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Abstract

One of the major threats to wireless communications is jamming. Many
anti-jamming techniques have been presented in the past. However most of
them are based on the precondition that the communicating devices have a
pre-shared secret that can be used to synchronize the anti-jamming scheme.
E.g. for frequency hopping the secret could be used to derive the hopping
sequence and for direct sequence spread spectrum the secret is used to derive
the spreading codes.

But how can the devices bootstrap a jamming-resistant communication
without having a pre-shared secret? Christina Pöpper and Mario Strasser
propose as scheme for Uncoordinated Frequency Hopping (UFH) and Un-
coordinated Direct Sequence Spread Spectrum (UDSSS) in their papers [1]
and [2] respectively.

The goal of my project was an implementation of Uncoordinated Direct
Sequence Spread Spectrum (UDSSS) using Software Defined Radios. The
first version should serve as an easy to use and extendable proof of concept
for the proposed scheme.
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Chapter 1

Introduction

The following document is the final project report of my master thesis about
the implementation of a system for uncoordinated direct sequence spread
spectrum (U-DSSS).

1.1 Jamming-resistant communication

Currently one of the major threats to wireless communication is the fact that
it can easily be intercepted or jammed. Especially jamming is a topic that
has to be dealt with care because there is basically no protection against it.
The attacker could potentially sit anywhere and is usually assumed to have
huge but not infinite power and processing resources.

Current known anti-jamming techniques require the communicating de-
vices to have a pre-shared secret that can be used as a secret spreading key.
For frequency hopping based anti-jamming schemes this key is used to de-
rive the hopping sequence. For DSSS based anti-jamming schemes the key
is used to derive the codesequences.

1.2 Overview

My work is based on the papers [1] and [2] published by my supervisors
Christina Pöpper and Mario Strasser. In order to be able to fully appreciate
and see behind the scenes of the implementation the reader might need to
read these papers first.

The papers aim at finding an answer to the following question: “how
can two devices that do not share any secrets establish a shared secret
key over a wireless radio channel in the presence of a communication jam-
mer?”. In the assumptions of this question no pre-shared secret exists so
current anti-jamming techniques fail to accomplish this task. The proposed
U-DSSS scheme however solves this issue in the following way: The jamming-
resistance property of the channel is achieved as usual by choosing secret

1



CHAPTER 1. INTRODUCTION 2

DSSS codesequences. However since the two devices don’t share any secrets
that could be used to agree on a sequence, the sequences are chosen ran-
domly from a given range. Although this channel is very error-prone and no
fast or completely reliable communication is possible, the properties suffice
to perform a key establishment protocol that will result in a key which then
can be used to agree on a secret DSSS codesequence.

1.3 The system

1.3.1 Implementation

The system described in this document is a proof of concept for the pro-
posed scheme. The declared aim was clearly an easy to use implementation
that serves as a proof of concept, can easily be extended and is able to pro-
duce well-traceable results for further research. Performance and robustness
issues were also taken into account but had a lower priority.

The main project delivery consisted of the system itself as a VMware im-
age, including the full sourcecode, a detailed class documentation generated
with Doxygen, short preliminary project reports and presentations, this final
report, the measured results, many C++ and Python examples and many
test files which were extensively used during the development phase.

Throughout this report I’ll try to explain or at least provide links to
everything the reader needs to know in order to be able to completely follow
the implementation of the system. My aim is that, following this report
and the provided links, the reader should actually be able to implement the
system on his own or implement similar systems without having to waste
too much time on gathering the necessary background information.

1.3.2 Environment

For the implementation I used software-defined radios (SDR), where the
GNU Radio framework [3] probably is the current state-of-the-art. SDRs
allow the developer to implement the whole signal processing blocks com-
pletely in software, giving him the freedom to code exactly the properties
that are needed for the system. As RF front ends I used 2 USRPs [8]
equipped with the RFX2400 daughterboards, having the following charac-
teristics [9]:

• Frequency range between 2.3 GHz - 2.9 GHz

• Four 64 MS/s 12-bit analog to digital Converters

• Four 128 MS/s 14-bit digital to analog Converters

• Four digital downconverters with programmable decimation rates

http://www.doxygen.org/
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• Two digital upconverters with programmable interpolation rates

• High-speed USB 2.0 interface (480 Mb/s)

DSP blocks

Although GNU Radio provides a big set of standard DSP (digital signal
processing) blocks the overlap with what I needed was so small that I decided
to implement the whole system from scratch without reusing the existing
code. That way I was able to get rid of overhead like error correction or the
GNU Radio way of packaging data into message blocks, which would have
had an impact on the system performance and thus dilute the measured
performance times. Also that way when running into problems I was quickly
able to tweak exactly these parts of the system that needed to be changed.

Deployment details

All the coding and the tests were done inside a VMware Player [11] (Version
2.0.1 build-55017) running an Ubuntu 7.10 Gutsy Gibbon [12] guest OS and
a manually installed GNU Radio 3.1.1 release. This way the deployment can
be done very easily by burning the VMware image on a DVD which will run
on any host OS that is supported by the VMware Player. The development
installation ran on an IBM ThinkPad Lenovo T61.

1.4 Chapter overview

This report is split into 4 Parts: Background, The System implementation,
Experiments and Conclusions and finally the Appendix. Throughout the
whole report I’ve set great value on providing the reader with useful links
and resources that I’ve found during the work on my project.

In the background part I’ll try to cover and summarize all the important
knowledge that I’ve learned during my work. There will be a chapter about
DSP and one about SDRs and GNU Radio [3] in general. However since
there are already very good resources available about DSP and GNU Radio
and a detailed description would be outside the scope of this report, I’ll just
summarize the most important facts needed for this report and guide the
reader to online resources for further information. Thus in the bibliography
at the end of this report there will be a great collection of links about all
the covered topics.

The part about the system implementation will cover the actual work I’ve
done during the last few months. It’ll contain an overview of the system on
the whole and then go into the details of the individual blocks. I’ll also
explain the signal path of a datablock from DSSS spreading over binary
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phase shift keying to passing the USRP and show the different stages with
figures that either display the FFT spectrum of the signal or the oscilloscope.

Experiments and Conclusions will describe the testing environment, the
test cases and the results. Graphs will show the performance of the overall
system and the effects of changing single parameters. Finally I’ll conclude
and mention possible enhancements and future projects.



Part I

Background
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Chapter 2

GNU Radio Overview

2.1 Introduction

GNU Radio provides an open source framework for developing SDRs. Due
to it’s flexibility and motivated community it represents the current state-
of-the-art for SDRs. Also the GNU Radio Development Team developed a
big set of filters and applications that can easily be extended and adapted
to the current needs.

To support the further development and to add a flexible open source RF
front end to GNU Radio, Matt Ettus, a member of the GNU Radio Team,
founded the Ettus Research LLC [8] and started to build the Universal Soft-
ware Radio Peripheral (USRP). This device is built using a flexible, open
source design that allows 4 different daugherboards to be connected to it,
each daughterboard working on its own frequency range. Currently daugh-
terboards are available for the ranges between DC up to 2.9 GHz. Probably
the most used daughterboard is the RFX2400 which is a transceiver between
2.3 GHz to 2.9 GHz.

Figure 2.1 shows the USRP Motherboard.

2.2 A common SDR application

The information summarized in this chapter was found at [3], [4], [5], [6]
and [7] which together represent a great resource for starting with SDR and
GNU Radio.

