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Abstract

Developing constraint specifications for class models is a time-consuming and error-prone
task because typical specifications contain numerous constraints, which in addition often
state complex facts about the elements of the model. As the size and the complexity of con-
straint specifications grow, so does the probability of inadvertently specifying inconsistent
models that cannot be instantiated because of contradictory constraints.

In this thesis, we introduce a novel approach to developing consistent constraint spec-
ifications based on constraint patterns. The input for this approach is an unconstrained
class model and the output is a formal constraint specification. The approach comprises
four phases. First, class models are automatically analyzed to elicit potentially missing
constraints. Second, a library of composable constraint patterns allows developers to write
concise constraint specifications based on the results from the elicitation phase. Third, this
approach contains consistency assertions on the constraint pattern library that enable au-
tomatic consistency analysis of pattern-based constraint specifications. As basis for these
consistency observations, we provide formal definitions of consistency properties of con-
strained class models. Fourth, pattern-based constraint specifications are transformed into
logical expressions or code in a programming language.

The focus of the approach is on effectiveness and practicability. Therefore, we intro-
duce a tool that allows model developers to follow the theoretic approach in a guided
way and effectively apply it in modeling projects. We use this tool to conduct several
case studies in which we validate that our approach improves the state-of-the-art con-
straint development in terms of detecting missing constraints, shortening development
time, avoiding inconsistencies, and yielding more comprehensible constraints.
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Zusammenfassung

Die Entwicklung von Constraintspezifikationen für Klassenmodelle ist zeit raubend und
fehleranfällig, weil typische Spezifikationen zahlreiche Constraints enthalten, die darüber
hinaus oft komplizierte Eigenschaften von Modellelementen beschreiben. Mit steigender
Grösse und Komplexität von Constraintspezifikationen steigt auch die Wahrscheinlichkeit,
versehentlich inkonsistente Modelle zu spezifizieren, die auf Grund widersprüchlicher
Constraints nicht instantiiert werden können.

In dieser Dissertation führen wir einen neuartigen Ansatz zur Entwicklungen von
konsistenten Constraintspezifikationen ein, der auf Constraintmustern basiert. Die
Eingabe für diesen Ansatz ist ein constraintfreies Klassenmodell, und die Ausgabe ist
eine formelle Constraintspezifikation. Dieser Ansatz beinhaltet vier Phasen: 1. Klassen-
modelle werden automatisch analysiert, um potentiell fehlende Constraints zu eruieren.
2. Eine Bibliothek von zusammensetzbaren Constraintmustern erlaubt es Entwicklern, auf
der Basis dieser Eruierung knappe und präzise Constraintspezifikationen zu entwerfen.
3. Dieser Ansatz beinhaltet Konsistenzaussagen über diese Bibliothek von Constraint-
mustern, die eine automatische Konsistenzanalyse von musterbasierten Constraintspez-
ifikationen ermöglichen. Als Grundlage für diese Konsistenzbetrachtungen erstellen wir
formelle Definitionen von Konsistenzeigenschaften constraint-annotierter Klassenmodelle.
4. Musterbasierte Constraintspezifikationen werden in logische Ausdrücke oder Code in
einer Programmiersprache übersetzt.

Der Schwerpunkt dieses Ansatzes liegt auf Anwendbarkeit. Deshalb stellen wir ein
Werkzeug vor, das Modellentwickler bei der Benutzung des theoretischen Ansatzes führt,
um ihn effektiv in Modellierungsprojekten einzusetzen. Wir benutzen dieses Werkzeug
zur Durchführung mehrerer Fallstudien, in denen wir validieren, dass unser Ansatz den
heutigen Stand der Constraintspezifizierung verbessert, indem er beim Finden von fehlen-
den Constraints hilft, die Entwicklungszeit verkürzt, Inkonsistenzen vermieden werden
und leichter verständliche Constraints erstellt werden können.
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Chapter 1
Introduction

1.1 Problem Statement

Writing software is a difficult and complex task. In order to simplify this task,
various programming paradigms and languages have been developed. Whereas
early computers needed to be programmed in binary machine code, assembly lan-
guages [Saxon and Plette, 1962], also called second-generation programming languages,
were developed to provide a more abstract interface to computer programming. Although
assembly code is typically better readable than machine code, it remains unstructured
and hard to understand. Modern programming paradigms such as functional program-
ming [Bird and Wadler, 1988] or object-oriented programming [Cox, 1986], also called
third-generation programming languages, abstract from low-level concepts such as CPU
instructions and memory-address calculations by providing specialized syntax for various
programming tasks. Examples for third-generation languages are Fortran, C, and Java.
With increasing levels of abstraction, programmers can focus on the domain of a problem
and on finding a solution for it, agnostic of technical details. This is one of the motivations
behind the development of fourth-generation programming languages [Martin, 1982]
such as SQL or PostScript, which focus on specific application domains.

A recent development approach that takes these concepts to another level of abstrac-
tion is Model-Driven Engineering (MDE). In MDE, certain aspects of a system, e. g., security
requirements [Basin et al., 2006], are initially specified in terms of graphical models at a
high level of abstraction. During the development process, these models are incrementally
refined and eventually transformed into code in some programming language, which can
be complemented by additional code. This allows developers to abstract from technical
details at the beginning of the development process, which has two advantages. First, it
makes the specification more accessible for domain experts without technical background.
Second, by abstracting from technical details, the developer can focus on the data struc-
tures and algorithms necessary for the solution of a problem. In addition, with MDE, the
complexity of a system can be dealt with by using different model types, which can be
chosen accordingly for different aspects of the system.

Despite these improvements, the system under development remains complex, and
most graphical languages reach their limits in terms of expressiveness when it comes to
modeling complex system behavior or structures. To this end, graphical languages can be
complemented with textual constraint languages, which are used to annotate graphical
elements with textual expressions. This allows model developers to express details of
the system not expressible with graphical languages. There are two kinds of constraints:

1



2 1.1. PROBLEM STATEMENT

Domain-independent constraints occur in models of any domain and are required because
of limitations of diagrammatic languages. For example, restricting the number of objects
in a relation to an attribute value can typically not be expressed in terms of diagrammatic
modeling languages. Domain-specific constraints originate in their respective domain and
are usually valid in their own domains only. There are different kinds of domain-specific
constraints, for example, legal restrictions that a system needs to obey, company policies
that grant privileges to certain kinds of customers, technical restrictions on a system, e.g.,
features not yet implemented, or security restrictions.

Model developers must be experts in the application domain in order to understand
the semantics of each constraint and at the same time, they must be experts in object-
oriented modeling and know how to map the domain semantics of the constraints onto the
modeling and constraint languages used. Due to these difficulties, developing constraint
specifications is a time-consuming and error-prone task. Furthermore, writing textual
constraints can be considered an atavism from traditional code-based development, and
whereas system properties such as the structure or the object life cycle can be represented
in terms of diagrammatic languages, constraints must be specified as textual expressions.

Due to the quantity and intricacy of the system elements to be constrained, constraint
specifications can contain constraints that are inadvertently contradictory, which makes
the specification inconsistent. Such inconsistencies may only be detected when the code
generated from the model is tested, which requires costly development iterations. Be-
sides this, the role of consistency in the MDE process is vague because of three reasons.
First, there is only a restrictive definition of consistency of constraint specifications in the
literature. Second, automatic consistency analyses are incomplete because practically rel-
evant constraint languages are undecidable. Third, there is no definition for a process of
consistent model refinement.

In this thesis, we introduce a model-driven approach to developing constraint specifi-
cations for class models based on constraint patterns. Using constraint patterns, our ap-
proach accelerates the development and maintenance of constraint specifications because
it abstracts from concrete textual syntax and thus reduces typical syntactic and semantic
errors by providing predefined constraint templates. Furthermore, it enables a systematic
approach to model refinement, i. e., complementing graphical models with textual con-
straints, because recurring problems can be automatically detected and patterns can be
suggested for partial remediation.

Since constraint specifications comprise logical expressions, they can potentially con-
tain contradictory constraints. Therefore, we investigate different notions of consistency
for constraint specifications and show how constraint patterns enable model developers to
refine models in a consistent way. We provide tool support for our approach in the form
of an extension for a model-driven development tool that supports users in the process
of consistent model refinement. Finally, we perform case studies in which we apply our
approach to real-world models.

Our approach is geared to domain specialists, e. g., business analysts, who have an
understanding of graphical modeling languages, but no expertise in logics or declarative
programming languages. With our approach, we aim at providing a means for domain
specialists to develop concise and consistent constraint specifications without the need to
acquire formal specification languages.



3

1.2 Contributions

The overall contribution made in this thesis is a novel MDE process that provides a method
and tools for the development of concise and consistent constraint specifications. This
process supports model developers through four phases, which we illustrate in Figure 1.1
and further explain in the following.

constraintconstraint
elicitationelicitation

consistencyconsistency
notionsnotions

modelingmodeling
antianti--

patternspatterns

constraintconstraint
patternspatterns

constraintconstraint
specificationspecification

consistencyconsistency
analysisanalysis

codecode
generationgeneration

Figure 1.1: Approach for developing concise and consistent specifications.

Constraint Elicitation.

In the constraint elicitation phase, graphical models are examined for missing textual
constraints. Our contribution for this phase is a method that supports model developers
in finding potentially missing constraints in class models through an automatic analysis.
This contribution improves on the state of the art by

• showing how to identify limitations on the expressiveness of graphical modeling
languages and capture them as anti-patterns,

• introducing a set of anti-patterns that frequently occur in unconstrained class mod-
els, and

• explaining how these anti-patterns can be remedied by enriching class models with
textual constraints.

Constraint Specification.

After the missing constraints have been identified, the model developer must specify these
constraints in a formal language such that model instances can be automatically evalu-
ated against the constraints. Our contribution for the constraint specification phase is the
concept of composable constraint patterns, which allow model developers to specify con-
straints by concise graphical means. This contribution improves on the state of the art
by

• extending the concept of constraint patterns to composable constraint patterns,
which provide a substantially higher expressiveness than existing constraint-pattern
approaches,

• showing how the semantics of constraint patterns can be precisely defined in terms
of functions in higher-order logics, and

• providing an extensible library of constraint patterns that cover typical specification
tasks, in particular remedying the anti-patterns used for constraint elicitation.



4 1.3. OUTLINE

Consistency Analysis.

After the constraint specification has been completed, it must pass a consistency analysis,
which detects inconsistencies such as contradictions. Our contribution is a novel approach
to automatic consistency analysis of pattern-based constraint specifications. This contri-
bution improves on the state of the art by

• identifying and formalizing distinct precise definitions for consistency in the context
of constrained class models,

• introducing the concept of consistency theorems for constraint patterns, which are
the basis for an automatic, heuristic analysis, and

• developing a heuristic approach for automatically analyzing the consistency of
pattern-based constraint specifications in polynomial time. This approach is based
on the consistency theorems for the given library of constraint patterns.

Code Generation and Tool Support.

In the fourth and last phase of our method, code generation, pattern-based constraint
specifications are transformed into statements in a textual specification language. Our
contribution is an automatic model transformation and an extension to the development
tool IBM Rational Software Architect (RSA) that allow model developers to effectively use
the development approach introduced in this thesis. This contribution improves on the
state of the art by

• introducing a constraint elicitation component that analyzes class models for oc-
currences of the previously defined anti-patterns and presents the results in a user-
friendly way,

• presenting an implementation of our constraint-pattern library that allows model
developers to use constraint patterns as graphical model elements,

• developing an “instant fix” mechanism based on constraint patterns that allows
model developers to remedy occurrences of anti-patterns by a single action,

• presenting an implementation of the heuristic consistency analysis that displays in-
consistencies in a user-friendly way, and

• implementing a transformation that generates textual constraints from pattern-
based constraint specifications.

1.3 Outline

In the following, we describe the organization of this thesis and briefly summarize each
chapter.

