time, ethernet latency problems and
speed handicaps due to the use of cellular automata were reported. Us-
ing the same parallel concepts as in TRANSIMS, the queue-based model
presented in (Cetin, 2005; Cetin et al., 2003) achieved a speed-up of 32
using 64 CPUs.

In mesoscopic models (e.g. METROPOLIS (Marchal, 2001;
de Palma and Marchal, 2002), DynaMIT (Ben-Akiva et al., 1998; Dyna-
MIT, 2006), DYNASMART (Chang et al., 1994; DYNASMART, 2006),

112

6.2. Related Work

DYNEMO (Schwerdtfeger, 1984; Nökel and Schmidt, 2002), ORIEN-
T/RV (Axhausen, 1988)), vehicles are still represented microscopically,
but in contrast to the microscopic approaches described above, travel
times and speeds are calculated using aggregates. By using a paral-
lel implementation based on threads, METROPOLIS managed to sim-
ulate large scenarios efficiently. DynaMIT uses functional decomposi-
tion (task parallelization) as parallelization concept. Different modules
are run in parallel, but the traffic simulation is executed on a single CPU
only. The parallel implementation of DYNEMO (Nökel and Schmidt,
2002) used message passing on 19 CPUs for simulating small scenarios.
Larger numbers of CPUs were reported to be inefficient.

The highest level of abstraction can be found in macroscopic models
that compute all traffic quantities on an aggregated level. One example
of a traffic simulation model as a one-dimensional incompressible fluid
is NETCELL (Cayford et al., 1997).

The work presented here builds on the approach of MATSim-T
(Cetin, 2005; MATSim-T, 2006). While using simplified, queue-based
dynamics to be computationally efficient, MATSIM-T still estimates all
quantities microscopically and thus should be located somewhere be-
tween mesoscopic approaches and cellular automata. The same holds
for the approach presented in Mahut (2000) where the computational ef-
fort on links is minimized by only calculating the entry and exit times of
vehicles.

Time-step based approaches have been more popular in the past than
event-driven approaches. It is not clear why, but one reason might be the
more straightforward implementation of time-step based simulations.

In this work, we extend an event-driven approach presented in Chary-
par et al. (2007c) using parallelization for the simulation of larger scale
scenarios.

113

Chapter 6. An Event-Driven Parallel Queue-Based Microsimulation for Large Scale Traffic

6.3 Classification of Traffic Flow Microsimu-
lation Methods

6.3.1 Cellular Automata

Cellular automata are used in traffic flow microsimulation to accurately
model the behavior of cars traveling on a road network (see e.g. Chowd-
hury et al., 2000). The basic idea is to discretize space in cells of equal
size, each of which can be occupied by, at most, one vehicle. The cars
drive through these cells by choosing their speed according to the space
available in front of them. Cellular automata have the advantage of sim-
plicity while still retaining a fair amount of spatial resolution, which -
among other things - has the advantage that link capacities are generated
from the properties of the links and the behavior of the drivers.

The major drawback of this method is its computational cost as every
agent is simulated in every time step (usually one second). This becomes
impractical if we are interested in large scale simulations.

6.3.2 Queue-Based Simulations

If the computational speed of a model is not sufficient for a certain kind of
application, one solution is to switch to a simpler one. We follow this ap-
proach in MATSIM-T, see for example Cetin (2005); MATSim-T (2006)
where we use a queue-based approach to achieve higher performance.
Here, the basic assumption is that the main features of (at least) urban
traffic can be modeled by looking at the intersections alone, resulting in
a model where:

• Links are simulated as they "process" cars traveling through the
network.

• A queue stores cars traveling on each link together with their re-
spective entry times.

• Each link’s capacity and space available for cars are parameters of
the model.

114

6.3. Classification of Traffic Flow Microsimulation Methods

• To move cars through the network, consecutive links collaborate in
each time-step monitoring various constraints (capacity, free speed
travel time, intersection precedence, and space available at the next
link).

Queue-based models are faster than cellular automata mainly because
the number of simulated units is smaller (links vs. cars), thus we gain
roughly a factor of 10 to 100 depending on the network resolution.

6.3.3 Event-Driven Queue-Based Simulations
To boost simulation performance further, we seek to eliminate inefficien-
cies in the queue-based approach. One such inefficiency can be observed
when low density traffic regions of the simulation are investigated: while
each link is processed in every time-step, most of the time no cars are
really moved.

In order to achieve higher performance, we chose to substitute con-
stant time-steps for the direct treatment of actions occurring on the road
network. Each such action is reflected by an event. Every time a car
enters or leaves a link, a corresponding event is processed, meaning that
the event processing rate is proportional to the traffic flow at any time.
The two main advantages of the event-driven approach are:

• Processing time is assigned according to the traffic flow during any
time of the day. As a result, most computational time is spent
where traffic flow is maximal and almost no time is spent where
the traffic network is empty.

• Prediction of processing time for a given travel demand is easy as
it is proportional to the overall traffic volume simulated.

The event processing mechanism introduces an overhead compared to
time-step based approaches that might be a concern in situations with
large traffic flow. However, so far we have not come across a situation
where the time-step based approach outperforms the event-driven sim-
ulation even when simulating only rush hours. For 24 hour scenarios,
one can usually expect an overall speedup factor of 10 or more over the
time-step-based implementation.

115

Chapter 6. An Event-Driven Parallel Queue-Based Microsimulation for Large Scale Traffic

Spatial discretization Temporal discretization
Cellular Automata equidistant constant time-step
Queue-based
simulation

road segments constant time-step

Event-driven, queue-
based simulation

road segments adaptive, event-driven

Table 6.1: Discretization schema of different microsimulation ap-
proaches

In METROPOLIS (see de Palma and Marchal, 2002), a similar,
event-based approach is used. The important difference there is that
travel times and speeds are estimated using aggregated values, while in
our implementation, no aggregates are used.

A comparison of the simulation approaches’ spatial and temporal dis-
cretization schema is shown in Table 6.1.

6.4 Modifications to Queue Dynamics
In the process of implementing a parallel event-driven approach we have
also added several features not present in our former implementations of
queue-based microsimulations:

• Gaps, gap travel speeds: The new implementation uses a concept
of gaps that travel backwards through road segments at a constant
speed. They are used to produce a delay between the event of a
car leaving the road segment at the downstream end and the time
the formed gap becomes visible at the upstream end. The bene-
fit of this approach is mainly that it improves the way congestion
dissolves.

• Capacity constraints at inlet: In addition to the outflow capacity,
the inflow capacity of each link is constrained in the new imple-
mentation. This improves the behavior at converging Y-type con-
nections where in former implementations breakdowns were pre-
dicted too far downstream.

116

6.5. Software Design: Technical Description

• Handling of gridlock: All microsimulations have to cope with the
issue of gridlock that happens if agents block each other at intersec-
tions. We solve this problem by guaranteeing a certain minimum
inlet capacity for each road segment. This capacity is available
even if the road segment is already full allowing it to temporar-
ily overfill. By permitting additional agents to enter a link they
are removed from the problematic intersection which in turn averts
gridlock.

6.5 Software Design: Technical Description
In the following section, we present the different parts of our event-driven
queue-based traffic flow microsimulation and we explain how these parts
work together to solve the simulation problem at hand. The subsequent
parallel implementation of our model is covered in the next section.

6.5.1 Description of Travel Demand
For the input travel demand to our traffic flow microsimulation we em-
ploy the formalism used in Balmer et al. (2006b):

• We use a population of agents, each having a complete 24-hour
activity plan.

• An activity plan consists of an activity pattern describing the type
and order of activities executed, location choice information de-
scribing where the activity in question should be executed, timing
information defining the time of day when the activities are tak-
ing place, and routing information describing the sequence of road
segments taken to travel between subsequent activities.