2.2.1 RF front end

A common SDR system consists of the RF frond end that is connected to
an ADC (analog to digital converter) which produces more or less highspeed
data samples. These samples are completely processed in software, the ap-
plication code and the DSP filters. For a GNU Radio application the RF

6



CHAPTER 2. GNU RADIO OVERVIEW 7

Figure 2.1: Picture of a USRP Rev. 3 Motherboard, taken from [8]. It
illustrates the slots for the 4 daughterboards (RX/TX A and B), the USB
2.0 connector and the power plug
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front end and the DAC/ADC is implemented in the USRP. It can be seen as
a blackbox that has just 1 input which is the RX/TX center frequency. All
data, that is sent to the USRP is modulated to (multiplied by) the carrier
frequency which results in a translation of the baseband signal to the carrier
frequency in the analog domain. However for USRPs this translation is not
done directly but it’s split into 2 distinct parts: the analog and the digital
part.

The digital part of this translation is done by the DDC/DUC (digital
down/up converter). This part basically does exactly the same as the analog,
but this time it’s done in the digital domain, which allows fine tuning, fast
frequency changes within the bounded spectrum (bounded by the speed of
the ADC/DAC) and especially it allows to decimate the signal, i.e. decimate
the data stream to a datarate that can be sent over the USB cable. Figure
2.2 shows a schematic diagram of a DDC which consists of a local sine /
cosine generator to translate the signal followed by a low pass filter and a
downsampler to decimate the signal.

Figure 2.2: Digital Down Converter Block Diagram, taken from [4]. It
consists of a local sine/cosine generator followed by a decimating and low
pass filter.

So if the USRP antenna catches a signal at carrier frequency (RF) it
gets translated down to the intermediate frequency (IF) in the analog world.
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That’s where the ADC digitizes the signal and forwards the samples to the
DDC. The DDC decimates the signal, applies a lowpass filter and translates
it down to baseband before sending it over USB to the software world.

2.2.2 The software world

Now the GNU Radio framework takes care of the software world, i.e. it
provides interfaces to the USRP, cares about data buffering and linking the
custom DSP filters together.

The GNU Radio framework is designed as a two layer architecture. This
is the design layer and the signal processing layer. In the upper layer Python
[13] [14] is used to build and run a graph which represents the DSP blocks
and the dataflow between them. A DSP block is implemented in C++. It
must extend the gr block baseclass and follow certain naming conventions.
Input and output buffers link the different DSP blocks to each other. Other
than that, a DSP block is pretty free to do to the signal whatever is needed
to do. [6] provides a very good tutorial on how to write a signal processing
block, how to compile it properly and how to link it to other blocks using
Python.

Every block that is used for the application needs to be created and
linked in Python, while constructing the flowgraph. The GNU Radio frame-
work then handles the creation of input and output buffers, starting and
stopping of the threads and the forwarding of data from one block to the
other according to the definitions in the flowgraph that has been defined
in Python. Of course not all blocks can be connected to each other. The
distinction between sources (blocks that just produce data), sinks (blocks
that just consume data and don’t have any output) and other blocks is done
via naming conventions and the input/output signatures. These signatures
are created when initializing the block in its constructor and they also define
which sort of input/output buffer elements (e.g. floats or complex items)
are expected.

2.2.3 Helpful tools

During my work I found the following two tools that are provided by GNU
Radio to be very helpful in designing DSP filters and analyzing the signals.
These tools are the fft (fft sink) and the oscillograph (scope sink). Both
blocks support float and complex input buffer items and thus can be con-
nected to almost any other block to analyze its output behaviour in the
frequency or the time domain. Most of the screenshots that illustrate this
report, especially the ones that explain the pathway of a databit, show either
the frequency spectrum or the signal in the time domain.



Chapter 3

DSP - As much as we need
of it

3.1 Introduction

As soon as a signal passes the ADC it enters the digital world where we get a
stream of samples which represent the original signal. This stream can now
be freely processed the way we want before we usually forward it over the
DAC back to the analog world. Thus this processing is called DSP and is
done in distinct blocks that are called digital filters. I’ll use the terms DSP
block, DSP filter, filter, block and class interchangeably throughout the next
chapters. Figure 3.1 shows a schematic view of a usual DSP system that
gets the signal from the antenna over an ADC to the software world, where
the signal gets processed and sent back over the DAC to the antenna.

Figure 3.1: Schematic view of a DSP system [15] that starts with the analog
signal passing the ADC followed by a chain of DSP filters and finally passing
the DAC.

During my work I found the following links and tutorials to be very help-
ful. [15], [16] and [17] are great online resources and introductory tutorials
for learning DSP. At [18] there is a complete and very detailed book that
not only explains a lot of the fundamentals needed to write DSP applica-

10
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tions but also demostrates the knowledge with many examples and goes into
deep details on signal analysis. Also an excellent book on DSP systems and
Digital communication is [19] by John G. Proakis.

3.2 Digital filters

The function of a filter in general is, as the name suggests, to filter a sig-
nal. This filtering can be anything from smoothing the signal, removing
unwanted frequencies or noise or evaluating a certain function over the sig-
nal on the whole. Thus a filter is usually defined over its input/output
behaviour. A digital filter processes the signal in the digital domain, work-
ing on the discretized sample stream. Figure 3.2 shows a schematic view of
a filter.

Figure 3.2: A schematic view of a DSP filter that filters the raw incoming
sample stream.

With the evolution of todays CPU processing speeds almost every func-
tion can be implemented as a digital filter without the need of using its
analog counterpart.

3.2.1 DSP Filters in GNU Radio

As mentioned in the chapter about GNU Radio, the framework provides
an easy, buffer-based interface to write own DSP filters and to link them
together by defining the flowgraph in Python. GNU Radio connects the
filters by adding input and output buffers to them. These buffers can contain
any standard basetype available in C++ like complex, floats or integers. In
order to connect one filter to another the items of the first filters output
buffer are then forwarded to the input buffer of the second filter.

The developer is free to choose one of the many standard filters or may
write his own one. When following some naming conventions and guidelines,
defined in [5], writing an own filter consist mostly of only implementing the
main processing function called work. This function gets the input and
output buffers as parameters and is free to perform any functions on this
data.
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3.2.2 Standard filters

The GNU Radio framework provides a very easy way to define a set of
standard filters. Among these filters there are also the well-known standard
ones like low pass, high pass, band pass or band reject. What makes these
filters so valuable is the fact that their behaviour can be easily changed
in software while the system is initialized. Also their inherent properties
like cut-off frequency, gain, transition width, . . . can freely be defined at
startup.

3.3 Translating a signal

DSP filters usually work with the raw signal at baseband. However a sig-
nal when it’s transmitted over the antenna is usually not transmitted at
baseband because that way different applications would collide with each
other and the usable spectrum would be very limited. To solve these issues
the data signal is used to modulate a much higher frequency signal: the
carrier signal. This action will translate the data signal from baseband to
a frequency band around the carrier frequency. As already mentioned in
the GNU Radio chapter, for our application this translation is done in the
USRP and the DDC/DUC. Figure 2.2 showed the schema of a DDC that
multiplies the data signal with a locally generated sine / cosine wave in order
to translate it from the intermediate frequency (IF) to baseband.