Chapter 2: Background and Related Work.

In this chapter, we provide background information on Model-Driven Engineering (MDE),
and in particular, on standard modeling languages such as the Unified Modeling Language
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(UML) and the Meta Object Facility (MOF). We give an introduction to the Object Con-
straint Language (OCL), the standard constraint language for UML and MOF. Furthermore,
we introduce patterns in software development, gives an overview of consistency in clas-
sical logics, and briefly introduce interactive theorem proving.

Chapter 3: Constraint Elicitation and Specification.

In this chapter, we motivate the need for model refinement. Since graphical modeling
languages do not offer sufficient expressiveness for certain details, graphical models must
be annotated with textual constraints. We illustrate typical problems of graphical class-
modeling languages and derive anti-patterns from them. Subsequently, we show how class
models can be augmented with textual constraints to remedy these anti-patterns.

Chapter 4: Specifying Constraints Using Patterns.

In this chapter, we present the concept of an extensible library of composable constraint
patterns. Besides elementary constraint patterns as known in the literature, such a library
contains composite constraint patterns. These can be used to combine pattern instances
and thus create complex constraints. We show how the semantics of constraint patterns
can be defined in higher-order logic and present an example library of constraint patterns
that we consider useful in practice.

Chapter 5: Consistency of Constraint Specifications.

In this chapter, we investigate the notion of consistency of constraint specifications. As
it turns out, the classical notion of consistency has limited relevance for object-oriented
constraint specifications and therefore, we develop fine-grained notions of consistency for
object-oriented constraint specifications. Furthermore, we show how the consistency of
a given constraint specification can be analyzed by interactive theorem proving and how
the degree of proof automation can be increased by using previously proven lemmas about
the constraint patterns.

Chapter 6: Consistent Model Refinement Using Patterns.

In this chapter, we examine how the consistency of constraint specifications can be es-
tablished in the development process. We first provide an overview of different analysis
methods and explain their advantages and disadvantages. Subsequently, we describe how
constraint patterns can be used to refine class models in a consistent way. To this end,
we analyze the dependencies between the constraint patterns introduced in Chapter 4 to
detect potential inconsistencies. Furthermore, we show how such refinement integrates
into the MDE process.

Chapter 7: Tool Support.

In this chapter, we present tool support for our approach that integrates into the MDE tool
IBM Rational Software Architect (RSA). The tool support comprises constraint elicitation
to detect elements that potentially require refinement, a library of constraint patterns,
consistency analysis for instances of the constraint patterns, and code generation that
transforms a pattern-based constraint specification into a standard specification language.
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Chapter 8: Validation.

In this chapter, we perform three case studies in which we refine class models by develop-
ing constraint specifications. For carrying out these case studies, we follow the approach
introduced in this thesis and use the tools developed. Subsequently, we evaluate our ap-
proach against quantitative and qualitative criteria and report on general insights.

Chapter 9: Conclusion.

In this chapter, we summarize the achievements made in this thesis, the limitations of our
approach, and report on the lessons learned in the course of developing the approach. We
furthermore point out possibilities where future work can improve or extend the approach
developed in this thesis.



Chapter 2
Background and Related Work

In this chapter, we present background information for this thesis and discuss related work
for the respective topics. Further related work is discussed in the remaining chapters of
this thesis where appropriate.

In Section 2.1, we present the concept of Model-Driven Engineering (MDE) in which
systems are specified by a set of models from which code is automatically generated. We
define the notion of a model as used in this thesis in Section 2.2. In particular, we in-
troduce class models as used in the Meta Object Facility (MOF) and the Unified Modeling
Language (UML). In MDE, class models often need to be augmented by textual constraints.
Therefore, we give an overview of the Object Constraint Language (OCL), a textual con-
straint language that is typically used to annotate class models in Section 2.3.

Patterns have become an important means of specification in MDE and other domains.
In Section 2.4, we present the concept of patterns in general, and the concept of constraint
patterns, which can be used for specifying constraints on models, in particular.

Models and their constraint specifications must be consistent. In Section 2.5, we there-
fore investigate the notion of consistency in classical logics and in MDE. Since practica-
ble constraint languages are typically undecidable, interactive theorem proving provides
means for formally carrying our proofs. In Section 2.6, we explain the concept of interac-
tive theorem proving in general and of HOL-OCL, a proof environment for OCL specifica-
tions, in particular.

2.1 Model-Driven Engineering (MDE)

With the term Model-Driven Engineering (MDE), we denote software development ap-
proaches in which the system to be developed is specified in terms of (graphical)
models. MDE development processes closely follow traditional software engineering
processes, but use models as first-class artifacts compared to code in traditional pro-
cesses. Our notion of MDE thus embraces concepts such as Model-Driven Architecture
(MDA) [Kleppe et al., 2003], Model-driven development (MDD), and the “original” con-
cept of MDE [Kent, 2002].

In Figure 2.1, we show an abstract view of a typical software engineering process.
Such a process starts with a requirements engineering phase in which the functional and
non-functional requirements of the system under development are elicited. In the anal-
ysis phase, structural and functional models of the system are built. This task comprises
identifying objects and specifying control flow, for example. In the design phase, these

7
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models are refined, for example, by identifying subsystems of the system or implementing
algorithms. Eventually, the system is tested and deployed, which starts a maintenance cy-
cle. Maintaining software can lead back to adapting the requirements and accordingly go
through the development process again.

requirements
engineering

analysis design
testing

and
deployment

Figure 2.1: Abstract view of a typical software engineering process.

MDE processes extend software engineering processes as follows. In the analysis phase,
initial models are created, typically at a high level of abstraction with a graphical syn-
tax. In the design phase, these abstract models are made more concrete. This can be
achieved by adding further model elements or annotating models with textual constraints.
Thus, the level of abstraction of the models decreases in the course of the MDE process,
whereas the level of maturity, which is defined as the reciprocal of the abstraction level
in [Kleppe and Warmer, 2003], increases accordingly. We define these concepts informally
as follows and provide a formal definition in Section 2.3.

Definition 1 (Abstraction / Refinement). Models are refined by adding details in the form
of further models elements, which decreases their level of abstraction and increases their level
of maturity to the same extent.

Once models have reached a satisfactory level of maturity, they are automatically trans-
formed into code, which can subsequently be tested and deployed. In Figure 2.2, we
illustrate these concepts. Going top down, different kinds of models are specified at a
high level of abstraction and subsequently refined by a sequence of refinement steps, in-
dicated by refinement*. Eventually, the refined models are transformed into code, which
is also called code generation.

code generation

m
at

ur
ity

refinement*

analysis

design

code

…model
1

model
2

model
n

…model
1’

model
2’

model
n’

Figure 2.2: Refinement and code generation in MDE.

In the remainder of this chapter, we provide background information on the concepts
contained in MDE. We start by defining what a model is.
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2.2 Models and Meta-Models

Narrowing the definition in [Rumbaugh et al., 1991], we define the term model as follows.

Definition 2 (Model). A model is a formal abstraction of a system.

In software engineering, models are used to describe the structural
and behavioral aspects of a system. The Unified Modeling Language
(UML) [Object Management Group (OMG), 2006c] provides a family of model types
to model these different aspects. For example, it comprises class models for the structural
aspects and activity diagrams for the behavioral aspects for a system. In UML, two types
of models can be augmented with textual constraints: class models and state machines.
In this thesis, we focus on class models, which we define as follows.

Definition 3 (Class Model). A class model represents the concepts of a system in terms of
classes and associations between the classes.

In Figure 2.3, we present the MOF meta-model as an example class model. We assume
that the reader is familiar with the basic concepts of class modeling, but we introduce the
most important concepts here. Class models comprise classes such as NamedElement or
Type, which are graphically represented by rectangles. In these rectangles, the attributes
and operations of the respective class are shown. For example, NamedElement has one at-
tribute called name of type String. Classes can be related by generalization relations, which
express subtype relations between classes. These relations are denoted by a white triangle.
For example, Type is a subtype (or subclass) of NamedElement. Classes can also be related
by different kinds of relations, which can be directed such as the superClass relation or
they can denote composition, indicated by a black diamond such as the ownedAttribute
association. We will introduce the remaining concepts where needed.

Class

isAbstract : Boolean

Type

Property

isReadOnly : Boolean

isID : Boolean

TypedElement

MultiplicityElement

isOrdered : Boolean

isUnique : Boolean

lower : Integer

upper : UnlimitedNatural

Operation

Parameter

NamedElement

name : String

*

- superClass

0..1

*

- ownedAttribute

*

- ownedOperation

*

0..1

*

- ownedParameter

Figure 2.3: Extract of the Essential MOF (EMOF) meta-model.

The possible elements of a model and their relations are defined in a meta-model. The
Meta Object Facility (MOF) [Object Management Group (OMG), 2006a] is a standard that
defines the building blocks of (meta-)modeling. Its core, the EMOF, defines the facilities
that are commonly found in object-oriented approaches such as types, classes, properties,
and operations. Meta-models, including EMOF, are typically defined in terms of class
models.
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MOF defines a hierarchy of model abstractions, which can comprise up to four lay-
ers [Atkinson and Kühne, 2003]. In general, a model in layer n is called an instance of the
model in layer n + 1, which in turn is called its meta-model. In Figure 2.4, we illustrate
these four modeling layers.

M0
(system)

M1
(concepts)

M2
(UML)

M3
(MOF)

employees Boris and Paul
offices C45.1, D42

employee, office, …

class, association, 
stereotype, …

package, type, class, 
property, operationis meta-

model for

is meta-
model for

is meta-
model for

Figure 2.4: The four modeling layers of MOF.

The most abstract layer, commonly perceived as M3, is the MOF meta-model, as shown
in Figure 2.3. It defines the core modeling concepts and is defined recursively, i. e., a
model on this layer is an instance of itself [Seidewitz, 2003].

MOF is considered a meta-meta-modeling language, i. e., it is commonly used
to define meta-models. A prominent example of an M2 layer meta-model is
the UML family of meta-models. It comprises meta-models such as the class
model, which defines modeling elements such as n-ary associations or stereotypes
[Object Management Group (OMG), 2006c].

The models in layer M1 define the concepts of a system. For example, the structural
concepts of a company can be modeled in terms of a class model and comprise classes
such as Employee or Office.

The most concrete layer M0 represents the elements of some concrete system. For
example, the model of a company could comprise elements such as an employee called
“Boris” and an office labeled “C45.1”. M0 models are instances of M1 models.

The most important model type in this thesis is the class model. As can be seen in
Figure 2.3, a class comprises a set of attributes (modeled as Property) and a set of opera-
tions. A class is a special Type. MOF and UML distinguish between class types and primitive
types such as String or Boolean. Relations between concepts are modeled as n-ary associ-
ations between classes in UML, whereas MOF does not provide means for defining n-ary
associations. In this thesis, we cover binary associations only, which can be modeled in
terms of MOF as follows. A binary association between classes A and B is modeled by an
attribute b that is owned by A and an attribute a owned by B. The cardinality of such a
relation is expressed using the attributes lower and upper bound that Property inherits from
MultiplicityElement.

2.2.1 Example Model.

In this subsection, we present a class model that we will use as example throughout the
remainder of this thesis. In Figure 2.5, we illustrate a model company using the concrete
syntax of UML class diagrams.

In detail, the elements are defined as follows. Employee, Manager, Office, Single and
Cubicle are instances of the MOF concept class. Attributes of classes are represented as
properties of this class. In particular, name, salary, budget, headCount, isCEO, desks are
MOF properties in the company model. Properties are also used for defining associations
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Employee

name : String

salary : Integer

Manager

budget : Integer

headCount : Integer

isCEO : Boolean

hire ( e : Employee ) : Boolean

Office

desks : Integer

Single Cubicle

*

+ inhabitant 0..1

+ worksIn*

+ employs

1..*

+ worksFor

Figure 2.5: Model “company”: example instance of MOF.

between classes, which reflect relations between objects. In particular, employs, worksFor,
inhabitant, and worksIn represent such properties, which are also called association ends.