6.5.2 The Traffic Flow Model
The basic concept of our traffic flow model is that we only simulate tran-
sitions of agents from one road segment to the next. During the time
spent on a specific road segment, very little information about the posi-
tion of the agent is available: only the position in the queue is stored and

117

Chapter 6. An Event-Driven Parallel Queue-Based Microsimulation for Large Scale Traffic

the earliest time that the car could leave the link according to free speed
limitations. When the agent arrives at the end of a road segment, an event
occurs and the agent leaves the road segment and enters the subsequent
one according to the route stored in his complete activity plan. However,
this can only happen if there is sufficient space left on the downstream
link to take the oncoming agent. Otherwise, the agent has to wait until
sufficient space is available.

Travel times derive from the behavior of the agents on the link: if a
link is empty, the travel time equals the time needed to drive down the
link at free speed. The travel time can lengthen if there are other agents
traveling in front of the agent. In this case, the agent cannot leave the link
before all agents in front of it have left the link. The reason for such a
delay is usually high demand coupled with limited outflow due to limited
outflow capacities or a blocked road network downstream. That means,
as expected, large traffic volumes coupled with low link capacities will
lead to long travel times.

6.5.3 Simulation Output
The primary output of our traffic flow microsimulation is a log file that
lists each event during the course of the simulation run. The complete
description of an event consists of the absolute time of day when the
event happened, an agent-ID and a link-ID specifying which agent was
involved and where the event happened, respectively, and the type of
event e.g. entry or exit. Using simple post processing, this events file can
be converted into count data, hourly volumes on links, person diaries, or
data similar to GPS floating-car data.

6.5.4 Actors During the Course of the Simulation
In our simulation software, three basic elements combine to compute
the traffic flow through the road network (see Figure 6.1). These three
elements are:

• The road segment that holds the cars during their travel,

• The agent that: 1. represents the object moving through the road
network and 2. stores all information about the travel demand.

118

6.5. Software Design: Technical Description

Road
Segment

Agent Clock

set timer

wake upregister

enter / leave
time

Plan

Figure 6.1: Illustration of interaction processes: the boxes represent ac-
tors in our microsimulation, the arrows stand for flow of information and
message passing.

• The clock that handles registered timers and alerts the agents when
an action must be undertaken.

6.5.5 The Traffic Flow Protocol
The actors mentioned above all interact and communicate according to a
certain protocol explained and illustrated by the example in Figure 6.2,
where one agent wants to travel along a certain sequence of road seg-
ments. The protocol consists of the following steps:

1. The agent informs the road segment that it wants to enter. The road
segment stores this request chronologically together with all other
requests of this kind.

2. As soon as it is clear when a gap will be available for the agent, the
road segment sends this entry time to the agent.

3. The agent registers a timer for this time with the clock.

4. As soon as the timer expires, the clock sends a wake-up call to the
agent and informs it about the time.

5. The agent then enters the road segment. With this step, the first part
of the protocol finishes, and the agent continues to travel down the
road. Note that this does not require any actions to be taken by the
road segment, the agent, or the clock.

119

Chapter 6. An Event-Driven Parallel Queue-Based Microsimulation for Large Scale Traffic

Road
Segment

Time Time Time

Agent Clock

enter request

if space available
on segment enter time set timer

wake up callenter confirmation

if it is clear when
agent reaches end
of segment

leave time set timer

wake up callregister at next segment

if space available
on segment enter time set timer

wake up callleave segment

enter next segment

1

2 3

45

6 7

89

10 11

1213

14

Figure 6.2: The traffic flow protocol: the vertical lines indicate how time
runs during the course of the simulation; the arrows between these lines
represent messages sent between the actors of the simulation; the num-
bers in circles denote the corresponding protocol step of the message.
See text for more information.

6. When the agent moves up to the first position in the road queue, the
road segment computes the time the agent is going to arrive at the
end of the road segment and sends this information to the agent.

7. Similar to step 3, the agent registers a timer with the clock.

8. After the timer expires, the clock calls the agent.

9. Now the agent is at the front of the road segment. It then checks
with its activity plan for the next road segment to travel and regis-
ters there.

10. When it is clear at what time there will be a gap available for the
agent to enter the next link, it receives a message with the predicted
entry time.

11. The agent again registers a timer for this time.

120

6.6. Parallelization

12. When the timer expires, the clock wakes the agent.

13. The agent informs the last road segment that it is leaving.

14. It also informs the next road segment that it enters. From here on,
steps 6 to 14 repeat until the last road segment of the trip is reached;
then, step 14 is left out and the protocol stops.

6.6 Parallelization
Using queue-based link dynamics and an event-driven approach running
large scale scenarios (with roughly one million person days simulated on
a network with roughly 10k links) becomes feasible on single CPU desk-
top computers (Charypar et al., 2007c). However, when going to even
larger scenarios (roughly 10 million agents on high resolution networks
with 100k links and more) the computational burden and memory con-
sumption again become an issue. This is especially true if we want to
iterate 20 times or more during the search for a user equilibrium. To be
able to do this for very large scale scenarios it is necessary to speed up
the traffic flow simulation even more as we have less than 30 minutes for
one simulation run if we want to finish overnight. To achieve this further
reduction in processing time and also to cope with the memory demand
we use parallelization to spread the simulation across multiple processors
of a parallel computer.

6.6.1 Domain Decomposition
In order to distribute the computation across multiple processors we de-
compose the simulation domain (i.e. the network). The basic idea is to
subdivide the network into parts and assign all nodes residing in one part
to the same processor. Road segments that connect nodes assigned to the
same processor are simulated entirely on that processor while road seg-
ments connecting nodes on different processors are simulated on those
two processors jointly involving periodical communication.

To achieve reasonable parallel speedup it is important to have equal
workload on all processors and to minimize the interfaces between in-
dividual parts of the domain to reduce the communication needs to a

121

Chapter 6. An Event-Driven Parallel Queue-Based Microsimulation for Large Scale Traffic

Figure 6.3: Domain decomposition of the road network of the federal
states of Germany, Berlin and Brandenburg: On the left you can see a
complete view while on the right a close up of the center section is shown.
Each colored area corresponds to the same traffic load and represents the
assignment to a specific processor for the parallel simulation using 16
processors. The thin black lines represent the domain boundaries. Thick
black lines indicate links that cross subdomain boundaries and involve
communication.

minimum. To achieve these two goals, the domain is partitioned using
orthogonal recursive bisection, selecting the splitting plane such that the
daily traffic volumes in both parts are equal. For this process, we use load
data available from a previous iteration (Figure 6.3). This decomposition
of the simulation domain is a simple, practical and efficient algorithm that
can be implemented quickly. The domain decomposition also handles
how the memory demand of the whole simulation is distributed across
processors: at any time each processor holds solely agents currently re-
siding on a link in care of that processor. This distributed handling of
information allows to make use of the memory resources available on all
processors together.

122

6.6. Parallelization

6.6.2 Communication

The only parts of our parallel program that involve communication be-
tween processors are road segments crossing the boundaries between
subdomains (indicated as black links in Figure 6.3). In our program,
such a road segment is split into two parts - the road start and the road
end - which are then simulated separately on the two processors involved.
From time to time synchronization messages are sent between the two
parts of the same road segment. This is done to exchange information
about agents that entered or left the road segment since the last synchro-
nization. If agents travel across the simulation boundary between two
processors these agents including their daily activity plan are packed into
the synchronization message and thereby transferred to a different pro-
cessor. This means that agents starting on one processor may go to any
other processor during the course of the simulation.