3.3.1 How does multiplication with a sine wave translate a
signal?

Multiplication of 2 signals with frequencies f1 and f2 will result in a signal
that contains the frequencies f1 + f2 and f1 − f2. Applying a low pass
filter will get rid of the signal at f1 + f2 leaving just the f1− f2 signal as
a result. That’s exactly what happens when the DDC translates a signal
from IF to baseband.

If one of the 2 original signals is just a single sine wave, i.e. a single-
frequency signal (f1), then the above equations imply that all frequencies
of the other signal get translated by f1. Figure 3.3 displays this. It shows
the result of a multiplication of 2 sine waves (red and blue) with the same
frequency. This multiplication results in a new sine wave (green) with fre-
quency 2 ∗ f1, because the other part of the resulting signal f1 − f2 is
zero.

Figures 3.4 and 3.5 show the FFT of a data signal that consists of the fol-
lowing sequence 00110101. The figures show the data signal before and after
multiplication with a sine wave at 100 kHz, i.e. before and after translation.
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Figure 3.3: Multiplication of two sine waves with the same frequency f1 (red
and blue) results in a signal (green) containing the two frequencies 2 · f1
and 0.

Figure 3.4: FFT of the repeated data signal 00110101 before translation,
i.e. in baseband
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Figure 3.5: FFT of the repeated data signal 00110101 after translation by
(multiplication with) a carrier at 100 kHz i.e. after carrier modulation.
The multiplication results in a shift of the baseband signal in the frequency
spectrum by 100 kHz.

Frequency- and phase offset

What happens now, when the DDC can’t tune exactly to the desired fre-
quency or when the senders carrier doesn’t send at the exact frequency? I.e.
what if there is an offset between the sender and the receiver frequency?
And why is this important?

Following the equations from above the resulting signal will not be in
baseband but the processing DSP filter will see a signal that is shifted by
f1− f2. So instead of working on a nice and clear baseband signal it works
on a signal centered around f1− f2. This has to be taken into account the
one or the other way when working with the sampled data. Examples of
this will follow in the chapter System implementation when talking about
the PSK modulation filter.

The same issues hold for the phase as well. However there it shows
up differently. It will be offset by the difference of the senders phase and
the receivers phase which is important as well for some modulation schemes
such as phase shift keying modulation (PSK). When there is a phase offset in
PSK the resulting data signal after demodulation will seem to have a lower
amplitude compared to the maximal amplitude that is possible. Thus it will
be harder to recognize it. Please refer to [19] for a detailed explanation of
this effect.



Part II

The System implementation
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Chapter 4

System Overview

4.1 The bird’s eye view

As already seen in section 2.2 a SDR receiver application consists of a RF
front end connected to an ADC which forwards the sampled data to the
software world. For GNU Radio applications these parts are represented by
the USRP and the DDC for the RF front end and the ADC and the GNU
Radio framework for the software part. Figure 4.1 shows the receiver part
of the implemented system.

Figure 4.1: A usual SDR receiver system based on GNU Radio consists of
the USRP connected over USB to a laptop that is running the GNU Radio
framework.

The data samples that are coming from the USRP over USB are for-
warded directly to the USRP block. This block is a DSP filter provided by
the GNU Radio framework to handle basic access to the USRP device. It
allows the developer to send and receive data, set properties and get infor-
mation about the connected device such as the possible frequency range or
the number and types of connected daughterboards.

16
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In my system I used 2 USRPs for the sender and the receiver. Each of
them is connected to a separate VMware machine running on the laptop. As
daughterboards I used the RFX2400 devices which transmit in the frequency
range of 2.3 GHz - 2.9GHz.

4.2 The signal pathway

Once the block diagram is clear, connecting the blocks in Python is very
straightforward. That’s why I’m not going to explain the Python world any
further but instead show figures of the corresponding flowgraphs.

4.2.1 Sending data

The sending application starts with the Sender block. This block generates
random test data and packs it into packages that are recognizable by the
receiver. These packages contain the message id, the payload data and the
crc which is used by the receiver to verify the correct transmission of the
data. I’ll show the exact package format in figure 5.2.

Such a packet is forwarded to the DSSS block. There each databit
gets spread using the corresponding code from the randomly chosen code-
sequence. For each packet a random codesequence is chosen and the whole
message is spread with this sequence. The codesequences are chosen from a
list in a codefile as shown in figure 4.2. A definition of the codefile format
will follow in the next chapter.

Now the spread signal is forwarded to the PSK block for modulation
and finally it’s sent over the USRP block to the air. The sender flowgraph
is shown in figure 4.2.

Figure 4.2: The flowgraph of the sender application. It shows the sender
blocks Sender Appl, UDSSS, PSK and USRP and the codesequences file.

4.2.2 Receiving data

The receiving application is the counterpart to the sender. After passing
the USRP block the data enters my code where the whole processing starts.
I chose differential binary phase shift keying (DBPSK) modulation for the
system due to its simplicity and straightforward implementation. BPSK
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modulates the signal by changing the carriers phase. Binary implies that
there are only 2 distinct phases, 1 and −1.

So the first block after the USRP block is called DePSK. It demodu-
lates the incoming BPSK signal and performs chip synchronization. Since
for the test layout and results it didn’t matter if the signal was weaker or
stronger than the noiselevel I could make it so strong that it could easily
be distinguished from the noise. That way the chip synchronization could
be based on analyzing the incoming signal directly without having to de-
spread the signal first. This of course has a big impact on the overall system
performance as we will see when talking about the test results.

After demodulating the signal it needs to get despread. This is done
in the DeDSSS block which of course needs to find the correct DSSS code
sequence first before it despreads the signal. The crucial part here is the
number of possible codesequences that need to be searched in order to find
the right code. This value also directly impacts the overall performance of
the system. However since the chip synchronization is already done at this
point, the time to find the right codesequence is linear in the number of
sequences.

Finally the Receiver block receives the data, performs a checksum veri-
fication to check if the data is valid and was correctly transmitted. It also
handles the time measurement for the test cases if the data verification was
successful.

The flowgraph that needs to be defined in Python is shown in figure 4.3.
It represents the DSP blocks as rectangles and the linkage between them
with arrows.

Figure 4.3: The flowgraph of the receiver application. It shows the 4 re-
ceiver blocks USRP, DePSK, DeUDSSS and Receiver Appl and the file that
contains the DSSS codesequences.



Chapter 5

System implementation

The last chapters provided a good overview of what the final system looks
like. In the introductory chapters GNU Radio and DSP we saw how the
GNU Radio framework can help to implement a SDR application. Also we
saw an overview on how DSP filters can be implemented and how they can
be linked together to a complete application. System design decisions were
explained in the last chapter which together formed the foundation for the
detailed system design explained in this chapter.

This chapter follows the signal pathway from the sender application to
the receiver and will explain every block on this path in detail. Where it
helps the understanding I’ll add snippets of the sourcecode or of the detailed
class documentation that was generated with Doxygen [20]. Every block
documentation is arranged the following way: It starts with a block overview
that explains the processing result from a signal and design perspective and
the input/output behaviour. Then a detailed class description will follow
that includes the most important functions and their interface, if it supports
the understanding. Finally I’ll conclude the description by displaying how
the signal changes either in the frequency or in the time domain which is
probably the most interesting part from a DSP point of view.

5.1 The sender application

As has been seen in the system overview both the sender and the receiver
applications run inside separate VMware machines. However all blocks are
installed on both machines. Actually the development is done on one ma-
chine which is then copied and renamed to a different directory on the host
machine before starting a second VMware Player and running the tests.