String, Integer and Boolean are primitive types provided by the MOF meta-model. hire
is a MOF operation whose return type is Boolean. Operations can have parameters. An
example is parameter e for the hire operation. 1..∗ , 0..1 and ∗ are MOF multiplicity ele-
ments. Properties, operations, and parameters are special kinds of multiplicity elements,
i. e., their values can be sets.

The generalization relations between Manager and Employee and Single/Cubicle and
Office are instances of the MOF superClass relation. This relation is used to model subtype
relationships between classes.

As shown, the elements in this model are instances of MOF elements, i. e., we use the
MOF as meta-model for the company model. The company model can also be expressed
in terms of the UML meta-model for class models. In the remainder of this thesis, we refer
to the term class model as that type of model that can be expressed in terms of the UML
meta-model for class models, which subsumes the MOF meta-model.

2.2.2 Instances of Class Models.

Each instance of a class model comprises a set of objects, which denote phenomena in a
system, their attribute values, and a set of links, which relate two objects and are instances
of a binary association between the classes of these objects. To avoid confusion about the
overloaded term instance, we refer to an instance of a class model as a state of the class
model in the remainder of this thesis and define it as follows.

Definition 4 (State). The state τ : M of a class model M is defined by a set of objects and
links between these objects. The type of each object o ∈ τ is defined as a class C ∈ M and
the type of each link l ∈ τ is defined as an association A ∈ M . A state can be represented as
a directed graph in which the objects of the state represent the nodes and the links represent
the edges.

We present an example state τ for the company model in Figure 2.6 in the form
of an object diagram. This state comprises four objects (m1, e1, s1, c1) and three links(
(m1, e1), (m1, s1), (e1, s1)

)
. The types of the objects are indicated behind the object iden-

tifier separated by a colon. The types of the links are implied by the types of the objects.
Thus, (m1, e1) ∈ Manager × Employee , (m1, s1), (e1, s1) ∈ Employee × Office .

Where appropriate, we use a more mathematical notation for the previously intro-
duced concepts. If m1 denotes an object of class Manager, employs(m1) represents the
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τ

e1:Employee

name = ‘Boris’
salary = 1000

m1:Manager

name = ‘Paul’
salary = 2000
budget = 5000
headCount = 2
isCEO = true

s1:Single

desks = 2

c1:Cubicle

desks = 2

Figure 2.6: Example state of the company model.

set of all objects of type Employee to which m1 is related. We further define a function
−1 that denotes the opposite end of an association. For example, employs−1 denotes the

association end worksFor.
In order to rule out undesired objects in model states, models can be augmented with

textual constraints. In the following section, we give an overview of OCL, the standard
constraint language in the context of MDE.

2.3 The Object Constraint Language (OCL)

While models were solely used for documentation and communication purposes in
the beginning of MDE, recent model-centric development approaches use models as
first-class artifacts in the development process. For example, business process mod-
els can be transformed to executable code that is run on process execution en-
gines [Hauser and Koehler, 2004] or models in a domain-specific security language are
transformed to UML [Basin et al., 2006]. To guarantee correctness of the execution of the
generated code, it is crucial that every model state conforms to its defining model, which
should represent the concepts of the underlying system as precisely as possible.

However, modeling languages such as MOF or UML offer only limited support for
defining the concepts of a model or a system. Whereas entities and basic relations can
be described in terms of types, classes and their properties, relations and dependencies
can be further specified by basic multiplicity (i. e., cardinality) constraints only. In or-
der to express complex relations and restrictions in a model, OCL has been introduced
[Object Management Group (OMG), 2003] as part of MOF and UML, a textual constraint
language for object-oriented modeling languages. OCL is based on a three-valued logic
with an explicit element denoting undefinedness and a library providing a typed set the-
ory and basic datatypes. It serves three purposes: First, invariants can be specified for
classes. An invariant is a predicate that holds for all objects of the constrained class. In
this thesis, we use the terms invariant and constraint synonymously.

Definition 5 (Invariant). An OCL invariant I is a logical predicate defined on a class C. For
each object c of class C, I(c) must hold throughout a sequence of operations, i. e., if I(c) holds
before execution an operation o, it must hold after o terminates.

Adding constraints to class models rules out invalid states, which increases the ma-
turity level of the class model [Kleppe and Warmer, 2003, Wahler, 2008]. For giving an
intuition for this idea, we use a function I that maps a set of concepts to the set of all
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possible objects for these concepts. In particular, I(M) denotes the set of all objects in all
possible states of a model M and I(R) denotes the set of all possible objects in a real sys-
tem. Figure 2.7 a) visualizes a model M with a low maturity level: A large part of I(M) is
not inside I(R), i. e., I(M) contains many elements that are not representations of the real
system. By adding constraints to M , a model M ′ can be developed with a higher maturity
level. Figure 2.7 b) shows that there are significantly less elements in the set I(M ′)\I(R),
which means that less invalid instances can be derived from M ′ than from M . Thus, M ′

has a higher maturity level than M .

I(R) I(M)
(a) Model M : Low maturity level.

I(R) I(M’)
(b) Model M ′: High maturity level.

Figure 2.7: Increasing model maturity by specifying constraints.

Definition 6 (Maturity). A model M ′ has a higher maturity level than a model M ′ if the set
of all possible objects of states of M ′ contains less elements than the corresponding set for M ,
or formally |I(M ′)| < |I(M)|.

The second purpose of OCL allows model developers to apply the design-by-contract
principle [Meyer, 1992] by annotating operations with contracts. Each contract con-
sists of a precondition, which restricts the applicability, and a postcondition, which
describes the result of the operation. Whereas pre-conditions specify the condi-
tions that must hold when the execution of an operation is triggered, post-conditions
specify the conditions that must hold when the execution of an operation termi-
nates [Object Management Group (OMG), 2006b].

Definition 7 (Contract). An OCL contract for an operation o of class C comprises two log-
ical predicates pre and post defined on the parameters of o and the properties of C and its
superclasses. If pre holds when o is executed, post is guaranteed to hold if o terminates.

Third, OCL can be used to define additional attributes and operations for class models.
Attributes added using OCL are always derived attributes, i. e., their values are calculated
from the values of other attributes. Operation definitions can be recursive, but they have
to be defined such that the defined operator terminates when applied and its pre-condition
holds [Object Management Group (OMG), 2003]. Since OCL expressions are always free
of side-effects [Object Management Group (OMG), 2003], such user-defined operations
are also called query operations.

In the following, we illustrate several examples of invariants and contracts for the
company model. With these examples, we introduce all language elements of OCL that we
use in the remainder of this thesis. First, we define two invariants as follows.

context Manager
inv budgetGreaterZero: self.budget >= 0

context Single
inv onlyManagers: self.inhabitant−>forAll(x | x.oclIsTypeOf(Manager))
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Invariants are declared by the keyword context followed by the name of the constrained
class, the keyword inv, and an optional name of the invariant. The last part of an invariant
declaration is a logical statement, in which the keyword self denotes a variable that is
universally quantified over all objects of the constrained class.

The first invariant, budgetGreaterZero for Manager, states that the budget of managers
must not be negative. In a more mathematical syntax, this invariant reads as follows.

∀self:Manager. budget(self) ≥ 0

The second invariant, onlyManagers, is defined on Single offices. It restricts the in-
habitants of these offices to objects of class Manager, which is denoted by an OCL path
expression. Path expressions, also called navigations, consist of a sequence of association
ends separated by a dot. In the remainder of this thesis, we use the terms path and naviga-
tion as synonyms for such expressions. Furthermore, we ignore the fact that OCL supports
special types of sets such as multi-sets or ordered sets and assume that the type of path
expressions is a simple set.

The invariant contains a universal quantification (−>forAll(x | P(x))) over the set of all
inhabitants of an office. The elements of this set are bound to the variable x. The expres-
sion x.oclIsTypeOf(C) evaluates to true if x is an instance of class C, while x.oclIsKindOf(C)
evaluates to true if x is an instance of either C or of a subclass of C.

Contracts specify pre-conditions and post-conditions for operations. An example con-
tract for the operation hire of class Manager reads as follows in OCL.

context Manager::hire(e: Employee): Boolean
pre: not self .employs−>includes(e)
post: self .employs = self.employs@pre−>including(e)

The precondition of hire requires that the employee who is supposed to be hired is not
already employed. This is specified using the boolean operation −>includes(x), which
evaluates to true if the set that this operation is invoked on contains x. The precondition
further comprises the OCL negation operator not. Alternatively, the precondition could be
specified as self.employs−>excludes(e).

The postcondition requires that after the operation has executed, the set of employees
is the same as before the execution, except for the new employee who has joined this
set. This is accomplished by requiring that the set of employees (self.employs) after the
execution of the operation is equal to the set of employees before the execution of the
operation, which can be specified using the keyword @pre, except for one new element,
e. In OCL, S−>including(e) denotes S ∪ {e}.

We also provide examples for derived attributes and operations, which we define as
follows.

context Employee
def: isAlone : Boolean = self.worksIn.oclIsTypeOf(Single)

context Manager
def: paysAtLeast(wage:Integer) : Boolean

= self .employs−>forAll( e | e.salary >= wage )

These definitions add a derived attribute isAlone to class Employee. This attribute eval-
uates to true if the respective employee works in a single office. The operation paysAtLeast
for class Manager evaluates to true for managers who pay their employees a salary that is
at least as high as the parameter wage.
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In the following, we introduce further OCL operations that we will use in the remainder
of this thesis. OCL comprises an operator for equality (=) and inequality (<>) as well as
the standard arithmetic operators (+, −, >, >=, <, <=).

The size of some set exp is represented by exp−>size() and if the size of exp is zero,
exp−>isEmpty() holds, otherwise, exp−>notEmpty() holds. OCL supports typical set opera-
tions such as set union (S−>union(S’)), intersection (S−>intersect(S’)), and set difference
(S − S’). If a set S contains numbers from R, S−>sum() represents the sum of all numbers
in S. Multi-sets, called bags in OCL, and ordered sets can be typecast to simple sets with
the operator −>asSet().

The −>collect() operation iterates over collections and aggregates the elements of
such collections in another collection. For example, self.employs−>collect(name) invoked
on a manager m results in a set of String objects containing the names of all em-
ployees of m. Since −>collect() is frequently used, a shorthand notation was intro-
duced [Kleppe and Warmer, 2003], which replaces the collect operation by a dot notation.
For example, self.employs−>collect(name) and self.employs.name are equivalent expressions
in OCL.

The operator exp−>isUnique(a) holds if a evaluates to a different value for each el-
ement in exp. For example, self.employs−>isUnique(name) requires that all employees
of some manager have distinct names. If objects need to be uniquely identified by a
collection of attributes, tuples can be used as parameters for isUnique. For example,
self.employs−>isUnique(Tuple(x=name,y=salary)) holds if a manager does not have two em-
ployees with the same name and the same salary.

Analogous to the universal quantifier −>forAll(), OCL provides an operator for existen-
tial quantification over a set of elements. exp−>exists(x | P(x)) holds if there exists an object
x in exp for which P holds and exp−>one(x | P(x)) holds if there is exactly one such object.
Since OCL expressions can be undefined, there exists an operation exp.oclIsUndefined(),
which evaluates to true if the expression exp is not defined. The type of an object exp
can be cast to a type C’ using exp.oclAsType(C’). The operation allInstances() returns all
instances of a class and its subclasses in the current state of the system, thus enabling
statements about the universe of a certain class. For instance, Manager::allInstances() re-
sults in a set of all objects of kind Manager in the state in which the expression is evaluated.