The synchronization messages between the two parts representing a
road segment have to be issued often enough such that the individual
parts cannot become invalid. On the other hand, we want to communi-
cate only as often as necessary in order to keep communication overhead
as low as possible. Fortunately, the synchronization interval for each road
segment (the time between two subsequent synchronization messages on
one road segment) can be chosen independently of any other road seg-
ment. It depends solely on the speed of information propagation across
this specific road segment. As the only information transported across
road segments are agents traveling and the gaps that travel in the oppo-
site direction, it is the free speed travel time of agents and gaps that give
us the desired synchronization interval. 1 For a given road segment this
value is given by the length of the road segment and the larger of the free
speed travel time and the gap travel time.

In addition to the synchronization interval, we have to define at what
specific times synchronization messages are sent. It is important that
corresponding parts of the same road segment send and receive messages
at the same time. Our solution to this problem is to start all processors
at the same simulation time (the beginning of the period to be simulated,

1This means that the parallelization is greatly facilitated by the presented explicit handling of gaps.
One could argue that it is this property which gives this type of simulation a better parallel efficiency than
other approaches.

123

Chapter 6. An Event-Driven Parallel Queue-Based Microsimulation for Large Scale Traffic

e.g. midnight) and communicate each time a synchronization interval has
passed.

6.6.3 Technical Description
Our software is implemented as an explicitly parallel program. We have
used the Message Passing Interface (MPI) which is a quite flexible so-
lution that makes it possible to run our code on all kinds of parallel
computers including shared memory architectures and computer clusters.
However, the performance is limited by the communication possibilities
between processors and therefore it is to be expected that our software
has larger potential for parallelization on shared memory computers than
on computer clusters connected using cheap networking components.

6.7 Results

6.7.1 Test Scenario
The test scenario we use to demonstrate the properties of our simulation
software consists of the following parts:

• The road network of the federal states of Germany Berlin and
Brandenburg. It consists of 11.6k nodes and 27.7k links.

• The synthetic population of the area consists of 7.05M people.
Each person has a complete daily activity plan with multiple activ-
ities and trips. That means we are simulating 7.05M person days.

The average number of trips per agent in our demand is 2.02 and the
average length of a trip is 17.5 links. This leaves us with an overall daily
demand of 249M road segments to be traveled.

6.7.2 Computer System for Performance Analysis
All our tests were run on a shared memory parallel computer equipped
with 64 dual-core Intel Itanium 2 processors with 1.6GHz and a total of
256GiB of RAM.

124

6.7. Results

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

sp
ee

du
p

fa
ct

or

number of processors

microsimulation speedup
linear speedup

Figure 6.4: The software speed scales nicely with the number of proces-
sors used. Note the superlinear speedup for up to 16 processors probably
due to better cache efficiency. For 64 processors, the speedup reaches
roughly 53.

6.7.3 Test Results

We ran the test scenario on the machine mentioned above. An average
run using one CPU core took roughly 15 minutes to read in the travel de-
mand, 25 minutes to produce the output file (events file) and 77 minutes
to actually compute the traffic flow over the day. The following perfor-
mance data refers to the computation time for the traffic flow, disregard-
ing all input and output operations. Figure 6.4 shows how the perfor-
mance of our simulation scales with the number of processor cores used.
It can be seen that the system scales nicely using up to 64 processor cores
where the performance is roughly 53 times the single core performance.
The best parallel efficiency can be observed with 4 processor cores and
with up to 16 cores the simulation runs with superlinear speedup. With
64 processor cores it is possible to run our test scenario in 87 seconds.
Note that the speedup still increases around 64 processor cores and it
might be possible to go beyond that point on even larger machines.

125

Chapter 6. An Event-Driven Parallel Queue-Based Microsimulation for Large Scale Traffic

6.8 Discussion and Outlook

We have shown that our method is able to simulate large scale scenar-
ios as our test scenario of Berlin and Brandenburg at satisfactory speeds.
However, in our current project, we aim at simulating a very large scale
scenario where all people in Switzerland (roughly 7 million agents) are
simulated on a high resolution network with a size in the order of 500k
links. Using the property of our simulation that the processing time only
depends on the total traffic volume, the processing time can be estimated
once this volume is known approximately. We estimate that the sce-
nario describing all of Switzerland will be about a factor of 10 larger than
the test scenario used in this paper. This would mean that it is feasible
to compute the high resolution traffic flow for all of Switzerland within
roughly 15 minutes on 64 processors. However, handling the tremendous
amount of data related to these scenario sizes remains a major challenge.
Currently, when running the simulation using 64 processors, more time
is spent for input and output routines than for actually simulating traf-
fic flow. Further work has to be done on this to reduce I/O needs of the
simulation and to improve parallel I/O bandwidth.

Concerning functional extensions, we are working on the explicit
modeling of intersections. This is not present in the current model where
they are modeled implicitly. The first track followed here is the model-
ing of traffic signals. Our model can be extended to handle red phases
by temporary reducing the outflow capacity of the corresponding link to
zero and restoring the original capacity with the next green phase. The
second track is to incorporate general intersection dynamics based on di-
rect interactions between cars. The idea here is to limit the total traffic
flow through an intersection. As the maximum flow is limited, all road
segments crossing at an intersection are competing. A large load in one
direction will therefore reduce the maximal throughput in all other direc-
tions. We believe that these extensions will lead to more realistic flow
patterns.

126

6.9. Summary

6.9 Summary
We have presented a traffic flow microsimulation using a queue-based
and event-driven approach jointly. We chose our approach to achieve
a significant speedup compared to e.g. cellular automata, accepting a
certain loss in spatial resolution to be able to solve large scale traffic
simulation problems. Compared to earlier queue-based approaches, our
event-driven simulation saves time in areas of the road network where
the traffic load is moderate to small leading to a speedup compared to the
time-step-based approach of more than 10 for 24 hour scenarios.

In addition to accelerating our method, several other modifications
were undertaken. The simulation now handles backward-traveling gaps,
limits the inflow capacities of all road segments in a meaningful way, and
handles gridlock by using a notion of guaranteed minimal capacities.

By using a suitable domain decomposition that balances the load on
the processors and minimizes communication interfaces, we succeeded
in parallelizing our software which makes it possible to use parallel com-
puters to boost the performance by at least another factor of 50. The
test scenario used was a large-scale 24-hours scenario with seven million
simulated person days on a network with 28k links.

127

Chapter 7

Fundamental Diagram

7.1 Introduction

In the previous two chapters we have presented a queue-based microsim-
ulation with gaps and shown that our implementation is efficient enough
to simulate the traffic flow in a large region with around seven million
travelers. The main reason for the good performance is the event-driven
approach which saves a lot of time when simulating off-peak hours and
areas with strong congestion.

Compared to time-step-based implementations, there should be no
negative effects by using events. Actually, the temporal resolution of
the method has increased from seconds to a continuous representation of
time, giving smoother results than before. We also believe that introduc-
ing backwards traveling gaps should in fact enhance the properties of the
traffic flow simulation. Still, a rigorous investigation of these properties
is missing. Such characteristics are important to know, particularly to es-
timate for which problems and how our traffic flow microsimulation can
be used.

In this chapter, we systematically analyze the flow characteristics of
the microsimulation at hand. Then, we use these results to make recom-
mendations on how the microsimulation should be used. Knowing this
is especially important when simulating freeway traffic. A typical real-
world flow-density relationship is shown for instance in (Nagel et al.,
1998)

Chapter 7. Fundamental Diagram

�

����"����

� "���	��	�����
�������	�����)�

	����)�1:;��<�%2'4�=�1372�

� %2'>��������	������?��		�

����������

� �		�)�����)�������	��0�

&������������	���
��%22�����

� ��������������������������

���������	
�

Figure 7.1: A virtual test setup with agents (blue) living and traveling on
a ring test network

7.2 Average Flow Characteristics
The basic idea to measure the flow characteristics of the presented mi-
crosimulation is to use a virtual experiment with test agents on a test
network (see Figure 7.1), and to analyze the resulting data (events) in
terms of flow speed, density, and volume.