The sender application consist of the Sender Appl, UDSSS and the PSK
blocks and the Python file that creates them and links them together. Figure
4.2 shows the corresponding flowgraph. These blocks together generate the
test data and send it over the USRP to the receiver application. Time mea-
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surement which is needed for the tests is done by using timestamps. Since
both VMware machines run on the same host environment the time mea-
surement could easily be done by comparing timestamps directly without
having to synchronize the two applications first.

5.2 The receiver application

A schematic overview of the receiver application has been shown in figure
4.3. It consist of the blocks DePSK, DeUDSSS and Receiver Appl which
together decode the test data, perform checksum verification and store the
measured times for the statistics. This processing can either be done online
or offline. When the processing is done offline then the Python file replaces
the USRP block by a Filesource and connects it to the DePSK.

5.3 Blocks in Detail

5.3.1 Codesequence input file

When looking at the sender and receiver flowgraphs one can see another
block called codes. This block is not a DSP filter but a file that is used by
the two DSSS classes. This file defines the different codesequences that can
be used by the DSSS classes. Both classes read the file at startup and cache
all the defined sequences in a local variable for later use.

Now what is a codesequence?

As usual for DSSS each input bit is spread by a code. For U-DSSS the choice
of the current code is random. But instead of using a random code from
a list the U-DSSS chooses a random codesequence where the codesequence
defines exactly which bit of the input message is spread by which code.
This means for example that for a message with a length of 1024 bits the
codesequence must contain 1024 codes.

File format

A codesequence file defines the number of codesequences(k), the bitlength
of a message(n), the chiplength of a code(N) and finally the codesequences
themselves. The single chips are written by ‘+’/‘1’ or ‘-’/‘0’. A chip is
represented as < cknN > in the file format specification that is shown in
figure 5.1.

5.3.2 Class skeleton

Of course a block that wants to be supported by the GNU Radio framework
needs to implement certain functions and fulfil certain criteria. Please refer
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Figure 5.1: Codesequence file format

<nr. of codesequences(k)> <message bitlen(n)> <code bitlen(N)>
<c111><c112>...<c11N>
<c121><c122>...<c12N>
...
<c1n1><c1n2>...<c1nN>
<c211><c212>...<c21N>
<c221><c222>...<c22N>
...
<c2n1><c2n2>...<c2nN>
...
... ...
<ck11><ck12>...<ck1N>
<ck21><ck22>...<ck2N>
...
<ckn1><ckn2>...<cknN>

to [6] for a complete listing of these criteria.
To ease the development the framework provides a number of base classes

that can easily be extended to implement the desired DSP functionality. The
most commonly used base classes are gr block and gr sync block where the
main difference between them is that gr sync block assumes that there are
always as many output items as there are input items.

When extending from gr sync block all that at least needs to be im-
plemented is the function work which directly handles the data processing.
When extending from gr block there are the functions general work and
forecast which need to be implemented where general work has basically
the same scope as work and forecast is needed to forecast the number of
input items needed when the number of output items is given.

What follows is a listing of a headerfile template that I used during my
development phase. The listing should demonstrate the reader how small
a minimal DSP class could be while still obeying the guidelines for a block
usable by the framework. Comments that start with ! contain tags, e.g.
brief used by Doxygen to produce a javadoc-like documentation in html.

Listing 5.1: A headerfile template for a class extending from gr sync block.
It demonstrates the minimum requirements for a DSP block in GNU Radio

#i f n d e f TIBITS CLASS
#d e f i n e TIBITS CLASS

#inc lude <g r s y n c b l o c k . h>
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c l a s s t i b i t s c l a s s ;

typede f boost : : shared ptr<t i b i t s c l a s s >
t i b i t s c l a s s s p t r ;

t i b i t s c l a s s s p t r t i b i t s m a k e c l a s s ( ) ;

/∗ !
∗ \ b r i e f b r i e f d e s c r i p t i o n o f the c l a s s
∗
∗ d e t a i l e d d e s c r i p t i o n o f the c l a s s , i n c l u d i n g
∗ i t s purpose and the p r o c e s s i n g in the DSP
∗ world .
∗/

c l a s s t i b i t s c l a s s : pub l i c g r s y n c b l o c k {
p r i v a t e :

//−−−−− c l a s s cons tant s −−−−−−−−−−−−
//−−−−− i n s t anc e v a r i a b l e s −−−−−−−−−
/∗ ! \ b r i e f enable debug f o r t h i s c l a s s ∗/
bool d debug ;
//−−−−− p r i v a t e f u n c t i o n s −−−−−−−−−−
/∗ !
∗ \ b r i e f used by the SWIG framework .
∗ Will c r e a t e a s i n g l e i n s t anc e o f t h i s c l a s s
∗/

f r i e n d t i b i t s c l a s s s p t r t i b i t s m a k e c l a s s ( ) ;
/∗ !
∗ \ b r i e f c on s t ruc to r . i n i t i a l i z e c l a s s v a r i a b l e s
∗ and c a l l b a s e c l a s s con s t ruc to r to prov ide the
∗ input / output b u f f e r s i g n a t u r e s .
∗/

t i b i t s c l a s s ( ) ;

pub l i c :
//−−−−− i n i t i a l i z a t i o n −−−−−−−−−−−−−
/∗ !
∗ \ b r i e f empty d e s t r u c t o r
∗/

˜ t i b i t s c l a s s ( ) ;
/∗ !
∗ \ b r i e f dynamical ly enable or d i s a b l e debug f o r
∗ t h i s c l a s s .
∗ \param enable t rue to enable
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∗/
void enable debug ( i n t enable ) { d debug = enable ;}

//−−−−− o v e r r i d e s g r s y n c b l o c k −−−−
/∗ !
∗ \ b r i e f main p r o c e s s i n g func t i on
∗
∗ Cal led by the framework to perform the
∗ p r o c e s s i n g .
∗ \param noutput i tems number o f output items
∗ \param input i t ems ptr to the input b u f f e r
∗ \param output i tems ptr to the input b u f f e r
∗ \ r e tu rn s the number o f produced output e lements
∗/

i n t work ( i n t noutput items ,
g r v e c t o r c o n s t v o i d s t a r &input i tems ,
g r v e c t o r v o i d s t a r &output i tems ) ;

} ;
#e n d i f

5.3.3 Sender blocks

The overview of the sender blocks was shown in figure 4.2. Here is the class
description of the three classes.

Sender Appl

Let’s start with the following data (4 bits) that needs to be transmitted:
0110. The Sender Appl class will wrap this payload to a message that can be
recognized by the receiver. It’ll add the static package header 0x98765432,
a unique message id, a package id and the generated checksum as figure 5.2
shows. However since for our usage the class doesn’t have any input but just
produces output it’s called a source in GNU Radio semantics and stands at
the top of the flowgraph.

0x98765432 messageid packageid payloaddata crc

Figure 5.2: The package format that is used by Sender Appl and Receiver
Appl to send and receive data. Each package has a static package header, a
unique message and package id, the payload data and a checksum.

The work function does exactly this. Since for the test cases there is no
data that needs to be transmitted, it generates random data, creates a valid
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message in the above format and sends it to the output buffer using the
native C memcpy function.

To start the pathway of the signal tour, figure 5.3 shows it in the time
domain. High-values represent a logical 0 and low-values a logical 1.