2.3.1 Pragmatics of OCL.

Constraints stem from different sources: there may be legal restrictions that a system
needs to obey; there may be company policies that grant privileges to certain kinds of
customers; there may be technical restrictions on a system [Chen et al., 2006]; there may
be security restrictions [Lodderstedt et al., 2002]; and there may be facts that are implied
by common sense that cannot be expressed diagrammatically.

Whereas class models are intuitively accessible by non-IT-experts, OCL requires thor-
ough knowledge of formal specification languages and object-oriented modeling. There-
fore, although being an industry standard, OCL is not widely used in industry nowa-
days [Chiorean et al., 2005]. And even when it is used, it is difficult to write concise and
correct specifications [Chiorean et al., 2004]. The usability of OCL is further restricted
because frequently used derived operations such as the transitive closure for association
ends are missing. Although they can be manually defined per model [Baar, 2003], this is
time-consuming, error-prone, and requires information technology (IT) skills.

The concrete syntax of OCL is considered to contribute to the low acceptance of OCL
in industry. Thus, several publications try to improve the syntax. For instance, a visual
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concrete syntax for OCL is proposed in [Bottoni et al., 2000], and a mathematical syntax
is presented in [Süß, 2006] and [Brucker and Wolff, 2006].

There are several open-source tools that support model developers in creating con-
straint specifications, the most popular ones being (in alphabetical order) the Dresden OCL
Toolkit [Dresden Technical University, 2007], the KeY project [Ahrendt et al., 2005], the
OSLO project [Fraunhofer Fokus, 2007], the OCL Environment [Chiorean et al., 2003],
and the USE tool [Gogolla et al., 2005]. Furthermore, there is an OCL plug-in for the
Eclipse Modeling Framework (EMF) [Eclipse Foundation, 2007c] and an overview article
on OCL tools [Álvarez et al., 2003].

Although these tools help developers in writing, type checking, and evaluating
model states against constraints, the problem remains that OCL constraint specifi-
cations can contain contradictory constraints, especially when the specifications get
large and complex. Since OCL is a first-order logic (FOL) with object-oriented ex-
tensions [Beckert et al., 2002], it is an undecidable language, i. e., it cannot be de-
cided whether a given OCL specification is satisfiable or not. This leaves two op-
tions for finding contradictions, which we sketch briefly here and elaborate on in Sec-
tion 2.6. First, semi-decision approaches or heuristic approaches can be used to au-
tomatically find contradictions. We are aware of two such approaches for OCL spec-
ifications, USE [Gogolla et al., 2005] and the Alloy Analyzer [Jackson et al., 2000] af-
ter transforming [Bordbar and Anastasakis, 2005] OCL to the Alloy specification lan-
guage [Jackson, 2002]. Second, interactive theorem proving can be used to reason about
constraint specifications. We are aware of OCL encodings for two theorem provers, HOL-
OCL [Brucker and Wolff, 2006] for Isabelle/HOL [Nipkow et al., 2002] and one encod-
ing [Kyas et al., 2005] for PVS [Owre et al., 1996].

2.4 Patterns

Besides augmenting models with textual constraints, models can be refined by applying
patterns. In a nutshell, patterns are template solutions for recurring problems. With the
success of the object-oriented development paradigm, patterns have gained increasing
momentum in software engineering.

Patterns are developed by abstracting from solutions for concrete problems. A set
P = {p1, . . . , pn} of patterns can be harvested (or “mined”) according to the frequency of
occurrence of a certain problem or to its importance. Typically, anti-patterns describe poor
solutions that should be avoided.

Definition 8 (Pattern). A pattern describes a generic solution to a recurring problem in a
certain domain that can be reapplied to instances of the same problem.

The most prominent publication, the Gang of Four (GOF) book on design pat-
terns [Gamma et al., 1995], introduces a taxonomy of patterns for the construction
of object-oriented software. Each pattern is presented with a name, classification,
intent, structure, example, and other properties that describe its syntax, semantics,
and pragmatics. Patterns have also become popular in other areas of software en-
gineering, such as software architecture [Buschmann et al., 1996], formal specification
[Dwyer et al., 1998, Ryndina, 2005], object-oriented analysis [Fowler, 1997], or workflow
design [van der Aalst et al., 2003].

Syntactically, patterns are parameterizable model elements in this thesis. In Fig-
ure 2.8, we show an instance of the bridge pattern from [Gamma et al., 1995], which
has four parameters, applied to our company model. Informally, the bridge pattern
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decouples an abstraction from its implementation such that the two can vary indepen-
dently. To this end, it assigns roles to the elements used as its parameter. Figure 2.8

«RefinedAbstraction»

Cubicle

«Abstraction»

Office

desks : Integer

«RefinedAbstraction»

Single

«Pattern Instance»

Bridge

Bridge

Abstraction [1] : Office 

RefinedAbstraction [1..*] : Cubicle Single 

Implementor [1] : OfficeUser 

ConcreteImplementor [1..*] : Employee 

«ConcreteImplementor»

Employee

«Implementor»

OfficeUser
*

+ inhabitant 0..1

+ worksIn

Figure 2.8: Bridge pattern applied to the company model.

shows a screenshot from the tool IBM Rational Software Architect (RSA), which we will
use to implement the approach developed in this thesis. In RSA, pattern instances are
represented as UML Collaborations, which are specialized using UML TemplateBindings (cf.
[Object Management Group (OMG), 2006c]).

Patterns typically refine the models that they are applied to. The pattern semantics
is often specified both informally and formally. The formal semantics of patterns can be
either specified using formal pattern languages [Amálio et al., 2006, Elaasar et al., 2006],
which allows for reasoning about patterns, also called meta-proofs [Amálio et al., 2006].
The results of the meta-proofs for each pattern hold for each instance of that pattern. For-
mal pattern semantics is also often specified in terms of a model transformation, i. e., when
the models to which patterns have been applied are transformed, they get automatically
refined.

2.4.1 Constraint Patterns.

A special class of patterns are constraint patterns, which we define as follows.

Definition 9 (Constraint Pattern). A constraint pattern is a parameterizable constraint
expression that can be instantiated to solve a class of specification problems.

The concept of constraint patterns has been introduced for object-oriented
programming [Horn, 1992] and recently been adapted in the literature for
UML/OCL [Miliauskaitė and Nemuraitė, 2005, Ackermann and Turowski, 2006,
Costal et al., 2006, Wahler et al., 2007]. Constraint patterns are also known as id-
ioms [Ahrendt et al., 2005], and they are also important in other domains, e. g., constraint
programming [Walsh, 2003].

Capturing and generalizing frequently used logical expressions is also per-
formed in other domains than the refinement of class models. For instance,
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constraints play an important role in other domains, e. g., model transforma-
tions [Hauser et al., 2005], ontology modeling [Cranefield and Purvis, 1999] or model
refactorings [Gogolla and Richters, 2002].

We capture the semantics of constraint patterns as an OCL template, i. e., a parame-
terizable OCL expression. To be more specific, we use these templates as macros because
patterns are untyped. This allows model developers to use our template syntax not only
for defining constraint patterns, but also for defining macros for frequently used OCL con-
structs.

The syntax of an OCL template starts with the keyword pattern followed by the name
of the pattern and a set of typed parameters in brackets. This is followed by an equals
sign and an arbitrary OCL expression in which the name of the formal parameters can be
used. In the following, we define the Singleton pattern from [Gamma et al., 1995] using
our template language.

pattern Singleton(element : Class) =
element::allInstances()−>size() = 1

OCL templates can be used as first-class language elements of OCL. When they are
instantiated, the formal parameters are replaced by the values of the actual parameters.
We define instances of constraint patterns as follows.

Definition 10 (Constraint-Pattern Instance). An instance ψ of a constraint pattern x is
the value of x(P ) for a given set P of actual parameters.

As an example, we instantiate the Singleton pattern to constrain the number of Cubicle
offices in a model state to one. Note that in the following OCL statement, constraints
oneCubicle1 and oneCubicle2 are semantically equivalent.

context Company
inv oneCubicle1: Singleton(Cubicle)
inv oneCubicle2: Cubicle::allInstances()−>size() = 1

As can be seen, constraint patterns are a concise means of hiding the syntactic and
semantic complexity of OCL expressions and offering a unique name and uniform inter-
face to the model developer. Although they help model developers avoid certain types
of errors, e. g., confusing similar operators such as oclIsKindOf and oclIsTypeOf from the
OCL specification, constraint specifications developed using constraint patterns can still be
inconsistent. In the following section, we therefore elaborate on the notion of consistency
in classical logic and in MDE.

2.5 Consistency

In this section, we discuss the notion of consistency. Since consistency is a well-known
term in classical logics, we first give an overview of consistency for first-order logic (FOL)
in 2.5.1. The term consistency is also increasingly used in MDE, but often with a different
semantics. Therefore, give an overview of the different notions of consistency used in MDE
in Section 2.5.2.

2.5.1 Consistency in Classical Logic.

We set the stage for consistency in the (rather complex) UML/OCL domain by looking at
consistency in classical logic first. OCL is a three-valued first-order logic (FOL) with object-
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oriented extensions. Since statements in three-valued logics can be transformed into state-
ments in two-valued logics [Behm et al., 1998, Abrial and Mussat, 2002] and OCL can be
translated into FOL [Beckert et al., 2002], we begin by reviewing the consistency problem
in FOL. We assume that the reader is familiar with the syntax and terminology of FOL as
represented for instance in [Gallier, 1986].

The semantics φM of a first-order formula φ is defined as a function φM : s→ {T, F},
whereM = (U , I) is a structure in which U is a set, called the universe and I is a mapping
from syntax to semantics, called the interpretation. We require that the universe is non-
empty, as otherwise universally quantified formulas trivially hold. Further, sφ : V ⇒ U is
an assignment function, V is the set of variables in φ.

A formula φ is called satisfiable if there exists a structureM and an assignment s (in the
following, we drop the index for s when the context φ is clear) such that φM[s] = T , also
denoted byM |=s φ. A structureM is called a model of φ, denoted byM |= φ iff φM[s] =
T for every assignment s. OCL formulas are typically sentences, i. e., formulas without
free (not bound by quantifiers) variables, postulating that the keyword self is universally
quantified. The satisfiability of sentences is obviously independent of an assignment s. The
notion of satisfiability is related to the notion of consistency, which is defined as follows.

Definition 11 (Consistency). A set Φ = {φ1, . . . , φn} of sentences is consistent iff

∃M.M |= φ1 ∧ . . . ∧ φn ,

i. e., φ1 ∧ . . . ∧ φn is satisfiable. Otherwise, Φ is inconsistent.

With an inconsistent set Γ of formulas, Γ → F is derivable [van Dalen, 1997], and from
F , any statement can be derived, no matter if it holds or not.

A many-sorted FOL (MSFOL) is a FOL in which the terms have distinct types. Thus,
the universe U in an MSFOL structure is defined as a function from a type to a set of
objects, compared to FOL where the universe is merely a flat set of objects. The semantics
of an MSFOL is defined by a many-sorted structure in which U(t) for each type t must be
nonempty.

A simple example of an MSFOL language is L, a language with one binary predicate R
and one type α, which we define as follows.

Γ = { (∀x : α).R(x, x),
(∀x : α).(∃y : α).R(x, y),
(∀x : α, y : α).R(x, y) ∧R(y, x)→ x = y}

This set is consistent if there exists a structureM that is a model for Γ. Such a structure
isMN. In this structure, the universe for the type α is N and the interpretation RI of the
predicate R is ≤, which denotes less-than-or-equal over the natural numbers N.

MN = (U , I) where

U(α) = N and RI(x, y) ≡ xI ≤ yI

SinceMN |= Γ, Γ is consistent.

2.5.2 Consistency in MDE.

The term consistency is used with different meanings in MDE. In general, one needs to
distinguish between inter-model consistency and intra-model consistency. In the following,
we define these notions.
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Inter-Model Consistency. In MDE, inter-model consistency with respect to a predicate
P denotes that two or more model states satisfy P . P is defined on their respective meta-
models and expresses relations between elements in the respective models.