7.2.1 Test Network
We create parametrized test ring networks to perform resolution tests on
the same topology. The ring road has a length equivalent to 1024 parked
cars. Assuming an average space need of 7.5m per car, this results in a
circumference of 7.5m · 1024 = 7680m.

To produce test networks of variable resolution that could be easily
compared, the ring was subsequently dissected into a power of two num-

130

7.2. Average Flow Characteristics

�

@�
	���
�

� ,��������������
��	��$��������������)����������	���
����
�������A���
���������

Figure 7.2: The test networks are created at resolutions from 2 links up
to 256 links.

ber of road segments. (See Figure 7.2) The number of segments ranged
from 2 to 256.

7.2.2 Test Agents
In our test scenario, there is a number of 1023 agents that all share a very
similar activity plan. All agents live at a random position on the road
network. At a random point in time, they start to travel around the road
network and continue for 100 times. At the end of their journey, they
arrive at the same place as they started before.

From the networks point of view, this behavior results first in a con-
tinuously increasing number of agents traveling, until all are on the road.
During this increase, we are able to measure flow properties at increas-
ing densities. When all agents are on the road, we can observe maxi-
mally congested road conditions. At the end, when agents start arriving,
the density decreases, giving us the chance to observe flow at reducing
densities.

7.2.3 Measured Values
In general, we are interested in the relationship between three different
quantities: flow density, flow speed, and flow rate of the observed traffic.

In the first part of this chapter, we are interested in quantities aver-
aged over a certain amount of time. The values observed directly are the

131

Chapter 7. Fundamental Diagram

Figure 7.3: In our queue-based microsimulation model with gaps the av-
erage density to flow ratio show a clear trapezoidal relation. This prop-
erty is independent of network resolution.

time of circulation and the average flow density (the number of cars on
the network) during this time. The average travel speed can then be com-
puted from the network circumference and the circulation time, and the
average flow rate can be computed from average density and circulation
time.

7.2.4 Results and Discussion

In Figure 7.3, we show the measured mutual dependence between traf-
fic density, flow, and speed. The graph has a trapezoidal shape, the left,
upper, and right edges of which can be clearly associated with indepen-
dent parameters of the queue-based model with gaps: the slope of the left
edge is controlled by the free speed defined on a road segment, the height
of the top flat part corresponds to the flow capacity on the link, and the
cut-off point together with the slope of the right edge are a result of the
maximum density (fully congested density) and the backward traveling
gap speed.

132

7.3. Instantaneous Flow Characteristics

The plots were generated for all test network resolutions showing no
apparent differences in the flow characteristics. It seems that network res-
olution does not produce an immediate effect on the average flow prop-
erties. It is interesting that all observed states on the network lie on the
border of the graph. No state of medium densities together with medium
flow was observed in all our tests. It seems that our model is not only
able to produce the limit values, but it also will produce exactly these
limit values if used on a ring topology.

7.3 Instantaneous Flow Characteristics

At this point, one might ask for more variation in the produced flow pat-
terns. Particularly, it is not clear what the reason is that all observed states
lie on the envelope of the flow-density diagram and no states inside the
trapezoid can be observed. Essentially, two entirely different explana-
tions are possible: 1. There are no fluctuations at all. The state of the
road segment always moves along the envelope of the graph. 2. There
are fluctuations producing states inside the envelope, realizing non ex-
tremal values of the state variables, but subsequent smoothing (as it was
done in the acquisition of the data) then eliminates the variation origi-
nally available.

7.3.1 Modifications to Measure Instantaneous Values

We modify the test setup to enable measurements of the instantaneous
state of the road segment. This is done by introducing a small sensor link
just long enough to hold one car (= 7.5m) (see Figure 7.4). We register
the time each time a car enters or leaves the sensor link. The instanta-
neous flow can be computed from the time between two subsequent cars
leaving the sensor link. The travel speed can be measured through cor-
responding entry and exit events on the sensor link. The density must be
measured indirectly since the sensor link can only either contain or not
contain a car. Therefore, we plot the traffic density ρ as ρ = q/v, where
q is the traffic flow and v is the traffic speed.

133

Chapter 7. Fundamental Diagram

�

����������:��
��������B�	��

� �����
���

�)����������

� ,�������		������������.1:;�/��������������	����)����
�������
�����)���)
	������	�

Figure 7.4: To measure instantaneous flow characteristics of our model a
short sensor link is added to the ring test network.

For this investigation we can leave the demand (the agents plans)
the same. Only the space on the ring is slightly increased from 1024 to
1025 cars by the additional sensor link.

7.3.2 Changes in Results and Discussion

Figure 7.5 shows a very similar picture compared to the original Fig-
ure 7.3. The edges are still very prominent, again with parameter values
clearly visible. Interestingly, almost all observations show either very
high or very low density. Medium density observations are almost absent.
Furthermore, almost all data points still reside on the envelope meaning
that the model moves away from extremal values only very rarely.

7.4 Stochastic Flow characteristics

According to the findings of the last section, in the ring test scenario the
queue-based model basically reproduces the envelope of what could be
termed a stylized fundamental diagram. But one question remains: are
the “inner” states not possible or is the test setup design avoiding these
traffic states?

To demonstrate the general ability of the model to produce any com-
bination of state variables we finish the investigation by using a stochastic
demand setup.

134

7.4. Stochastic Flow characteristics

Figure 7.5: The measurement of instantaneous values reveals the same
trapezoidal relation as in the averaged case with a concentration of data
points at the left and right borders.

7.4.1 Stochastic Demand and Supply
The basic idea is to replace the test road ring by a single short (7.5m) test
road segment. The agents including their travel plans are replaced by two
random processes: 1. Cars are generated randomly at the upstream end
of the road segment such that the gap between subsequent desired entry
times is a random distribution in the range [Tmin,car,∞), where Tmin,car is
the minimum gap according to inflow capacity restrictions. 2. The gaps
moving upstream from the downstream end of the link are generated ran-
domly, such that the time between two subsequent gaps is in the range
[Tmin,gap,∞), where Tmin,gap is the minimum gap according to outflow
capacity restrictions. The final measurements are done by using subse-
quent exit events (when cars leave the measuring segment) to compute
traffic flow q and by using corresponding entry and exit events to esti-
mate speed v. As before, density ρ is inferred from these two values
using ρ = q/v.

7.4.2 Observations
In Figure 7.6 we show the results with stochastic demand. The plot

135

Chapter 7. Fundamental Diagram

Figure 7.6: Using stochastic demand (agents arriving upstream, gaps ar-
riving downstream) the “inner states” can be reached using our queue-
based traffic model.

shows the same trapezoidal envelope with the same interpretations of
free speed, capacity and gap travel speed as in the previous two cases. In
contrast to the deterministic demand cases, here, the inner states are re-
alized regularly. It seems that the random process producing the demand
is sufficient to produce basically any state inside the envelope.

7.5 Conclusions on Flow Characteristics
Based on the three tests we have carried out in this chapter we draw the
following conclusions:

• The interrelation of traffic flow and density on the simulated road
segments shows a trapezoidal envelope. This envelope is defined
by four independent parameters of the queue-based model: free
speed, capacity, gap travel speed, and maximum density.