Figure 5.3: The data 0110 in the time domain displayed in red. Binary ones
are represented as low-values, zeros are represented as high-values.

UDSSS

This class expects a stream of data bytes on its input that needs to be spread.
If a new message starts then it will choose a new random codesequence from
the file and start spreading the message with this sequence. Since we are
working in the digital world spreading means just sending a complete code
to the output buffer. So this class reads from the input buffer bit by bit
and sends the current code from the current sequence to the output buffer
either inverted, if the current input bit is a 1 or plain if the bit is a 0. The
inversion comes from a logical XOR of the code with the 1 at the input.

This functionality is implemented in the general work function of the
class tibits dsss bb. It loops through the complete input and spreads it bit
by bit by calling the functions send zero or send one respectively as shown
in the following code snippet. These functions both take a pointer to the
output buffer and the bit position within this buffer as their parameters.

Listing 5.2: The mainloop in general work of the class tibits dsss bb. It
loops bit by bit through the input and sends the DSSS code for a 0 or a 1
respectively to the output.
// number o f input items o f the f i r s t input stream
i n t c t r = ninput i t ems [ 0 ] ;
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f o r ( i =0; i<c t r ; i++){
// range check . we need at l e a s t 1 f u l l byte
i f ( ( b i t c t r >> 3) > ( noutput items −2) ) break ;
// e x t r a c t s i n g l e b i t s from current databyte
byte andmask = 0x80 ;
// spread 1 byte
f o r ( i n t j =0; j <8; j++){

i f ( ( input [ i ] & andmask ) == 0)
b i t c t r += send ze ro ( output , b i t c t r ) ;

e l s e
b i t c t r += send one ( output , b i t c t r ) ;

andmask >>= 1 ;
// next code from current sequence
d curch ipseq++;

}
// i f cur rent message i s f u l l y spread
i f ( d curch ipseq >= d msgbi t l en ) {

// message f i n i s h e d −> choose new sequence
d curch ipseq = 0 ;
d curcodeseq = rand ( ) % d ncodes ;

}
}

However a GNU Radio application is purely stream-based and there
is no direct communication between the different classes. There is just
data buffers that connect them. So e.g. there is no possibility to ‘tell’
the next block that a new message has started. Strictly speaking the func-
tion general work gets a chunk of data in the input buffer, whatever this
data is. That’s why there is no concrete notion of a message in this class.

Since GNU Radio handles the buffering, the original message could be
split into multiple parts and subsequent calls to general work would each
get one of these parts. Or it’s also possible that there could be multiple
messages within the same buffer which is passed to the function in one
single call.

Thus the decision on when to start a new codesequence is based on the
number of bits that were already spread. So it starts spreading with a new
codesequence after every n-th bit.

Following the pathway to the next block, the data bits 0110 are now
spread with a random codesequence. Assuming the chosen codesequence
with k = 1, n = 4, N = 4 was 0100 0101 1001 1100 then the signal would
look as figure 5.4 shows. The red signal is the original data, the blue one is
the spreading code and green is the resulting signal.
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Figure 5.4: The data 0110 displayed in red after spreading with the sequence
0100 0101 1001 1100 (blue) results in the transmitted chip sequences (green).

PSK

PSK takes the spread signal as input and performs a binary phase shift
keying modulation over it where binary means that there a the two phases
0 and π. From the signal point of view shifting the phase by π is the same
as inverting the signal, i.e. multiplying by −1.

Thus in the analog world this filter would have to generate a sine wave,
obeying the correct frequency, and invert the output whenever the input
bit changes. However we are in the digital world and if you remember the
section about signal translation in the DSP chapter, the input to the USRP
is multiplied by the carrier frequency. So all this class has to do is to change
the input bits from 0 and 1 to 1 and −1 which, when multiplied by the
carrier, will set the carriers phase to 0 or π respectively.

The class tibits psk bc expects the samplerate and datarate as its param-
eters. These parameters are used by general work to produce samplerate

datarate
output items (either 1 or −1) for each input bit. This way the carrier signal
changes its phase obeying the correct datarate.

Figure 5.5 shows parts of the modulated carrier signal in the time domain.
For the sake of this example I chose a very high data rate such that the carrier
phase changes quickly which is very well visible in the figure. The red and
blue lines represent the real and the imaginary parts of the signal.
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Figure 5.5: The oscillograph of a modulated carrier signal with high data
rate and visible phase shifts. The red and blue lines are the real and imagi-
nary components of the signal.

5.3.4 Receiver blocks

DePSK

When a signal passes the USRP and is sent over the air there are many
effects that distort it. Usually there is not only the free space attenuation
that will lower the received signal power but there is also noise that adds up.
Obstacles weaken the signal through absorption and reflection and multi-
path effects also interfere with each other. These effects arise from the
different paths that a signal can take besides the direct line-of-sight path
before it gets caught at the receivers antenna. This leads to multiple copies
of the same signal that overlap each other and thus weaken the received
signal power. Another issue that the DePSK needs to care about is the
frequency offset, that was explained in the DSP chapter. Two USRPs can
never be perfectly synchronized, so there will always be a frequency offset
between them. This leads to the fact that the resulting signal after being
translated to baseband by the USRP will not look the same as it was before
modulation (as shown in figure 5.4).

There is a number of error correction mechanisms and timing and carrier
recovery techniques that can be applied in order to cope with the signal dis-
tortion. Among them are the Mueller and Muller algorithm or the Gardner
algorithm for timing recovery and (Digital) phased locked loops (DPLL) or
Costas loop for carrier recovery.
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However luckily for our testing purposes we can get rid of multi-path
effects and some of the noise so we don’t need to apply any of these so-
phisticated error correction and signal recovery techniques. However the
frequency offset will remain. Figures 5.6 and 5.7 show the oscillograph and
FFT of how a received signal could look like when coming from the USRP
as input to this class.

Figure 5.6: The oscillograph of a distorted signal coming from the USRP
with noise, frequency offset and other attenuation. The red and blue lines
are the real and imaginary components of the signal.

Figure 5.7: FFT of a distorted signal coming from the USRP with noise,
frequency offset and other attenuation.
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In order to cope with the frequency offset and some low noise the function
tibits depsk cb.general work gets rid of it by computing the angle of each
pair of subsequent samples from the input buffer. If this angle is larger than
a predefined threshold this means that there was a phase jump and thus the
original data must have had a bit change from 0 to 1 or vice versa. More
precisely the function starts with the bit 0 and scans the input for phase
jumps in chunks of size samplerate

datarate bytes. If one was found the current bit
changes to 1 and is appended to the output buffer. If there was no phase
jump in the current chunk then the bit 0 is appended. This way also chip
synchronization is performed implicitly and doesn’t have to be done in the
DeUDSSS class.

After this class has processed the input the signal on the output should
be the same again as the green line in figure 5.4.

DeUDSSS

Similarly to the discussion of UDSSS the despreading can be simplified here
as well. This class expects a stream of codes at its input and generates the
original data at the output. Since this is a streaming application there will
be large chunks of noise coming from DePSK that don’t contain any valid
data in them. So this class will scan the input for the beginning of a message
by trying out all possible codesequences that were read from the codefile.
If the start of a codesequence could be found then this class will despread
the complete message with this codesequence. If not then the data is simply
dropped.