Definition 12 (Inter-Model Consistency). Two model states m1 : M1,m2 : M2 are inter-
model consistent wrt a relation R : M1 ×M2 iff (m1,m2) ∈ R.

For example, a UML class diagram c and a UML sequence diagram s are considered
inter-model consistent if all classes and operations used in s are defined in c. Inter-
model consistency is the subject of numerous publications, e. g., [Emmerich et al., 2003,
Jonckers et al., 2003, Küster, 2004, Sabetzadeh et al., 2007].

Intra-Model Consistency. In contrast, intra-model consistency of a model M denotes
that M can be instantiated, i. e., there exists at least one state for a given model. It thus
corresponds to the notion of consistency in classical logic.

Definition 13 (Intra-Model Consistency). A model M is intra-model consistent iff there
exists a state τ of M .

For example, a class model is intra-model consistent if there exists at least one model state
for it.

Since we introduce an approach to developing consistent constraint specifications in
this thesis, we focus on intra-model consistency of one important model type of UML:
class models annotated with invariants in the OCL. Since OCL can be considered an MS-
FOL in which the classes in the corresponding UML model constitute the types, we could
apply the “classical” notion of consistency to UML/OCL models. However, several pecu-
liarities of UML/OCL must be taken into account such as its hierarchical type system,
abstract classes, or statements about the universe of a certain class using the OCL op-
erator allInstances(). Thus, the classical notion of consistency is not directly applicable to
UML/OCL models. Therefore, distinct notions of consistency are required for intra-model
consistency of UML/OCL models, which we discuss in Chapter 5.

Consistency is also important in other development approaches. For the
Vienna Development Method (VDM), a formal approach to system develop-
ment [Jones, 1990], various consistency properties are discussed in [Damm et al., 1991].
In [Aichernig and Larsenz, 1997], it is explained how proof obligations can be generated
that ensure the consistency of VDM specifications.

The Java Modeling Language (JML) [Leavens et al., 2006] is an interface specification
language designed to specify Java classes and interfaces. In [Darvas and Müller, 2006],
JML specifications are transformed into axioms. In order to prove the consistency of these
axioms, the existence of a witness has to be proven in order to employ the corresponding
axiom.

2.6 Interactive Theorem Proving

Since OCL is based on FOL [Beckert et al., 2002], it is an undecidable language. Thus,
properties of OCL statements such as consistency cannot be proven automatically. How-
ever, interactive theorem provers assist in carrying out proofs by providing proof tactics,
which automate various steps in proofs. In Section 2.6.1, we give an overview of Is-
abelle/HOL and introduce the concepts of interactive theorem proving used in this thesis.
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For carrying our proofs for OCL specifications, HOL-OCL [Brucker and Wolff, 2006] of-
fers an embedding of OCL into higher-order logic (HOL) and an OCL proof environment
for the interactive theorem prover Isabelle/HOL [Nipkow et al., 2002]. This allows us to
formally carry out consistency observations of UML/OCL models and to express the seman-
tics of constraint patterns using function types. In Section 2.6.2, we give an overview of
HOL-OCL.

2.6.1 Isabelle/HOL.

Isabelle/HOL [Nipkow et al., 2002] is an interactive theorem prover that combines func-
tional programming and higher-order logic (HOL). Thus, types and functions can be de-
fined and theorems about them can be proven. Interactive theorem provers offer partial
automation of proofs by using advanced rewriting techniques and proof tactics. In the
following, we explain the concepts of Isabelle/HOL that we are using in the remainder of
this thesis by means of an example system and proof.

We model a system that allows us to add natural numbers. We first define a recursive
datatype STerm that represents terms of our system. STerm has two constructors, Atom
and Plus. Atom has one parameter of type nat, which is predefined in Isabelle/HOL and
represents natural numbers. The second constructor, Plus, is composed of two terms of
type STerm.

datatype STerm = Atom nat |
Plus Sterm Sterm

Next, we define a function evaluate, which maps a term of type STerm to a natural number.
The function is defined using primitive recursion. In Isabelle/HOL, one equation must be
defined for each constructor of the recursive datatype used as argument for the primitive
recursive function. Thus, we specify one equation for Atom and one for Plus.

consts evaluate :: ”STerm⇒nat”
primrec

”evaluate (Atom n) = n”
”evaluate (Plus x y) = (evaluate x) + (evaluate y)”

Having defined a function on our recursive datatype STerm, we can now prove a simple
statement about the function. The following lemma states that if we add a natural number
to a positive number, the result will also be positive.

lemma ”(0 < x) =⇒0 < (evaluate (Plus (Atom x) (Atom y)))”

After specifying a lemma, Isabelle/HOL displays a proof goal that corresponds to the
lemma. To prove this goal, we have to invoke one of the proof tactics that Isabelle/HOL
provides. A proof tactic in Isabelle/HOL is a sequence of rewriting rules that can be applied
to proof goals, e. g., induction, case splits, or simplification. For our example theorem, it
is sufficient to invoke simplification, which replaces the elements in the conclusion of our
theorem by their definitions until the resulting proof goals are axioms. Proof tactics are
invoked with the keyword apply; the simplification tactic is called simp.

apply simp

After invoking a proof tactic, a set of new proof goals is displayed that each need to be
proven. In our example, this set is empty, which means that all goals have been proven
and thus, the original lemma. Proofs are completed by the following statement.

done
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Alternatively, if one or more proof goals cannot be established, a proof can be abandoned
by the keyword oops.

Isabelle/HOL also supports type variables and axiomatic type classes. The former can
be used to define generic functions. For example, the signature of a generic function that
computes the inverse of an arbitrary type can be defined as follows.

consts inverse :: ” ’a ⇒ ’a”

In this definition, ’a denotes an arbitrary type. Types can belong to type classes. For
example, it makes sense to refine the inverse function such that it is not applicable to
arbitrary types, but to types only that belong to some class of invertible types. We define
a type class invertible and refine inverse as follows.

axclass invertible < type

consts inverse :: ” (’ a :: invertible ) ⇒ ’a”

Note that in above consts declaration, we need to specify only once that ’a belongs to the
type class invertible .

Another concept that we use in this thesis are lambda expressions for defining func-
tions. For example, we can model the successor function on natural numbers using a
lambda expression as follows.

constdefs
suc :: ”nat ⇒ nat”
”suc == λ x. (x+1)”

Among other proof assistants for interactive theorem proving such as
PVS [Owre et al., 1996] or Coq [Huet et al., 2008], we choose Isabelle/HOL because it is
used as the basis for HOL-OCL, a formal semantics and proof environment for UML/OCL
that we use in various parts of this thesis.

2.6.2 HOL-OCL.

HOL-OCL [Brucker and Wolff, 2006] defines a formal semantics for UML/OCL and pro-
vides support for formal reasoning about object-oriented models. This is achieved by
representing UML/OCL as a shallow embedding into the interactive theorem prover Is-
abelle/HOL, i. e., the concepts of UML/OCL are defined in terms of the concepts of the
meta-language HOL.

In this section, we briefly summarize the formal semantics of UML/OCL as presented
in [Brucker and Wolff, 2006]. In particular, we present the main properties of the under-
lying object store and the notion of validity of an OCL formula.

2.6.2.1 Object Store.

In the context of this thesis, we use OCL for constraining class models. Therefore, we
need a formal semantics of class models, i. e., a model of an object store, in addition
to a formal semantics of OCL [Brucker, 2007, Object Management Group (OMG), 2006b].
In HOL-OCL, the object store provides the core notion of object-oriented data structures,
e. g., a formalization of classes and instances, including concepts such as inheritance and
subtyping. In particular, the object store provides the formal semantics of path expressions,
i. e., expressions for navigating through a concrete object structure. Moreover, HOL-OCL
allows for reasoning about infinite sets of objects, which will become important when we
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investigate consistency concerns of OCL specifications in Chapter 5. The OCL operator
size() is defined to map infinite sets to ⊥. In this section, we present a simplified version
of the HOL-OCL formalization presented in [Brucker, 2007].

The core idea underlying the formalization of an object store is to use HOL and repre-
sent classes as tuples (X×Y ). In this HOL representation, an abstract type oid is assumed,
which represents the object identifier, i. e., a reference to an object. For each class C, an
abstract type Ctag is introduced, which is an abstract datatype that guarantees the unique-
ness of this construction: Even if two classes have the same attribute types, they can be
distinguished by their tag types. The class attributes are either of a basic type, e. g., Integer
or String, a reference to another object (oid), or a collection thereof, e. g., oid Set. In the
object model of HOL-OCL, a common supertype of all objects can be represented without
loss of generality because a common supertype can always be added to a given class struc-
ture without changing the overall semantics of the original object model. Such a supertype
is, for example, defined in OCL as OclAny or in Java as Object.

For example, we can represent the type Manager in our HOL encoding as a tuple in
which the type hierarchy from OclAny to Manager is represented. For each type in the
hierarchy, its structural features are represented, e. g., Employee has two attributes and
two associations to other classes, as can be seen in Figure 2.5. Class Manager has three
attributes and one reference to another class. In our HOL encoding, the type of such a
reference is oid Set. The common supertype OclAny has one structural feature only, which
is the object identifier oid. The tuple reads as follows in HOL.

Manager := ((OclAnytag ×oid) ×
(Employeetag ×oid Set ×oid Set ×String ×Integer) ×
(Managertag ×oid Set ×Integer ×Integer ×Boolean))

In HOL-OCL, types are parameterized by the system state τ and belong to the type class
bot. The keyword VAL denotes single values, whereas Set indicates collections. On top of
this representation, the usual operations like type casts, constructors, or attribute accessors
can be defined in a type-safe manner. For details, we refer the reader to [Brucker, 2007].
The current set of objects that is represented by an object state characterizes the system
state. As defined in Section 2.2.2, we call a specific configuration of the object store, i. e., a
certain instance of the model, the state τ of the system.

2.6.2.2 Constraining an Object Store: Invariants and Types.

By combining an object store with an object-oriented constraint language, e. g., OCL, one
can restrict the set of valid object structures semantically, i. e., specific states are ruled
out if they violate the constraint specification. One important part of an OCL specification
are class invariants, which constrain the set of valid instances of a class. In HOL-OCL, an
invariant invX of a class X is a function that maps an object x of class X to a truth value
or to an undefined value ⊥, depending on the system state τ in which invX is evaluated.

The notion of class type is extended by the requirement that an instance of a class has
to fulfill the invariants of this class. Therefore, HOL-OCL provides semantic type sets, based
on a co-recursive construction described in [Brucker, 2007]: For each class X, HOL-OCL
defines the set CX of valid objects, i. e., all objects that fulfill the class invariant.

The following property holds for our construction: If an element x is in the set of valid
objects of its class X in a state τ , then x satisfies the invariants defined on X.

τ � x ∈ CX

τ � invX x
, (2.1)
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where τ denotes the current system state and the term τ � φ denotes that the system
state τ satisfies the formula φ. Informally, this rule means that all objects in the semantic
type set of a class have to satisfy the invariant of this class. From this rule, the following
properties follow directly: If an object x is of a given type X, then it satisfies its invariants
(Equation 2.2). If no object satisfies the invariants of some class X, then type set of X is
empty (Equation 2.3).

τ � x.oclIsTypeOf(X)

τ � invX x
,

τ � X :: allInstances()−>includes(x)

τ � invX x
, (2.2)

¬∃x.τ |= invX x

τ |= CX = ∅
, and

τ |= CX = ∅

τ |= ∀x.x.oclAsType(X).oclIsUndefined()
. (2.3)

We will refer to these properties in Chapter 5 when we define consistency notions for
UML/OCL models.