• The network resolution of a test ring scenario has no effect on the
resulting averaged density and flow patterns. We conclude that
it is sufficent to simulate freeway traffic by using relatively long
road segments. Therefore, the limiting factor in terms of spatial

136

7.5. Conclusions on Flow Characteristics

resolution should be merely the desired resolution of the activity
locations.

• If the demand is deterministic the instantaneous state of the road
segments almost never reaches points inside the envelope (at least
in the ring test scenario).

• If there is sufficient fluctuation in the demand and in the backward
traveling gaps (which are also induced by the demand) essentially
any traffic condition can be reached (i.e. also inner states are pos-
sible).

137

Chapter 8

Green Time Fractions

The queue-based microsimulation approach described in this thesis is a
link-based aproach. That is, the model’s dynamics originates from the
links and not from the nodes. Also, an agent or car situated on a link can
never know where on that link it is exactly. The spatial resolution of link-
based approaches is one link and therefore network resolution dependent.
Agents start and end their trips on the links, and the whole time during a
trip each agent finds himself on one or another link. Where links are con-
nected to other links, nodes form. In our microsimulation, these nodes
are represented only implicitly, without any behavior directly related to
them. Rather, they are modeled distributedly by all the links connected
at a certain point. The capacity constraints of each node are maintained
by observing the relevant flow capacities of incoming and outgoing links
and by sharing the available capacity according to demand.

The simulation of 24 hours scenarios on urban networks with many
signaled intersections often involves a special problem: The observable
link flow capacities on crossing roads do not always keep a fixed ratio as
the signal control parameters may be time of day dependent. This type
of intersections cannot be handled correctly throughout the day, not even
theoretically. To alleviate this problem, we introduce green time fractions
that modulate the links outflow capacity. These green time fractions can
be varying over time, enabling the simulation of different traffic control
schemes over the day.

Chapter 8. Green Time Fractions

8.1 Model

The general idea is to introduce on each link an explicit representation
of the outgoing capacity reduction based on the fraction of time the as-
sociated traffic light is switched to green. We simply assume the average
capacity realized on such a link is proportional to the relative green time.
For example on a link with its traffic light switched to green during 30%
of the time on average, we expect to observe an average realized capacity
of 30% of the free flow capacity. Admittedly, there probably is no lin-
ear relation between green time fractions and realized capacity. Still we
choose this model to make the simulation easy to understand. After all,
we can switch to an interpretation of the data where we replace relative
green time by relative useable green time, rendering our linear model
correct.

In our model, the green time fractions per link are not constant but
are merely modulated, each individually, by a piecewise linear function
of time. Other models would have been possible (including piecewise
constant modulation functions), but we think it is a beneficial property
to have a continuously changing capacity on the links to avoid undesired
shocks in the system. After all, if desired, very quick changes in capacity
can still be realized.

The question might arise why we model averaged green time frac-
tions instead of individual green phases. There are multiple reasons to do
so:

• The necessary data is difficult to obtain which is especially prob-
lematic since in our work we are addressing very large scenarios.
For these scenarios, green phase data of hundreds or even thou-
sands of traffic lights would need to be obtained.

• This data cannot be easily made up since not only the green phase
durations have to be found but also the delays between neighboring
intersections. Small errors in these numbers may produce totally
different realized flows on crossing links. Therefore, reproducing
a certain flow rate using direct modeling of green phases is very
difficult.

140

8.2. Data Format

• For similar reasons, it is very difficult to test new policies using
individual green phases compared to the relative ease of adapting
the average green time fractions on a road during some time of day.

Note that if, for some reason, there is the need to simulate individual
green phases on certain intersections, our model is flexible enough to
mimic such a behavior by changing the green times fraction periodically.
For example, a link’s green time fraction can be set to alternate from
100% green for 73 seconds to 0% green (i.e. red) for 128 second by
defining a corresponding modulation function in the input data.

8.2 Data Format
The following exchange format was defined to specify the green time
fraction modulation function for each link involving a signaled down-
stream end. The program expects a separate file (a green time frac-
tions file) the name of which must be specified in the configuration
file of the traffic flow microsimulation. The XML-based format con-
sists of a surrounding master tag greentimefractions containing
a linkgtfs-tag for each road segment involving signaling. The peri-
odicity of the modulation function is also specified within this tag. For
each link a variable length list of “data points” is specified using the gtf-
tag. Each data point consists of a time stamp and an associated effective
green time fraction. The sofware automatically wraps around at the peri-
odic boundaries. In Figure 8.1 you can see example green time fractions
for link 123. A plot of the same data can be seen in Figure 8.2.

8.3 Technical Description
Internally, for each of the road segements holding green time fractions
data an instance of a special modulator object is created. Apart from
holding the data, this object is also responsible for computing the car
waiting times on the associated road segment.

The data is stored in a sorted data structure allowing quick access to
any data point needed during computations. Similar to the data format,
each data point consists of a time stamp and a green time fraction.

141

Chapter 8. Green Time Fractions

<greentimefractions desc="Green times file">
<linkgtfs id="123" time_period="24:00:00">

<gtf time="05:30:00" val="0.4"/>
<gtf time="07:00:00" val="0.6"/>
<gtf time="09:00:00" val="0.6"/>
<gtf time="10:00:00" val="0.4"/>
<gtf time="16:00:00" val="0.4"/>
<gtf time="17:00:00" val="0.3"/>
<gtf time="19:30:00" val="0.3"/>
<gtf time="21:00:00" val="0.4"/>

</linkgtfs>
</greentimefractions>

Figure 8.1: An example green time fractions file

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

gr
ee

n
tim

e
fr

ac
tio

n

time [h]

Figure 8.2: Plot of example green time fractions for link 123

When a car wants to leave a signaled road segment, it requests the
next available time slot. This value depends on the time when the last car
left the link and on the variable capacity of the road segment. Techni-
cally, the car has to wait until the integral of the time dependent capacity
reaches 1[car]. This integral of the piecewise linear capacity function
q(t) is the piecewise quadratic volume function V (t). If tl is the time
when the last car left the road segment, the requested next leaving time

142

8.4. Possible Use of the Method

tn can be computed by solving the eqation

V (tn)− V (tl) = 1 (8.1)

for tn. This involves inverting the volume function which is not trivial,
since it is a piecewise quadratic function, and it is not clear which piece
will contain the tn to be computed. Our implementation solves this prob-
lem by starting at tl and integrating each piece of q(t) sequentially until
the integral exceeds the required 1[car]. At this point, it is clear that the
last covered piece contains the tn in question and this can be easily found
by solving a quadratic equation.

8.4 Possible Use of the Method
If inclusion of new links into existing road networks is considered, for
instance the creation of a city by-pass, accompanying measures are often
investigated. Changing the timing and prioritization of traffic lights is of-
ten one of these measures tested and the presented extension to our traffic
flow model provides a way of rendering such ideas in the simulation.

143

Chapter 9

Results

This chapter gives an overview of the results of the presented work from
a more global point of view; at the same time, it tries to point out the
relevance of the different methods for agent based traffic models used
within the microsimulation groups at ETH Zurich and TU Berlin, as well
as for agent based models in general. For detailed results on the specific
topics, please refer to the corresponding chapter’s result section.

9.1 Activity Planning

Activity based models consist of many parts (see Section 1.3) which we
refer to as modules. Several of these modules have been developed or
worked on during this thesis.

One of the most important parts of our agent based model is the activ-
ity planning process, and a major part of this thesis is devoted to it. First,
in Chapter 2, activity planning of agents, including activity selection, lo-
cation choice, and time allocation, is defined as an optimization problem
of a utility assigned to such daily activity plans. For this, a simplistic
yet powerful integrated utility function is designed, and set as a base of
the activity planning process. To solve the complex, nonlinear, mixed
discrete and continuous optimization problem, a custom-made genetic
algorithm is designed, and it is shown to perform well on an artificial test
problem incorporating several different locations for multiple different
activity types.