Despreading is done by comparing the current chunk (N bits) of the
input with the current code of the codesequence. When they are equal then
a 0 bit is appended at the output. If the chunk equals to the inverse of the
current code then a 1 is appended. Otherwise the despreading fails and the
input data is dropped.

The function tibits dedsss bb.general work starts by calling the function
find startpos which searches for the start of a codesequence from a given
bitposition on. When found the function read is called iteratively to de-
spread 1 byte of data until a message has completely been despread or an
error occurs, e.g. the comparison failed due to a bit error in the input. The
same as has been told about messages in UDSSS holds here as well. There
is no concrete notion of a message in this class. It just searches for the start
of a codesequence and starts despreading the rest of the input data bit by
bit until n data bits have been despread. I.e. the first N bits of the input
are compared to the first code of the codesequence, then the next N bits
are compared with the 2nd code, . . . . Then after having created n data bits
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(i.e. after successfully having processed n ·N input bits) the function starts
again by searching for the start of the next codesequence.

Comparing a chunk of N input bits with a code is done in the function
is code at which is the most central function of this class. It expects the
pointer to the input buffer, the bitposition within the buffer to start the
comparison and a pointer to the code itself in its parameters. Then it starts
comparing the input with the code (or its inverse) while taking care of the
fact that the code can start at any position within the input and doesn’t
necessarily need to start at a full byte. That’s why the 2nd parameter is the
bitposition within the input and not the byte position.

Listing 5.3 shows this function to demonstrate how the bit-wise compar-
ison is done and how the data bits are ‘created’.

Listing 5.3: Function is code at from the class tibits dedsss bb. It compares
the given chunk of input bits with the given code.

i n t t i b i t s d e d s s s b b : : i s c o d e a t ( const byte ∗ input ,
i n t curb i tpos ,
const byte ∗ code )

{
// index to input [ cur rent byte ]
i n t curbyte = curb i tpo s >> 3 ;
// s t a r t b i t p o s i t i o n with in the cur rent byte
i n t b i tpo s = curb i tpo s & 0x0007 ;
// i n v e r s e o f b i t p o s i t i o n
i n t nb i t s = 8 − b i tpo s ;
// b i t masks f o r s h i f t e d byte comparison
byte andmask inv = (1 << b i tpo s ) − 1 ; // eg 00000111
byte andmask = ˜andmask inv ; // eg 11111000

i n t inv = 0 ; // return value
f o r ( i n t n=0; n<d code l en ; n++){

byte tmp ; // s h i f t e d input byte f o r comparison
i f ( b i tpo s == 0)

tmp = input [ curbyte+n ] ;
e l s e

tmp = ( ( input [ curbyte+n ] << b i tpo s ) & andmask ) |
( ( input [ curbyte+n+1] >> nb i t s ) & andmask inv ) ;

// i f comparison f a i l e d −> no code found
i f ( ( code [ n ] != tmp) && ( code [ n ] != (tmpˆ0xFF) ) )

re turn 0 ;
i f ( code [ n ] == (tmpˆ0xFF) ) inv = −1;
e l s e inv = 1 ;

}
re turn inv ;
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}

After passing this block the original data should be restored completely
again and can be passed to the receiver.

Receiver Appl

Finally after demodulation and despreading the Receiver Appl can buffer
the messages, verify the checksums and perform time measurement.

More precisely it expects data in form of messages as defined in figure
5.2. So it scans the input for the unique package header to find the start
of a new package. When found it extracts the message id and package id
fields, buffers the payload data and crc performs a checksum verification
and if successful stores the received message locally and stores the measured
times.

Every time when the main function tibits appl receiver.general work is
called it sits in one of three states: Either there is no current message, so
it’ll search for the start of a new message in the input buffer which is done
in the function find pck start. Or it’s currently buffering payload data or
it’s storing and verifying the crc.

When a message was successfully received the time is stored locally and
written to standard output (or a file) to allow further statistics over the
processing performance.

5.4 Summary

In this chapter the reader saw how the data is created and how it flows
through the system. We saw how the different sender and receiver blocks
process the data, how the signal changes after each block and how we can
easily cope with such things as frequency offset and noise. All these expla-
nations were backed up by illustrative examples, figures and code listings.

Now let’s have a look at the system in action when explaining the ex-
periments, measurements and the testbed layout.
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Chapter 6

Experiments and
Measurements

6.1 Testbed layout

For the tests I used 2 VMware virtual machines running the sender and the
receiver on a laptop running Ubuntu 7.10 with GnuRadio 3.1.1 installed.
Each VM was connected to a USRP which were about 3m apart.

Different code sequence files were provided to measure the receivers de-
spreading performance. The files contained between 50 and 10000 sequences,
with chip lengths of 32 to 1024 and a fixed message lenght of 2048 bit.

The processing was done offline, i.e. the produced sender signal was
sampled using a 2nd USRP and the samples were stored to a file. This file
was then used as the input to the receiver which started the despreading.

The testbed itself was built of the following components:

• IBM ThinkPad Lenovo T61 equipped with an Intel Core 2 Duo CPU
running at 2 GHz and 2 GB Ram

• Microsoft Windows XP SP 2 as the host operating system

• 2 USRP devices connected through USB 2.0 to the laptop

• VMware Player, Version 2.0.1 build-55017

• 2 identical VMware images running a standard desktop installation of
Ubuntu 7.10 Gutsy Gibbon with GNU Radio 3.1.1 installed

Figure 6.1 shows a schematic overview of the testbed.
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Figure 6.1: The testbed used for the measurements. Sender and receiver
are 3m apart and each connected over USB to a laptop that is running 2
VMware machines simultaneously.
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6.2 Test cases

Since the system is meant as a proof of concept for the U-DSSS scheme the
main interest was to measure the time used by the receiver to despread the
signal. Based on this the following criteria were defined:

1. Minimal, maximal and average time to despread the first bit of a
message

2. Min, max and avg time to despread the whole message after the first
bit was found

Let me quickly explain what these values mean. The first bit time is
the time used by the receiver from start of the application to when the first
bit could successfully be despread. So the incoming data that is read from
the file is searched for any occurrence of a valid first code of one of the
defined codesequences. If such a code could be found in the input then this
time is measured, independently of the successful despreading of the whole
message. Thus this time stands for the processing time that is used by the
functions to search through the input buffer plus the time used by the GNU
Radio framework to call and run the blocks, e.g. to copy output buffers
from preceding blocks to input buffers of the current block.

The second value message time on the other hand stands really for two
values. Firstly the processing time used by the block DeUDSSS to despread
a whole message, i.e. to compare the codes from the codesequence bit by
bit with the input, after the first bit was found. This is purely based on
the speed of the CPU and the length of the message. Secondly as first bit
time it also depends on how fast the GNU Radio framework handles the
buffering.

All tests were repeated between 20 and 100 times in order to get mean-
ingful average times and min-max intervals. However since running on Win-
dows the time granularity was restricted to 10ms. Also a lot of the time that
is measured is not coming from the system itself but, as we will see in the
next section, from the framework that e.g. needs time to read the sampled
data from the input file, create and handle buffering between the blocks, . . .

6.3 Results

What follows are some of the charts that were generated out of the exhaus-
tive test data.

6.3.1 First bit times per Nr. of Codesequences

Figures 6.2 and 6.3 compare the first bit times and their min-max intervals
for different ks (number of codesequences) and code bitlengths of 32 or 1024
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bits respectively. On the x-axis we see the number of codesequences and on
the y-axis the milliseconds used to despread the first bit. From the charts
we see that even if we had over 1000 different codesequences this doesn’t
have a big impact on the overall system performance. Furthermore the time
used to despread the first bit is more or less constant.