Chapter 3
Constraint Elicitation and Specification

As shown in Section 2.3, class models must typically be refined with textual constraints
to increase their maturity levels. To this end, the model developer must thoroughly ana-
lyze and elicit constraints. Such an elicitation is typically performed using domain analy-
sis [Prieto-D́ıaz, 1990, Hjørland and Albrechtsen, 1995], in which the modeled system is
manually analyzed and constraints are added by the model developer based on domain
knowledge. However, the model developer may not detect all causes for low maturity,
which can cause serious problems in the MDE process because the generated code may
cause runtime exceptions or worse, be wrong.

In this chapter, we present an approach to constraint elicitation that is complemen-
tary to domain analysis. Whereas constraints elicited by domain analysis are specific to
the respective domain, our approach focuses on eliciting domain-independent constraints,
i. e., constraints that occur in any kind of class model. To this end, we identify limita-
tions of the expressiveness of class models that require refinement and present a remedy
against these anti-patterns in the form of textual constraints in OCL. Subsequently, we cap-
ture these limitations in the form of anti-patterns. This enables an automatic constraint
elicitation that complements domain analysis.

This chapter is structured as follows. By analyzing the MOF meta-model, we identify
typical limitations of the expressiveness that require refinement, present examples to il-
lustrate the potential dangers of these limitations, and show how they can be remedied
by refining class models with textual constraints in Section 3.1. In Section 3.2, we show
how to capture such limitations as anti-patterns that can be used for automatic constraint
elicitation.

3.1 Limitations of the Expressiveness of Class Models

In UML or MOF, model states can only be partially constrained by means of the diagram-
matic class-modeling languages. The meta-model for class models (cf. Section 2.2) allows
model developers to define classes, attributes, and operations. Properties and operations
have types, and they are multiplicity elements, i. e., they can be sets with a predefined
minimum or maximum size. However, the meta-model is not expressive enough to ex-
press details that frequently occur in systems and need to be expressed in the model. Such
limitations of the expressiveness typically require refinement with textual constraints.

In this section, we show by example how to find limitations of the expressiveness of
class models. For each limitation, we show a set of problems that it can cause. Subse-
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quently, we specify a textual constraint in OCL that prevents these problems. We have
drawn the knowledge about these limitations from our experience in class modeling. In
addition, the case studies in Chapter 8 provide evidence that these limitations frequently
pose problems and can only be remedied by enriching the respective class model with
textual constraints.

3.1.1 Unrestricted Multiplicity Elements.

As shown, the multiplicities of properties can only be roughly constrained in a diagram-
matical way in class models. In the following, we present two cases in which this limited
way of defining multiplicities causes problems.

Multiplicities depending on an attribute value. In class Manager, we modeled an at-
tribute headCount, which denotes the maximum number of employees that a manager
can employ. Meta-models such as MOF or UML do not provide means to specify that the
number of employees in the employment relation depends on the value of headCount.
Therefore, the instance in Figure 3.1 is valid: Although anna has a maximum head count
of one, she can employ two employees.

anna : Manager

headCount = 1

bob : Employee charles : Employee

+ employs

+ worksFor

+ employs

+ worksFor

Figure 3.1: Two employees despite a maximum head count of one.

Since the instance shown in Figure 3.1 cannot be excluded in terms of the meta-model
of class models, an OCL constraint is required that restricts the employment relation de-
pending on the value of the headCount attribute. If the company model is annotated with
the following invariant headCountRestriction, the instance shown above is invalid.

context Manager
inv headCountRestriction: self.employs−>size() <= self.headCount

Context-unaware association semantics. Associations represent relations between
classes. Often, associations are created with a certain semantics in mind, but the semantics
is not specified. The relation between Employee and Manager in Figure 3.2 shows variables
as lower and upper multiplicity bounds. The values for these variables determine the se-
mantics of the relation. The relation can be a function (x1 = 0, y1 = ∗, x2 = 0, y2 = 1),
a total function (0..* / 1..1), an injective partial function (0..1 / 0..1), an injective total
function (0..1 / 1..1), a surjective partial function (1..* / 0..1), a surjective total function
(1..* / 1..1), or a bijective function (1..1 / 1..1).

Employee Manager+ x1..y1

+ x2..y2

Figure 3.2: A generic binary association between Employee and Manager.

The semantics of associations can be specified by assigning values for the multiplicities
of each property involved in the association. However, if the semantics of an association
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depends on other elements in the model instance, e. g., the value of an attribute, this
cannot be expressed in terms of the diagrammatic class model. The following example
illustrates this problem: In the model in Figure 2.5, the association employs from Manager
to Employee is surjective, i. e., every employee needs to work for at least one manager. This
is a problem, since the CEO of the company should have no manager. Thus, surjectivity for
the employment relation is only required for employees who are not the CEO. However,
this cannot be expressed in MOF and thus requires a textual constraint, which we formalize
in constraint hasManager as follows.

context Manager inv hasManager:
if not self . isCEO
then self .employs.allInstances()−>forAll ( y |

self . allInstances()−>exists( x | x.employs−>includes(y)))
else true
endif

Note that the multiplicity of worksFor in the company model should be relaxed from 1..∗
to ∗ to avoid contradictions with hasManager.

3.1.2 Insufficiently Typed Associations.

Figure 3.3 shows an instance of our example model where anna, a Manager, works in a
cubicle, while charles, an Employee, works in a single office. This instance is valid because
it conforms to the meta-model.

Figure 3.3: Manager and employee inhabiting “inappropriate” offices.

However, a company policy may have the requirement that only managers may work
in single offices. This constraint is violated by the instance in Figure 3.3. Therefore, a
textual OCL constraint is necessary that restricts the usage of subclasses, which we specify
as follows.

context Single
inv onlyManagers: self.inhabitant−>forAll(x | x.oclIsTypeOf(Manager))

3.1.3 Unrestricted Reflexive Associations.

Reflexive associations are binary associations whose both ends belong to the same class.
In Figure 3.4, we illustrate three ways in which reflexive associations can occur. In its
simplest form, a reflexive association connects one class to itself such as inverse for the
class Color. A less obvious reflexive association is worksFor for the class Manager: Since
Manager is a special kind of Employee, it inherits the worksFor association. Thus, managers
can work for other managers or for themselves. The third example shows a reflexive path:
Starting from the class Operation, the path output. input leads back to this class. We subsume
reflexive paths in our notion of reflexive associations.
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Color Operation

Variable

Employee

Manager

1

- inverse

*

0..1 - output

*

0..1

- input

*

- employs

1..*

- worksFor

Figure 3.4: Examples of reflexive associations.

Reflexive associations are an important means for modeling systems, since the concept
of reflexivity is ubiqituous in many systems: The mother of a human being is a human
being, the inverse of a color is a color, and the superior of a manager is a manager.

In general, reflexive associations need to be treated with care because they allow ob-
jects to be related to themselves, which corresponds to the notion of reflexive relation in
mathematics. Often, additional constraints are necessary to rule out invalid relations, as in
the following example. Although the successor of a natural number is a natural number,
the Peano axioms, which can be considered a meta-model for natural numbers, ensure
that the set of natural numbers is infinite and the successor relation is acyclic.

Unconstrained reflexive associations can cause a low maturity level for three reasons.
First, they enable cycles in the object graph, second, they allow an arbitrary number of
objects to be related in a chain, and third, they allow for so-called diamond configurations.
In the following, we point out these problems in detail and show how textual constraints
are used to remedy the expressive deficiencies of graphical modeling languages.

Cycles. Reflexive associations can cause cycles in the object graph. Cycles may be desired
in certain systems: For instance, in usual color spaces, the inverse of the inverse of a color
is the color itself. However, such cycles are in many systems: a person cannot be the
mother of her mother, and a natural number is not the successor of itself. The reflexive
association worksFor can cause cycles in instances of the company model. We illustrate
such a cycle in Figure 3.5.

Figure 3.5: A cyclic management relation.

The model developer needs to be aware that reflexive associations can cause cycles in
object graphs and he needs to carefully assess whether cycles are valid structures in the
system that is modeled. If not, cycles must be excluded using OCL constraints.

For the definition of such constraints, an operation to compute the transitive closure
of an operation is required. Since there is no such operation in OCL (cf. Section 2.3), the
transitive closure of each association needs to be manually defined. In the following, we
define a transitive closure operation for the worksFor association and state an invariant
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that the context object may not be a member of the transitive closure of its worksFor
association.

context Manager

def: closureWorksFor(S:Set(Manager)) : Set(Manager) =
worksFor−>union((worksFor − S)−>

collect (m : Manager | m.closureWorksFor(S−>including(self)))−>asSet())

inv noCycles: self.closureWorksFor(Set{})−>excludes(self)

In the definition of the transitive closure operation, we use a parameter S to ensure ter-
mination of the operation. S represents the set of objects for which the transitively reach-
able objects have already been calculated. On each recursive invocation of the operation,
S grows by one element. Thus, the set worksFor − S will eventually be empty and the oper-
ation terminates, provided that there is a finite number of objects in the respective model
state. We added this parameter after we found out that the evaluation of a simple declara-
tive definition of the transitive closure, i. e., worksFor−>union(worksFor.closureWorksFor()),
would not terminate in most current OCL tools.

Arbitrary path lengths. Another problem with reflexive associations is that navigation
paths in model states can be arbitrarily long. For certain application domains, the maxi-
mum path length needs to be restricted. For instance, Figure 3.6 shows an instance of the
company model with eight hierarchy layers.

Figure 3.6: A company with eight management levels.

Such configurations are not valid for most systems modeled and should not be allowed.
However, the length of such paths cannot be restricted in terms of the meta-model for class
models and thus needs textual constraints that require recursive queries as introduced in
Section 2.3. The following constraint restricts the path length of the worksFor association
to 5. It consists of two parts: a definition for the recursive query and the actual invariant,
which uses the previously defined query.

context Manager

def: pathDepthWorksFor(max: Integer, counter: Integer): Boolean =
if (counter > max or counter < 0 or max < 0) then false
else if (self .worksFor−>isEmpty()) then true

else self .worksFor−>forAll(m:Manager|m.pathDepthWorksFor(max, counter+1))
endif

endif

inv smallHierarchy: self .pathDepthWorksFor(4,0)
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Diamond configurations. Reflexive associations can cause a third kind of undesired
configuration, namely diamonds. Diamond configurations have been known for a long
time [Newman, 1942] and have become known as “Nixon diamonds” in nonmonotonic
reasoning [Reiter and Criscuolo, 1981] or “deadly diamonds of death” in object-oriented
programming languages with multiple inheritance such as C++ [Martin, 1998].

Definition 14 (Diamond Configuration). A model state τ of a model M contains a dia-
mond configuration between objects o1 and o4 iff there exist objects o2, o3 ∈ τ and links
(o1, o2), (o1, o3) ∈ τ and there are (direct or transitive) links from o2 to o4 and from o3 to o4.

In our company model, the reflexive association worksFor can cause diamond config-
urations between managers as shown in Figure 3.7: daniela has two managers berta and
cindy, who work for the same manager anna. Such a configuration can cause the following
problem: If anna tells berta to fire all employees and tells cindy to keep all employees, it is
not specified what happens to daniela, who works for both berta and cindy. Therefore, dia-
mond configurations must be treated with special care and even may have to be excluded
in many cases.

anna : Manager

berta : Manager cindy : Manager

daniela : Manager

+ employs

+ worksFor

+ employs

+ worksFor

+ employs

+ worksFor

+ employs

+ worksFor

Figure 3.7: Diamond configuration of managers.

Such a configuration can be excluded with the following constraint noDiamond in which
we re-use the previously defined operation closureWorksFor().

context Manager inv noDiamond:
self .worksFor−>exists(m1,m2 | m1−>closureWorksFor(Set{})−>intersect(

m2−>closureWorksFor(Set{}))−>notEmpty()
implies m1=m2)

3.1.4 Missing Unique Identification.

Figure 3.8 shows a valid instance of the company model that is likely to cause integrity
problems when stored in a data base because employees e1 and e2 are indistinguishable
by their name.

e1 : Employee

name = "Anna Apple"

e2 : Employee

name = "Anna Apple"

o1 : Cubicle

+ worksIn + worksIn

Figure 3.8: Two employees with the same name sharing an office.