Chapter 9. Results

For agent based models focusing on the time allocation problem
alone, the discrete parts of the activity planning problem can be neglected
(i.e. activity pattern generation, location selection and mode choice). The
simpler nature of the remaining optimization problem is exploited in
Chapter 4 by using an implementation of the covariance matrix adapta-
tion algorithm which is known to be efficient on continuous optimization
problems. At the same time, the router, originally a separate module in
our agent based model, is integrated into the activity planning module.
The final model is sucessfully tested on the described simplified opti-
mization problem showing the clear performance gain achievable using
our approach.

Especially to predict short term reactions of the system to sudden
changes (e.g. construction sites, sporting events, disaster etc.), within-
day replanning capabilities are of interest. In Chapter 3, precomputation
as a way of solving this problem is investigated. Activity planning with
alternative execution paths is described as a reinforcement learning prob-
lem by using a discretized version of the marginal utility function. This
problem is subsequently solved using the Q-Learning approach known
from machine learning. In principle, the algorithm shows to solve the
problem satisfactorily, but finding the resulting execution plan, includ-
ing all alternative execution paths, represents a substantial overhead; this
raises the question if such an approach would be efficient enough to be
used for more than one million agents.

Overall efficiency is also one of the main aims in Chapter 4. To be
efficient, reducing the number of iterations needed for the learning loop
to converge to an equilibrium is of prime importance, as in every iteration
the traffic flow microsimulation has to be run, which is very expensive.
We show that changing the number of replanning agents from iteration to
iteration similar to the method of successive averages can reduce dramat-
ically the number of iterations needed for the agent learning to converge:
10 iterations of optimal learning can easily beat 100 iterations of replan-
ning with constant replanning share.

146

9.2. Traffic Flow Microsimulation

9.2 Traffic Flow Microsimulation
Another way of improving the system’s performance is by reducing the
execution time for each iteration. As has been pointed out already, the
traffic flow microsimulation has been traditionally responsible for most
of an iteration’s computational costs. In Chapters 5 and 6, exactly this
fact is addressed.

First, a novel event-driven approach to the queue-based microsimula-
tion problem is employed to save computation time during off-peak and
highly congested times of day; this results in an at least ten times faster
microsimulation without sacrificing any accuracy of the model. On the
contrary, the models accuracy is improved by a notion of backwards trav-
eling gaps producing better results in congested areas.

Second, this microsimulation model is parallelized using exactly the
same dynamics as the sequential program. This parallel implementation
showed to be very efficient: In our experiments on a 64 processor com-
puter, the simulation ran 53 times faster than on a single CPU core. Be-
cause of the substantially better performance of the resulting microsim-
ulation and consequently the reduced needs in terms of computing time,
the traffic flow microsimulations fraction of overall computing time has
turned from dominating to secondary.

To analyze the behavior of the introduced traffic flow microsimula-
tion, the flow properties are investigated using several synthetic test sce-
narios in Chapter 7. It is shown that the microsimulation at hand has
reasonable properties and reproduces a stylized fundamental diagram.

An extension of the microsimulation model is investigated in Chap-
ter 8: The outflow capacities of the links are modulated by a time de-
pendent green time fraction function which can be specified for each link
individually. This gives the traffic planner more flexibility and naturally
can produce better results when simulating cities.

147

Chapter 10

Further Work
To give some food for thought, this chapter contains a few ideas of new
work packets or continuation of work presented in this thesis. This can-
not nor wants to be a comprehensive list of what can or should be done.
Rather, it is driven by conceptual and operational needs that arose during
the writing of this thesis and work done by others collaborating on agent
based traffic models in the Transport Planning group at ETH Zurich and
in the Transport Systems Planning and Transport Telematics group at TU
Berlin.

10.1 Solving the Location Choice Set Problem

In the daily planning process, location selection represents an important
part, as it has influence on the number of trips executed by an agent and
the distance traveled. The remaining problem is the enormous number of
location alternatives available for each activity. For example, on the re-
gional scale, there might be hundreds or even thousands of shops one of
which has to be picked for each shopping activity. In terms of optimiza-
tion, this represents a major challenge due to the enormous search-space
size. There have been attempts to reduce this problem by preselecting
a subset of these activities before the planning process starts thereby
reducing the search-space size. Still, the number of locations remains
substantial making location selection slow—maybe too slow for larger
scenarios. A real solution to this problem would be an algorithm scal-
ing sub-linearly with the number of alternative locations available. One

Chapter 10. Further Work

possible approach to such an algorithm could be to exploit that far-off lo-
cations are of interest only if they provide a high quality, a quality which
can be converted to utility by agents using this location. By making the
visibility of activity locations depend on such a quality measure, many
small facilities could be ignored in the location selection process which
in turn would lead to better performance.

10.2 Finding an Efficient Within Day Replan-
ning Approach

Apart from Chapter 3, this work deals only with daily activities planned
ahead, not with reactions to unpredicted events during the day. This
simplification is only a valid approximation if within day replanning ef-
fects are small compared to pre-planned behavior. Otherwise, we need
new algorithms to explicitly cover changes to pre-planned behavior. Q-
Learning, as presented in this work, certainly is a path to investigate,
but this approach solves the problem by “foreseeing the unforeseen”, by
thinking of all possible disturbances and computing the best reactions
to all of them in advance. Quite clearly, this represents a big overhead
in the case of normal daily plan execution. An algorithm avoiding this
overhead would have to work “on the fly” by only issuing a within-day
replanning if a certain trigger event, for example, a one hour delay com-
pared to the pre-planned day, is detected during its execution. Such a
replanning would need to be fast, as the traffic flow microsimulation is
running by this time and would have to wait for the replanning to finish.

10.3 Adaptive Global Replanning Policy
For the overall performance of the presented agent based traffic model,
the importance of the replanning share per iteration has been discussed
and shown in Chapter 4. The results imply that big shares of agents
should be replanning during early stages of the convergence process.
During subsequent iterations, this number should be gradually reduced
to finally arrive at replanning shares of about one percent to reach the
best possible equilibrium at the end. The suggested replanning policy

150

10.4. Java Implementation of Traffic Flow Microsimulation

can be interpreted as optimal for the scenario given in Chapter 4, but it
is not clear if this policy can be used equally with other scenarios. In
other scenarios, the presented policy could turn out to be far from op-
timal which would badly impair the overall system’s performance. To
avoid this, rather an adaptive replanning strategy should be selected than
a statically variable one. For this, a detector needs to be found to check if
the current replanning share should be increased or reduced, respectively.
Such a detector might even work on the agent level to give a per agent in-
dication of the urgency to think a plan over. Such indicators might be the
acquired utility of an executed plan as compared to its predicted utility.

10.4 Java Implementation of Traffic Flow Mi-
crosimulation

The algorithms presented in this work were all implemented in the C++
programming language. C++ is a powerful and modern programming
language known for its good performance. Developing parallel programs
in C++ is also easily possible. On the other hand, the MATSim project,
which uses some of the work presented here, is being developed using
Java mainly due to its better platform independence. The traffic flow mi-
crosimulation is being used as an extension module in that project due
to its computational speed. Unfortunately, the data transfer from Java to
C++ and back produces some overhead, and the desire has arisen for a
native Java implementation of the same model including the paralleliza-
tion as presented in Chapter 6. While, in theory, this task should not
pose any unsolvable problem, it should not be underestimated. Simply
translating the source code into Java would abandon the key advantage
of an integrated traffic flow microsimulation in MATSim: the seamless
integration into the rest of the project by using the same data model and
therefore providing easy access to additional information if required.