However chip synchronization plays an important role as well when an-
alyzing the system performance. As described in the last chapter chip syn-
chronization is done at signal demodulation level already in the class DePSK.
So searching in the input buffer for the start of a codesequence is simply a
linear function in the number of codesequences because the synchronization
is pretty much fixed and is not a ‘free variable’. If the system was imple-
mented differently and synchronization wasn’t fixed (i.e. the DSSS signal
level would be below the noise level) then the first bit time would more likely
be a quadratic function.

The huge difference of the absolute values when comparing the two charts
against each other (about 400ms for 32-bit codes and about 12,5s when
working with 1024-bit codes) comes from the fact that there is much more
data to be read from the file when using longer codes. Since the data reading
speed is constant the amount of data to be read directly impacts the overall
time used to despread the first bit.

Figure 6.2: Comparison of first bit times against number of codesequences
when using 32-bit codes. Averaged over 100 measurements. The average
value is represented in green, the max value in red and the min value in
blue.
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Figure 6.3: Comparison of first bit times against number of codesequences
when using 1024-bit codes. Averaged over 20 measurements. The average
value is represented in green, the max value in red and the min value in
blue.

6.3.2 Message times per Nr. of Codesequences

Figure 6.4 compares the times to despread a complete message against differ-
ent number of codesequences and 32-bit codes. As expected these values are
constant, meaning that the processing time to despread a complete message
after the first bit was found doesn’t depend on the number of codesequences
used but only on the processing speed of the CPU and the GNU Radio
framework.

6.3.3 Other results

Due to the fact that reading from a file is at constant speed which impacts
directly the measured times (as explained in the last subsection) it’s not
possible to make further conclusions about how the chosen code bitlength
would impact the first bit times or the message times. The time spent for
reading the data is so much bigger that the other values aren’t measurable.

Also comparing this U-DSSS system against a pure DSSS system with
1 predefined code would just produce interesting results for very large ks.
However since the code sets are stored in a file according to the defined
format a codesequence file quickly gets very big and thus it’s currently not
feasible (mostly due to HD space restrictions) to generate codefiles with more
than about 40000 codesequences when using the minimal code bitlength of
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Figure 6.4: Comparison of message times against number of codesequences
when using 32-bit codes. Averaged over 100 measurements. The average
value is represented in green, the max value in red and the min value in
blue.

8-bit codes.
So for further tests with this system it would be interesting to implement

another codefile format and time measurements that don’t depend on the
speed of how fast the data is read.



Chapter 7

Conclusions

7.1 Review

The aim of my master thesis was to design and implement a system for Un-
coordinated Direct Sequence Spread Spectrum (U-DSSS). This document
started by explaining the necessary backgrounds like the GNU Radio frame-
work and added a short introduction to what we need to know about digital
signal processing. We saw what a common SDR application looks like, what
a RF front end is and the corresponding parts of it in the GNU Radio world.
We also learned what digital filters are and how to write and link them in
GNU Radio.

Then this report proceeded to define the system implementation starting
with a quick overview that showed the system on the whole and then going
into details, explaining each block in detail. There we saw the sender and
the receiver flowgraphs and how they communicate with each other over
USRPs. Also how spreading and modulation is done in the digital world
and what needs to be considered when a signal passes over the air and gets
distorted. Where necessary, the design decisions were explained and why
certain things were implemented this way and not the other. Finally after
every block we followed the pathway of a data signal that flows through the
system shown with illustrative figures.

In the third part we saw the system in action. The testbed was defined,
test cases were generated and finally the produced results were illustrated
with graphs.

7.2 Lessons learned

The project started with evaluating different platforms that could be used
to implement the proposed system. Choosing an open source solution, GNU
Radio, was generally a good choice because it leaves very much freedom of
what the implementation finally will look like. Also it didn’t restrict me in
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any sense such that there would have been something that wasn’t possible
to implement. Although I sometimes had to work around some limitations
like the fact that the framework is purely stream-based and thus doesn’t
provide a simple way for the different blocks to exchange control data.

However spending more time in evaluating other systems could have been
interesting. Especially when considering performance issues hardware based
systems that already provide basic DSSS functionality would be interesting
to work with.

But after all I found GNU Radio to be very easy and great fun to use so
I’ll surely do further projects with it in the future.

7.2.1 Project management

During the project a lot has changed (see the project schedule in the ap-
pendix). For a next project I’d certainly concentrate more on project
management, i.e. planning, designing, thinking about the proposed ideas,
scheduling more meetings with the ‘customers’ in order to get a clearer view
of what the final system should look like. However due to the fact that
the ‘idea’ of the final system evolved as well during the project, this wasn’t
necessarily possible this time.

7.3 Future work

The current system was implemented as a proof of concept only. Thus many
design choices were made in order to get fast and reliable results. Although
it provides everything that we defined to be absolutely necessary for the
first version there’s certainly much more that could have been done with
U-DSSS.

Here are just a few of the many examples of what further development
could look like:

• One of the major characteristics of DSSS is that the signal ‘hides’
below the noise level and thus is not visible to the attacker. For the
current implementation of DePSK to work, the signal must however be
stronger than the noise. Extending this implementation would make
the system more secure. Although it would also have a big impact
on the system performance because chip synchronization couldn’t be
done at PSK stage anymore but would have to be done at the DSSS
level.

• Currently the system can only recognize one sender and processes the
input stream only one time in order to find the strongest signal. Fur-
ther development would need to be done to recognize multiple senders
that overlap each other using different codesequences.
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• Error correction and signal recovery mechanisms could be applied
when the signal enters the system in order to make it more robust
to noise and signal distortion. These mechanisms could consist of chip
timing recovery, carrier signal synchronization, application of matched
filters, . . .

• Having a more robust system, different attacker models can be imple-
mented to get a better insight of how an attacker can harm the system
performance.

• Support fragmentation of a message, i.e. split a message into packets
of same length and spread each packet with an own codesequence.

• Improving the time measurements to get closer to the time that really
is spent by the system.

• Implement the key exchange protocol that is propsed in [1] and let it
run against the different attacker models.

However probably the most interesting enhancement to this system would
be to implement it ‘in-the-small’. Where ‘in-the-small’ means that it’s either
integrated into small devices or provides an open easy to use interface such
that other systems can seamlessly use it without having to make a lot of
changes. This solution would allow other systems to easily bootstrap their
jamming-resistant communication by exchanging keys or other information
using U-DSSS.
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Appendix A

Project Schedule

A.1 Review

Due to the nature of the project it was clear at project start that it wasn’t
possible to define a fixed project schedule. I still tried to define at least the
most important milestones and some rough key-dates in order to have an
overview of what steps will lead to the final system.

During the project evolvement a lot has changed, rendering the original
dates mostly useless. E.g. the implementation changed from UFH to U-
DSSS, also the measurements, results and some extensions to the system
became more important than a sophisticated attacker model, so that this
and other milestones got dropped.

However I think it’s important to see and analyse the differences between
the planned and the actual schedule of any project in order to learn for future
projects and to improve.

A.2 Planned schedule

The first meeting was on Wed, 19th of Sept 2007 where we decided about
my master thesis topic and fixed an official starting date, the 8th of October
2007.