Using the OCL operation isUnique, we can textually specify the tuple (name,worksIn)
to be the primary key for class Employee. This renders above example state invalid. The
constraint reads as follows.
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context Employee
inv uniqueness: self.allInstances()−>isUnique(e|Tuple(x=e.name,y=e.worksIn))

3.1.5 Unrestricted Attribute Values.

The values of attributes of one or more classes cannot be related to each other in terms of
the class modeling language. In this subsection, we illustrate two examples for why this
lack of expressiveness causes low maturity of class models. We distinguish between simple
and complex relations of properties.

Simple relations of attribute values. Two properties can be related by a binary operator
such as less-than (<). However, such relations cannot be modeled in terms of the MOF
meta-model. Figure 3.9 shows an instance of the company model that conforms to the
meta-model although the employee charles has a higher salary than his manager anna,
which may not conform to their company’s policy.

charles : Employee

salary = 50000

anna : Manager

salary = 40000 + employs

+ worksFor

Figure 3.9: An employee has a higher salary than his manager.

To exclude such instances, the following OCL constraint higherSalary needs to be added
to the company model. The constraint requires that the salary of a manager is higher than
the salary of each employee.

context Manager
inv higherSalary: self .employs−>forAll( e | self .salary > e.salary )

Complex relations of attribute values. In our example world, the budget of a manager
is used to pay the salary of the manager’s employees. Therefore, the budget must be at
least the sum of the salaries of all employees whom a manager employs. However, this
fact cannot be expressed in terms of MOF, and therefore, the instance in Figure 3.10 is a
valid instance of the company model, although anna cannot pay the full salaries for bob
and charles.

anna : Manager

budget = 10

bob : Employee

salary = 6

charles : Employee

salary = 5

+ employs

+ worksFor

+ employs

+ worksFor

Figure 3.10: Sum of employees’ salaries is higher than the budget.

In order to exclude the instance from Figure 3.10, we annotate the company model with
the following invariant, budgetRestriction.

context Manager
inv budgetRestriction: self .employs.salary−>sum() <= self.budget

In the next section, we explain how the limitations presented in this section can be
captured as anti-patterns.
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3.2 Capturing Limitations as Anti-Patterns

In this section, we describe how the problems found in the previous section can be ab-
stracted to anti-patterns, which enables an automatic elicitation of these limitations. For
each anti-pattern, we describe the problem that its occurrence can cause in an abstract
way. Furthermore, we assess the severity of each pattern, i. e., the gravity of the problem
that the respective pattern causes.

3.2.1 Unrestricted Multiplicity Elements.

Since Property is a MultiplicityElement (Figure 2.3), properties have a lower and an upper
bound for the multiplicity of the association end they denote, i. e., the cardinality of the
domain of the relation. The lower bound reflects the minimum number and the upper
bound reflects the maximum number of objects that need to be in the domain of the
relation. As shown in Figure 2.3, the lower and upper boundary can be either a natural
number or arbitrarily large, represented by the symbol ∗.

The upper multiplicity of an association is often unbounded (∗) because in most sys-
tems, the number of elements in a relation is not restricted to a fixed literal value. For
instance, we used an unbounded multiplicity for all associations in the company model
(Figure 2.5), except for the property worksIn of Employee, because an employee can be
related to at most one office in our system.

However, an unspecified number of elements in a relation can potentially cause a low
maturity level of the model. In the company model, the employment relation is an example
of low maturity: It allows managers to employ any natural number of employees and every
employee may work for arbitrarily many managers (but at least one).

We summarize this anti-pattern in Table 3.1.

Unrestricted Multiplicity Elements
Description This pattern occurs when the upper multiplicity bound of a

multiplicity element is unbounded, also denoted by an aster-
isk (*).

Problem Multiplicity bounds often depend on the model state, e. g., the
value of a certain attribute. However, this cannot be expressed
diagrammatically in class models.

Severity Medium – Occurrences of this pattern can cause a relation of
one object with too many objects.

Table 3.1: The Unrestricted Multiplicity Elements anti-pattern.

3.2.2 Insufficiently Typed Associations.

According to the meta-model in Figure 2.3, the type of a property can be a class. This
allows model developers to create associations from one class to any other class, even to
a class that has specialized subclasses. Thus, any subclass of the superclass can take the
role of the superclass in the association. However, in some scenarios, this is unwanted but
cannot be prevented by means of the class model syntax.

We summarize this anti-pattern in Table 3.2.
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Insufficiently Typed Associations
Description This pattern occurs when an association between two classes

is defined and either of them has at least one subclass that
specializes it.

Problem In this case, the association needs to be refined such that asso-
ciations with certain subclasses are required or prohibited.

Severity Medium – Occurrences of this pattern can cause underspecified
relations between objects.

Table 3.2: The Insufficiently Typed Associations anti-pattern.

3.2.3 Unrestricted Reflexive Associations.

In class models, reflexive associations can cause a low maturity level if unconstrained.
First, they enable cycles in the object graph, second, they allow an arbitrary number of
objects to be related in a finite chain, and third, they allow for so-called diamond configu-
rations, i. e., there exists more than one path between two objects whose length is greater
than one.

The consequences of cyclic dependencies and diamond configurations between objects
for the generated code are severe. Cyclic dependencies can cause nonterminating compu-
tations and diamond configurations can cause synchronization problems. For example, in
formal proof environments such as Isabelle/HOL [Nipkow et al., 2002], it must be explic-
itly proven that recursive definitions terminate. In Section 8.2, we introduce a model in
which these problems are illustrated.

We summarize this anti-pattern in Table 3.3.

Unrestricted Reflexive Associations
Description This pattern occurs when a class C is related to itself, i. e., the

graph of the class model in which classes denote nodes and as-
sociations denote edges contains a cycle. There are two causes
for this. First, there can be an association a of which both ends
connect to C. Second, there can be a sequence of associations
and a corresponding path expression x1.x2. . . . .xn that relate C
indirectly to itself.

Problem Reflexive associations can cause problem such as cyclic depen-
dencies between objects if unrestricted.

Severity High – Occurrences of this pattern can cause nonterminating
computations in the generated code.

Table 3.3: The Unrestricted Reflexive Associations anti-pattern.

3.2.4 Missing Unique Identification.

Our example model of a company in Figure 2.5 is a data model. It is usually re-
quired for data models that objects can be uniquely identified, i. e., they must have
a primary key. In MOF, a property of a class can be made a unique identifier
by setting its isID attribute to true. However, only one property of a class may
be a unique ID [Object Management Group (OMG), 2006a], which excludes primary
keys that are composed of several properties. In UML class models, it is not pos-
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sible to assign such a unique-key property to class attributes [Muller, 1999]. In-
stead, defining such a property requires using UML profiles [Gornik, 2002] or OCL con-
straints [Demuth and Hussmann, 1999].

In our example, the name of an Employee can be made a primary key in the company
model in terms of MOF. However, if we want to compose the primary key from the proper-
ties name and worksIn, we need to add a textual constraint to the model because composed
keys cannot be modeled in terms of MOF. We summarize this anti-pattern in Table 3.4.

Missing Unique Identification
Description This pattern occurs when a class C has a nonempty set of at-

tributes, but none of them is assigned to be the primary key of
C.

Problem Although objects typically have unique references, it is possi-
ble for two or more objects of the same class to have identical
values for all of their attributes. This can make them indistin-
guishable and lead to runtime problems in the system model.

Severity Medium – Occurrences of this pattern can compromise the in-
tegrity of model states.

Table 3.4: The Missing Unique Identification anti-pattern.

3.2.5 Unrestricted Attribute Values.

In system models, properties of the same class or of different classes are related, i. e., the
value of one property depends on the value of other properties. Although such relations
are common, the meta-model for class models does not provide any means to express such
relations. We summarize this anti-pattern in Table 3.5.

Unrestricted Attribute Values
Description This pattern occurs when attributes of the classes in a model

are not related to each other although their values depend on
each other in the modeled system.

Problem Attributes are often not independent of each other. However,
relations between attributes cannot be expressed in class mod-
eling languages. Thus, such relations cannot be expressed dia-
grammatically by means of the meta-model.

Severity Medium – Occurrences of this pattern can cause undesired
model states.

Table 3.5: The Unrestricted Attribute Values anti-pattern.

3.3 Summary

Diagrammatic languages such as defined by MOF or UML have been successfully used in
various development projects. However, model developers must be aware that diagram-
matic languages alone are not sufficient for developing class models with high maturity
levels. We have shown by example that the limited expressiveness of the meta-model for
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class models requires refinement of class models with textual constraints and how such
limitations can be captured as anti-patterns.

The contribution made is twofold. First, it is important for model developers to be
aware of such limitations and our observations may help to identify further limitations.
Second, capturing the limitations as anti-patterns allows us to automatically match them
against model states. As part of the tool support for our approach, we have developed
a plug-in that searches class models for occurrences of the anti-patterns and displays the
results to the model developer. In Chapter 7, we elaborate on the details of our tool
support.

It is important to mention that in general, the occurrence of an anti-pattern does not
imply a problem in the respective model. However, occurrences of anti-patterns denote
potential problems and should be examined by the model developer if they actually pose
problems.

We have shown how OCL constraints can be used to remedy the anti-patterns that we
have identified to increase the maturity level of class models. However, writing correct
constraint specifications for class models is a time-consuming task that requires significant
amount of expertise [Chiorean et al., 2005]. In addition, it comprises numerous repetitive
tasks because constraints against several occurrences of one anti-pattern share a similar
structure. As explained in Section 2.4, patterns are generally useful for recurring prob-
lems. In particular, constraint patterns (cf. Section 2.4.1) are useful for solving recurring
specification problems. Therefore, we present in the following chapter how constraint
patterns can be used as a concise means to prevent anti-patterns from occurring in model
states. For each of the anti-patterns introduced in this chapter, we will present one or
more constraint patterns that can be used to remedy the respective anti-pattern.
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Chapter 4
Specifying Constraints Using Patterns

In the previous chapter, we have identified recurring problems in class models as anti-
patterns that require refinement with textual constraints. However, developing con-
straint specifications is not an easy task: Besides theoretical and practical arguments
that point out various deficiencies of OCL [Chiorean et al., 2005, Süß, 2006, Cabot, 2006,
Brucker et al., 2006], one important aspect needs to be taken into account: Class models
can express complicated relationships, including subtyping, reflexive relations, or poten-
tially infinitely large instances, and constraining such facts requires addressing this com-
plexity.

Furthermore, constraint specifications need to be maintained together with the model
and be adapted once the model changes. This usually results in additional time-consuming
coding and debugging phases, especially in refactorings [Correa and Werner, 2004,
Pretschner and Prenninger, 2005, Markovic and Baar, 2005] where models undergo fre-
quent changes and the attached constraints need to be kept consistent with new versions
of the model.

Constraint patterns promise to shorten the development time and decrease the
error rate for constraint development by offering predefined templates. How-
ever, existing publications on constraint patterns [Miliauskaitė and Nemuraitė, 2005,
Ackermann and Turowski, 2006, Costal et al., 2006] focus on very specific refinement
problems and are thus not flexible enough to be used for expressing more general con-
straints and in particular, expressing the constraints from Section 3.1, which we used to
remedy the previously identified anti-patterns. Therefore, we introduce the concept of
composable constraint patterns that allows model developers to logically connect differ-
ent constraint patterns and, thus, to specify complex constraints in terms of constraint
patterns.