151

Acknowledgments
Throughout my work I was surrounded by great people that supported
me in my work, and in many cases also became good friends to me. Let
me express my thankfulness to all of you.

I am much obliged to the two advisers of my thesis: Kai Nagel, thank
you for introducing me into scientific work and for inspiring my interest
in transport planning. Kay Axhausen, thank you for giving me the op-
portunity to continue my work at the IVT and for your enthusiasm for
microscopic transport models.

I am also grateful to ETH Zurich for providing the facilities and the
community that have formed a major part of my life in the past years.

Bibliography
Abraham, J. E. and J. D. Hunt (2002) Spatial market representations:

Concepts and application to integrated planning models, paper pre-
sented at the 49th Annual North American Meetings of the Regional
Science Association International, San Juan, November 2002.

AIMSUN (2006) AIMSUN, webpage, November 2006, http://www.
aimsun.com.

Arentze, T. A., F. Hofman, H. Mourik and H. J. P. Timmermans (2000)
Albatross: A multi-agent rule-based model of activity pattern deci-
sions, Transportation Research Record, 1706, 136–144.

Arentze, T. A. and H. J. P. Timmermans (2005) Representing mental
maps and cognitive learning in micro-simulation models of activity-
travel choice dynamics, Transportation, 32 (4) 321–340.

Arnott, R., A. de Palma and R. Lindsey (1993) A structural model of
peak-period congestion: A traffic bottleneck with elastic demand, The
American Economic Review, 83 (1) 161–179.

Axhausen, K. W. (1988) Eine ereignisorientierte Simulation von Ak-
tivitätenketten zur Parkstandswahl, Ph.D. Thesis, University of Karl-
sruhe, Karlsruhe.

Balmer, M. (2007) Travel demand modeling for multi-agent traffic sim-
ulations: Algorithms and systems, Ph.D. Thesis, ETH Zurich, Zurich,
May 2007.

Balmer, M., K. W. Axhausen and K. Nagel (2006a) An agent-based
demand-modeling framework for large scale micro-simulations, paper

Bibliography

presented at the 85th Annual Meeting of the Transportation Research
Board, Washington, D.C., January 2006.

Balmer, M., K. W. Axhausen and K. Nagel (2006b) An agent-
based demand-modeling framework for large scale micro-simulations,
Transportation Research Record, 1985, 125–134.

Barceló, J., J. L. Ferrer, D. Garcia, M. Florian and E. Le Saux (1998)
Microscopic traffic simulation, in P. Marcotte and S. Nguyen (eds.)
Equilibrium and Advanced Transportation Modelling, 1–26, Kluwer,
Dordrecht.

Barrett, C. L., R. Jacob and M. Marathe (2000) Formal-language-
constrained path problems, 30 (3) 809–837.

Beckman, R. J., K. A. Baggerly and M. D. McKay (1996) Creating syn-
thetic baseline populations, Transportation Research Part A: Policy
and Practice, 30 (6) 415–429.

Ben-Akiva, M. E., M. Bierlaire, H. Koutsopoulos and R. Mishalani
(1998) DynaMIT: A simulation-based system for traffic prediction, pa-
per presented at DACCORS Short Term Forecasting Workshop.

Ben-Akiva, M. E. and S. R. Lerman (1985) Discrete Choice Analysis:
Theory and Application to Travel Demand, MIT Press, Cambridge.

Bernoulli, D. (1738) Specimen theoriae novae de mensura sortis, Com-
mentarii Academiae Scientiarum Imperialis Petropolitanae, 5, 175–
192.

Bhat, C. R., J. Y. Guo, S. Srinivasan and A. Sivakumar (2004) A compre-
hensive econometric microsimulator for daily activity-travel patterns,
Transportation Research Record, 1894, 57–66.

Bowman, J. L. (1998) The day activity schedule approach to travel de-
mand analysis, Ph.D. Thesis, Massachusetts Institute of Technology,
Cambridge.

Bowman, J. L., M. A. Bradley, Y. Shiftan, T. K. Lawton and M. E. Ben-
Akiva (1999) Demonstration of an activity based model system for

156

Bibliography

portland, in H. Meersman, E. van de Voorde and W. Winkelmans (eds.)
World Transport Research, 171–184, Pergamon.

Brilon, W., F. Huber, M. Schreckenberg and H. Wallentowitz (eds.)
(1998) Traffic and Mobility: Simulation—Economics—Environment,
Springer, Berlin.

Brilon, W. and N. Wu (1998) Evaluation of cellular automata for traffic
flow simulation on freeway and urban streets, in W. Brilon, F. Huber,
M. Schreckenberg and H. Wallentowitz (eds.) Traffic and Mobility:
Simulation—Economics—Environment, 163–180, Springer, Berlin.

Cascetta, E. (1989) A stochastic process approach to the analysis of tem-
poral dynamics in transportation networks, Transportation Research
Part B: Methodological, 23 (1) 1–17.

Cayford, R., W.-H. Lin and C. F. Daganzo (1997) The NET-
CELL simulation package: Technical description, Research Re-
port, UCB-ITS-PRR-97-23, California Partners for Advanced Tran-
sit and Highways (PATH), University of California, Berkeley,
May 1997, http://repositories.cdlib.org/its/path/
reports/UCB-ITS-PRR-97-23.

Cetin, N. (2005) Large-scale parallel graph-based simulations, Ph.D.
Thesis, ETH Zurich, Zurich.

Cetin, N., A. Burri and K. Nagel (2003) A large-scale multi-agent traf-
fic microsimulation based on queue model, paper presented at the 3th
Swiss Transport Research Conference, Ascona, March 2003.

Chang, G.-L., T. Junchaya and A. J. Santiago (1994) A real-time network
traffic simulation model for ATMS applications: Part I—simulation
methodologies, Journal of Intelligent Transportation Systems, 1 (3)
227–241.

Charypar, D., K. W. Axhausen and K. Nagel (2006) Imple-
menting activity-based models: Accelerating the replanning pro-
cess of agents using an evolution strategy, paper presented at
the 11th International Conference on Travel Behaviour Research

157

Bibliography

(IATBR), Kyoto, August 2006, http://www.ivt.ethz.ch/
vpl/publications/reports/ab387.pdf.

Charypar, D., K. W. Axhausen and K. Nagel (2007a) An event-driven
parallel queue-based microsimulation for large scale traffic scenarios,
paper presented at the 11th World Conference on Transportation Re-
search, Berkeley, June 2007, http://www.ivt.ethz.ch/vpl/
publications/reports/ab425.pdf.

Charypar, D., K. W. Axhausen and K. Nagel (2007b) An event-driven
queue-based traffic flow microsimulation, paper presented at the 86th
Annual Meeting of the Transportation Research Board, Washington,
D.C., January 2007.

Charypar, D., K. W. Axhausen and K. Nagel (2007c) An event-driven
queue-based traffic flow microsimulation, Transportation Research
Record, 2003, 35–40.

Charypar, D. and K. Nagel (2003) Generating complete all-day activity
plans with genetic algorithms, paper presented at the 10th Interna-
tional Conference on Travel Behaviour Research (IATBR), Lucerne,
August 2003.

Charypar, D. and K. Nagel (2005) Generating complete all-day activity
plans with genetic algorithms, Transportation, 32 (4) 369–397.

Charypar, D. and K. Nagel (2006) Q-learning for flexible learning of
daily activity plans, Transportation Research Record, 1935, 163–169.