Figure A.1 is a mind map that shows the different planned steps, the
defined milestones and the rough due dates. This map was created right
after our kickoff meeting on Oct 10, 2007.

Table A.1 explains the defined milestones in more detail.

A.3 Actual schedule

After the first 3 defined milestones were reached the project plan changed
and we defined new objectives that rendered the old milestones invalid. So
the actual project schedule looked as follows:
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Table A.1: Project milestones

Milestone Due date Description
1. Gather knowledge Oct 17, 2007 Read through the provided

material, GNU Radio docu-
mentation and evaluate differ-
ent destination platforms

2. Platform decision Oct 18, 2007 Meeting with supervisors to
decide which platform we will
choose

3. First demo Nov 21, 2007 Implement a first running
demo on the chosen destina-
tion platform

4. Proof of concept Dec 19, 2007 Implement the proof of con-
cept for UFH without an at-
tacker or jammer

5. First Measurements Jan 07, 2008 Install and run 2 systems, de-
fine test cases and run the
tests

6. Simple attacker Jan 15, 2008 Add a simple attacker to the
system, e.g. a randomized
jammer, and run the defined
test cases again

7. Sophisticated attacker Jan 23, 2008 Make the attacker more so-
phisticated, e.g. inserting fake
messages to the channel, and
rerun the test cases

8. Extensions Mar 19, 2008 tbd, e.g. further develop-
ment, extend the system, per-
formance measurements, . . .

9. Presentation Apr 02, 2008 Finish up the project, submit
the final results, write the fi-
nal report and prepare for the
final presentation.
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Figure A.1: Original project schedule including milestones. Generated using
MindManager.

Table A.2 explains the actual schedule along with the due and meeting
dates.



APPENDIX A. PROJECT SCHEDULE 46

Table A.2: The actual project schedule

Until Description
1. Oct 17, 2007 Read through the provided material, GNU Radio doc-

umentation and evaluate different destination plat-
forms

2. Oct 18, 2007 Meeting with supervisors to decide which platform we
will choose. Decision: GNU Radio with 2 USRPs.

3. Dec 3, 2007 Presentation of the first tests and implementations
with GNU Radio. Meeting date was shifted from Nov
29 due to timing collisions. Objectives changed: We
will implement a system for U-DSSS instead of UFH.
The exact conditions will follow.

4. Dec 12, 2007 Meeting with Prof. Dr. Capkun and supervisors dis-
cussing open questions concerning DSP, FFT, . . . Pre-
liminary definition of what the minimal requirements
for a system are that will suffice as a proof of concept
for U-DSSS.

5. Jan 16, 2008 Meeting with Prof. Dr. Capkun and supervisors
showing a first prelimiary presentation of the imple-
mented system. [DRAFT] The presentation slides can
be found in the appendix.

6. Jan 18, 2008 Delivery of a VMware image that contains the current
system running on Ubuntu.

7. Feb 13, 2008 Enhancements to the system and implementation of
sender and receiver application to support time mea-
surements, crc, . . .

8. Feb 18, 2008 First definition of test cases and measurements.
9. Mar 05, 2008 Final definition of test cases, start running the test and

produce the results for Christinas and Marios paper
about U-DSSS.

10. Mar 12, 2008 Delivery of test results and system short description.
11. Apr 8, 2008 Enhancements to the system. Deadline for the final

master thesis report.
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Preliminary presentation Jan
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U-DSSS – System overview

Saša Mešković
16-Jan-2008

16/01/2008 2

Outline

• Today after the presentation
• GnuRadio overview
• System overview
• Blocks in detail
• Open questions
• Next steps
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After the presentation

• VMWare image (password: stibit)
• Code is very well documented (doxygen). 

Have a look if you want to.
• you‘ll get new souces in a regular basis

– copy c++/.h files to src/lib
– copy .py files to src/python
– run in source-root folder:

• make clean // to clean the Doxygen-docs)
• make // build sources and SWIG linkage
• sudo make install // install to /usr/local/...

16/01/2008 4

GnuRadio overview

• Pure Streaming application
• Design digital filters in C++ and connect

them with Python (pure C++ in next 
version)

• No direct communication between C++-
classes

• Which values constrain our system?
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USRP – Overview and 
constraints

• ADC: 32MB/s
• USB: 16MB/s
• Short (16bit) vs. Complex (2 * 

16bit)
• Freq-Range RX/TX

USRP

DDC

16/01/2008 6

System overview

• How to do measurement?
• pure streaming application
• No communication between classes

Bufferformats (in/outform):
b   byte    f   float
s   short   c   complex

Namingconventions:
<package>_<blockname>_<inform><outform>

Sender

file_source_b dsss_bb bpsk_bs usrp_sink_s

codes

Receiver

debpsk_sbusrp_source_s dedsss_bb file_sink_b

codes
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Blocks in detail – DSSS codes

• Codefile format currently:
– <ncodes> <ncodebitlength>
– code1...
– code2...

• Codelenghts limited to multiple of 8 
(DeDSSS)

• should be 32-bit pre-/ in- and suffix free
– i.e. it shouldn't be possible to find 32 bit of a code 

in a sequence of different codes. Might lead to 
recognition of a wrong code and loss of data.

16/01/2008 8

Blocks in detail – DSSS

• Read codes from codefile
– constrains: length = multiple of 8 bit

• Spreads the input using the codes from 
the codefile

• operates byte-wise, not bit-wise
• for each input bit, transmit complete 

chip-sequence (0 as it is, 1 inverted)
• change current code after each byte

Sender

file_source_b dsss_bb bpsk_bs usrp_sink_s

codes
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Blocks in detail – DeDSSS

• Read codes from codefile
• Code-Synchronization (functions: findcode

and readdata)
• findcode

– at least 32 bits (configurable) must successfully be 
decoded to accept a code

• readdata
– at least 1 full byte must be read to be accepted

• other data is discarded (i.e. even if 7 bits 
could successfully be decoded)

Receiver

debpsk_sbusrp_source_s dedsss_bb file_sink_b

codes

16/01/2008 10

Blocks in detail – BPSK

• Modulates the DSSS signal to BPSK
• Uses a cached sin-wave generator as basis
• transmit 1 sin-wave for each inputbit, either 

normal or inverted
• Parameters

– sample-rate (rate that comes/goes from the usrp)
– frequency: e.g. 1Mbps (speed)
– amplitude: can be used to scale the output, when 

using short instead of float output

Sender

file_source_b dsss_bb bpsk_bs usrp_sink_s

codes
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Blocks in detail - DeBPSK

• Converts modulated signal to bit-stream
• Based on a cached sin-wave generator
• Use ‚Zero-Search‘ to synchronize local sin-

wave with signal in the inputstream
• Multiply local sin-wave with inputstream
• current version has some bit errors with 

average noise
àneeds further discussion
àHow to synchronize with lower oversampling
àcould a ‚trainingsequence‘ help? à no insecure

Receiver

debpsk_sbusrp_source_s dedsss_bb file_sink_b

codes

16/01/2008 12

A few examples ...
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Open questions & next steps

• DeBPSK issues
• How to integrate this streaming blocks into an 

‚application‘ with time measurement, crc, ... ?

àEvaluate QPSK (native GnuRadio)
àFeedback from lower blocks to DeBPSK
àIntegrate all receiver blocks into 1 class à

similar to offline processing
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