Chowdhury, D., L. Santen and A. Schadschneider (2000) Statistical
physics of vehicular traffic and some related systems, Physics Reports,
329 (4–6) 199–329.

de Palma, A. and F. Marchal (2002) Real cases applications of the fully
dynamic METROPOLIS tool-box: An advocacy for large-scale meso-
scopic transportation systems, Networks and Spatial Economics, 2 (4)
347–369.

158

Bibliography

Doherty, S. T. and K. W. Axhausen (1998) The development of a unified
modeling framework for the household activity-travel scheduling pro-
cess, paper presented at the 4th NECTAR Conference, Tel Aviv, April
1998.

DynaMIT (2006) Intelligent transportation system program, webpage,
http://mit.edu/its/dynamit.html.

DYNASMART (2003) DYNASMART, webpage, http://www.
dynasmart.com.

DYNASMART (2006) DYNASMART, webpage, http://www.
dynasmart.com.

Frick, M. and K. W. Axhausen (2004) Generating synthetic popula-
tions using ipf and monte carlo techniques: Some new results, paper
presented at the 4th Swiss Transport Research Conference, Ascona,
March 2004.

Graf, P. (2003) Simuliertes Lernen menschlicher Tagespläne mittels
Methoden der künstlichen Intelligenz, Master Thesis, ICoS, ETH
Zurich, Zurich, http://e-collection.ethbib.ethz.ch/
show?type=dipl&nr=132.

Hansen, N. and S. Kern (2004) Evaluating the CMA evolution strategy
on multimodal test functions, paper presented at the Eighth Interna-
tional Conference on Parallel Problem Solving from Nature, Birm-
ingham, September 2004, http://events.cs.bham.ac.uk/
ppsn04/.

Jara-Diaz, S. R. and R. Guerra (2003) Modelling activity duration and
travel choice from a common microeconomic framework, paper pre-
sented at the 10th International Conference on Travel Behaviour Re-
search (IATBR), Lucerne, August 2003.

Karlström, A. (2004) A dynamic programming approach for the activ-
ity generation and scheduling problem, Working Paper, Transport and
Location Analysis, , Stockholm.

159

Bibliography

Kaufman, D. E., K. E. Wunderlich and R. L. Smith (1991) An iterative
routing/assignment method for anticipatory real-time route guidance,
Working Paper, 91–02, Department of Industrial and Operations Engi-
neering, University of Michigan, Ann Arbor.

Kistler, D. (2004) Mental maps for mobility simulations of agents, Mas-
ter Thesis, ICoS, ETH Zurich, Zurich.

Kitamura, R. (1996) Applications of models of activity behavior for ac-
tivity based demand forecasting, paper presented at the Activity-Based
Travel Forecasting Conference, June 1996, http://tmip.fhwa.
dot.gov/clearinghouse/docs/abtf.

Mahut, M. (2000) A discrete flow model for dynamic network loading,
Ph.D. Thesis, Département d’Informatique et de Recherche Opéra-
tionnelle, Université de Montréal, Montreal.

Marchal, F. (2001) Contribution to dynamic transportation models, Ph.D.
Thesis, University of Cergy-Pontoise, Cergy-Pontoise.

Marchal, F. and K. Nagel (2005) Modeling location choice of secondary
activities with a social network of cooperative agents, paper presented
at the 84th Annual Meeting of the Transportation Research Board,
Washington, D.C., January 2005.

MATSim-T (2004) Multi Agent Transportation Simulation Toolkit, web-
page, http://www.matsim.org.

MATSim-T (2006) Multi Agent Transportation Simulation Toolkit, web-
page, http://www.matsim.org.

Meister, K., M. Balmer and K. W. Axhausen (2005a) An improved re-
planning module for agent-based micro simulations of travel behavior,
Working Paper, 303, IVT, ETH Zurich, Zurich, http://www.ivt.
ethz.ch/vpl/publications/reports/ab303.pdf.

Meister, K., M. Balmer, K. W. Axhausen and K. Nagel (2006)
planomat: A comprehensive scheduler for a large-scale multi-agent
transportation simulation, paper presented at the 11th International
Conference on Travel Behaviour Research (IATBR), Kyoto, August

160

Bibliography

2006, http://www.ivt.ethz.ch/vpl/publications/
reports/ab388.pdf.

Meister, K., M. Frick and K. W. Axhausen (2005b) A GA-based house-
hold scheduler, paper presented at the 84th Annual Meeting of the
Transportation Research Board, Washington, D.C., January 2005.

Miller, E. J. and M. Roorda (2003) A prototype model of 24-hour house-
hold activity scheduling for the Toronto area, Transportation Research
Record, 1831, 114–121.

MITSIM (2006) MITSIMLab, webpage, http://www.web.mit.
edu/its/mitsimlab.html.

Nagel, K. and C. L. Barrett (1997) Using microsimulation feedback for
trip adaptation for realistic traffic in dallas, International Journal of
Modern Physics C (IJMPC), 8 (3) 505–526.

Nagel, K. and M. Rickert (2001) Parallel implementation of the TRAN-
SIMS micro-simulation, Parallel Computing, 58 (2) 1611–1639.

Nagel, K., D. E. Wolf, P. Wagner and P. M. Simon (1998) Two-lane traffic
rules for cellular automata: A systematic approach, Physical Review
E, 58 (2) 1611–1639.

Nökel, K. and M. Schmidt (2002) Parallel DYNEMO: Meso-scopic traf-
fic flow simulation on large networks, Networks and Spatial Eco-
nomics, 2 (4) 387–403.

Ortúzar, J. d. D. and L. G. Willumsen (2001) Modelling Transport, 3.
edn., John Wiley & Sons, Chichester.

Pendyala, R. M. (2004) Phased Implementation of a Multimodal
Activity-Based Travel Demand Modeling System in Florida. Vol.
II: FAMOS Users guide, Final Report, Florida Department of
Transportation, http://www.public.asu.edu/~rpendyal/
FAMOSUsersGuide.pdf.

Raney, B. (2005) Learning framework for large-scale multi-agent simu-
lations, Ph.D. Thesis, ETH Zurich, Zurich.

161

Bibliography

Recker, W. W. (1995) The household activity pattern problem: General
formulation and solution, Transportation Research Part B: Method-
ological, 29 (1) 61–77.

Rickert, M. and K. Nagel (2001) Dynamic traffic assignment on paral-
lel computers in TRANSIMS, Future Generation Computer Systems,
17 (5) 637–648.

Russell, S. J. and P. Norvig (1995) Artificial Intelligence: a Modern Ap-
proach, Prentice-Hall, uppersaddleriver.

Schwerdtfeger, T. (1984) DYNEMO: A model for the simulation of traf-
fic flow in motorway networks, in J. Volmuller and R. Hamerslag (eds.)
Proceedings of the Ninth International Symposium on Transportation
and Traffic Theory, 65–87, VNU Science Press, Utrecht.

Sheffi, Y. (1985) Urban Transportation Networks: Equilibrium Analysis
with Mathematical Programming Methods, Prentice-Hall, Englewood
Cliffs.

TRANSIMS (2006) TRansportation ANalysis and SIMulation System,
webpage, December 2006, http://transims.tsasa.lanl.
gov.

VISSIM (2006) VISSIM, webpage, November 2006, http://www.
ptv.de/cgi-bin/traffic/graf_vissim.pl.

Wardrop, J. G. (1952) Some Theoretical Aspects of Road Traffic Re-
search, Institute of Civil Engineers.

Watkins, C. J. C. H. and P. Dayan (1992) Q-learning, Machine Learning,
8 (3–4) 279–292.

Yang, Q. (1997) A simulation laboratory for evaluation of dynamic traffic
management systems, Ph.D. Thesis, Massachusetts Institute of Tech-
nology, Cambridge.

162