This chapter is organized as follows. In Section 4.1, we present how constraint patterns
can be derived from concrete constraints and formally specified as OCL templates and in
HOL-OCL. In Section 4.2, we present the concept of an extensible library of constraint pat-
terns. Besides elementary constraint patterns, such a library contains a set of composite
constraint patterns, which can be used to combine pattern instances and thus create com-
plex constraints. In Section 4.3, we present an example library of constraint patterns that
can be used to express constraints that exclude occurrences of the anti-patterns identified
in the previous chapter. We summarize our findings in Section 4.4.

37
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4.1 Deriving and Defining Constraint Patterns

Constraint patterns can be identified by analyzing existing constraints for recurring expres-
sions and abstracting from them. In Section 4.1.1, we use one constraint from Section 3.1
to illustrate how constraint patterns are derived from concrete constraints.

In general, the semantics of constraint patterns can be provided in any language,
e. g., parameterized OCL templates as introduced in Section 2.4.1. This has the advan-
tage that constraint patterns can be understood by OCL experts and concrete constraints
can be simply instantiated from such templates by providing values for the pattern param-
eters. In Section 4.1.2, we show how the semantics of constraint patterns can be specified
as functions in HOL-OCL. A formalization in HOL-OCL paves the way for defining compos-
ite constraint patterns, which we cannot express in terms of plain OCL. Furthermore, such
a formalization enables the use of constraint patterns for consistency analysis, which will
be explained in Chapter 5.

4.1.1 Deriving Constraint Patterns.

In this subsection, we show how constraint patterns can be derived from concrete con-
straints by abstraction. To this end, we use a constraint that we defined to prevent occur-
rences of the Unrestricted Attribute Values anti-pattern in the previous chapter. We analyze
this constraint by investigating those parts of it that can be re-used in other contexts.
Subsequently, we replace these parts by variables and define a template that denotes the
elicited constraint pattern.

The Unrestricted Attribute Values anti-pattern causes that attributes of two or more
classes that have some dependency in the system modeled to be unrelated in the corre-
sponding class model. In our company model, the salaries of managers and employees are
not related. In Section 3.1.5, we showed a model state in which an employee has a higher
salary than his manager. Since we consider this as undesired, we added the constraint
higherSalary to exclude such instances from the set of valid instances, which we defined
as follows.

context Manager
inv higherSalary: self .employs−>forAll( e | e.salary < self.salary )

Abstractly, this constraint compares (<) an attribute of the context class (salary) to a
certain attribute (e.salary) of related objects (self .employs). From this constraint, we thus
derive the Attribute Relation pattern. Using this pattern, an attribute contextAttribute can
be related to a remoteAttribute by an operator. The class containing the contextAttribute
and the class containing the remoteAttribute are related by a navigation. We define this
pattern as an OCL template as follows.

pattern AttributeRelation (navigation:Sequence(Property), remoteAttribute:Property,
operator: OclExpression, contextAttribute :Property) =

self .navigation−>forAll( x | x.remoteAttribute operator contextAttribute )

Using this constraint pattern, we can express the constraint higherSalary in a more
compact way. The definition of this constraint using above pattern reads as follows.

context Manager
inv higherSalary: AttributeRelation (employs,salary,<,salary)

In Chapter 7, we will present an implementation of our approach in the MDE tool
IBM Rational Software Architect (RSA). In this tool, pattern instances are represented
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in a graphical way in the form of UML collaborations. As can be seen in Figure 4.1,
which shows a pattern representation of the constraint higherSalary, these collaborations
are stereotyped (“Pattern Instance”), have a name (“higherSalary”), indicate the pattern
to which this instance belongs (“AttributeRelation”), and provide the parameters of the
respective pattern with their types, indicated by the icons next to the parameter names. In
addition to the parameters of the respective pattern, an additional parameter context needs
to be specified as an additional parameter in contrast to the textual pattern representation
as shown above in which the context is specified in the header of the OCL invariant.

Employee

name : String

salary : Integer

Manager

budget : Integer

headCount : Integer

isCEO : Boolean

hire ( )

higherSalary

AttributeRelation

navigation [*] : employs 

remoteAttribute [1..*] : salary 

operator [1] : "<" 

contextAttribute [1..*] : salary 

context [1] : Manager 

*

+ employs

1..*

+ worksFor

Figure 4.1: Constraint higherSalary as represented in RSA.

4.1.2 Representing Patterns in HOL-OCL.

In this section, we explain how constraint patterns can be expressed in terms of HOL-OCL.
Such a formalization has two advantages. First, it allows us to define composable con-
straint patterns which is not possible using OCL templates as introduced before. Second,
the HOL-OCL definitions can be used in consistency proofs with the aim of increasing the
degree of proof automation. We will use HOL-OCL for proving consistency of UML/OCL
models in Section 5.2.

In HOL-OCL, a class invariant is a function that maps an object to an OCL truth value.
Thus, a constraint pattern is a function that maps a set of parameter values to a class
invariant. In the following definition, we use the type variable ’a to denote an arbitrary
set of parameters, which are mapped to an invariant, i. e., a function that maps an object
of class ’b to a truth value.

types constraintPattern = ” ’a ⇒
((’ τ ,’ b ::bot)VAL⇒ ’τ Boolean)”

In the following, we show by the example of the Attribute Relation pattern how the
semantics of constraint patterns can be defined in HOL-OCL. We first define the signature
of the constraint pattern. The first parameter is a sequence of Property. In HOL-OCL, this
corresponds to a function that maps an object of some class ’a to a collection of objects of
some class ’ c.

The second parameter denotes an attribute of class ’ c. We thus model this parameter
as a function from an object of type ’ c to a value of type ’b. The third parameter, operator,
denotes a binary operator that maps two objects of type ’b to an OCL truth value. The last
attribute denotes an attribute of the context class and is thus modeled as a function from
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’a to ’b. These parameters are mapped to a constraint, which is a function from class ’a
to an OCL truth value.

consts
AttributeRelation ::
” ((’ τ ,’ a ::bot)VAL⇒ (’ τ ,’ c :: bot)Set) ⇒ −− navigation

((’ τ ,’ c :: bot)VAL⇒ (’ τ ,’ b ::bot)VAL)⇒ −− remoteAttribute
((’ τ ,’ b ::bot)VAL⇒ (’ τ ,’ b ::bot)VAL⇒ ’τ Boolean)⇒ −− operator
((’ τ ,’ a ::bot)VAL⇒ (’ τ ,’ b ::bot)VAL)⇒ −− contextAttribute
((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)”

We define Attribute Relation as a lambda expression with one parameter self . Since
functions are usually used with a prefix notation in Isabelle/HOL, the OCL expression
self.navigation becomes navigation self in HOL-OCL and the remaining pattern parameters
are used analogously.

defs
AttributeRelation def :
” AttributeRelation navigation remoteAttribute operator contextAttribute ==
λself . (navigation self )−>forAll(y | operator (remoteAttribute y) ( contextAttribute self )) ”

4.2 Composable Constraint Patterns

Although the constraint pattern approach as it has been previously introduced
[Ackermann and Turowski, 2006, Costal et al., 2006, Miliauskaitė and Nemuraitė, 2005]
reduces both the development time and error rate for model constraints, it has one impor-
tant restriction. As each pattern represents a subset of all possible constraint expressions,
there will be many constraints that are not expressible in terms of existing constraint pat-
terns. This holds even when an extensive pattern library is used.

Therefore, we introduce the notion of composable constraint patterns that increases
the expressiveness of the constraint pattern approach by allowing to create complex con-
straints by composing various pattern instances. We divide constraint patterns into el-
ementary and composite patterns. The set of elementary patterns represents recurring
restrictions that have been identified in the literature, and it is extensible by constraint
experts. The composite patterns are recursively constructed from elementary patterns and
represent logical connectives and quantification, which allows users to create complex
constraints from existing patterns.

We relate the constraint patterns using generalization associations. This creates a
taxonomy of patterns. Such taxonomies as shown in Figure 4.2 give structure to a set of
patterns and helps model developers find the right pattern for a specific purpose.

Constraint
Pattern

Elementary
Pattern

Composite
Pattern

…

…

…

…

Figure 4.2: Foundations of the constraint pattern taxonomy.

The core of our approach is the class ConstraintPattern, which is a generalization of
ElementaryPattern and CompositePattern. Since we have already shown an example of an
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elementary pattern, we now present an example of a composite pattern.
The Negation pattern can be used to logically negate other pattern instances. Syntacti-

cally, it has one parameter, which is the constraint to be negated. In the definition of the
Negation pattern, we exploit that HOL-OCL supports functions as parameters for functions.
Thus, we define Negation as a function from constraint ( ((’ τ , ’a ::bot)Set⇒ ’τ Boolean))
to constraint.

constdefs
Negation :: ” ((’ τ , ’a ::bot)Set⇒ ’τ Boolean)⇒

((’ τ , ’a ::bot)Set⇒ ’τ Boolean)”
”Negation P == (λself. not (P self )) ”

Having set the framework for composable constraint patterns, we provide an example
library of elementary and composite constraint patterns in the subsequent section. We
further show how these constraint patterns can be used to prevent occurrences of the
anti-patterns introduced in Chapter 3.

4.3 An Extensible Library of Constraint Patterns

In this section, we present a library of composable constraint patterns. To this end, we first
present a collection of constraint patterns in Section 4.3.1 that are motivated by the anti-
patterns introduced in Chapter 3. In particular, we introduce for each anti-pattern one
or more constraint patterns that can be used to prevent the respective anti-pattern from
occurring. Subsequently, we present a set of composite constraint patterns in Section 4.3.2
that can be used to create complex constraints from pattern instances.

4.3.1 Elementary Constraint Patterns.

In this subsection, we present an extensible library of elementary constraint patterns. The
idea of elementary constraint patterns is to identify a relevant set of elementary constraints
that covers frequently occurring restrictions on a model. The constraint patterns presented
in this section can be used to remedy the anti-patterns introduced in Chapter 3. Therefore,
we group the patterns introduced in this section according to their respective anti-pattern.

For each pattern, we provide an example constraint from which we derived the pat-
tern. We first define the semantics of the pattern informally in English. Subsequently, we
formally define the semantics of the patterns. Although it would be sufficient to define
the semantics in HOL-OCL because corresponding OCL templates could be generated from
the HOL-OCL definitions, we also provide equivalent OCL templates because the may be
easier to read for model developers.

4.3.1.1 Unrestricted Multiplicity Elements.

In Section 3.1.1, we showed that unbounded multiplicities (*) for associations are on the
one hand unavoidable in class models, and on the other hand, they are often a source
of low maturity. In this subsection, we present patterns that allow model developers to
restrict the cardinality of unbounded associations depending on the context, i. e., attribute
values of objects in the instance.

Multiplicity Restriction. In our company model, we modeled that a manager can em-
ploy an arbitrary number of employees. However, we required that the number of em-
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ployees of a manager m depends on the value of the attribute headCount of m. Therefore,
we defined the following OCL constraint.

context Manager
inv headCountRestriction: self.employs−>size() <= self.headCount

This constraint can be represented as an instance of the Multiplicity Restriction pattern.
The Multiplicity Restriction pattern restricts the multiplicity of associations. While the
multiplicity of associations can be restricted in a UML class model, this pattern allows
model developers to define multiplicity restrictions that depend on properties of the model
instance, e. g., an attribute value. We define the pattern as an OCL template as follows.

pattern MultiplicityRestriction (navigation: Sequence(Property),
operator: OclExpression, value:OclExpression) =

self .navigation−>asSet()−>size() operator value

This pattern has three parameters: navigation, which is a sequence of properties, thus
allowing for the use of OCL navigation expressions such as self .employs.office, operator,
and value, which can be arbitrary OCL expressions. value can the name of an attribute or
an arbitrary OCL expression. Since self.navigation can evaluate to a multi-set, we use the
OCL operator asSet() to cast the resulting collection into a set. In HOL-OCL, the definition
reads as follows.

constdefs
MultiplicityRestriction :: ” ((’ τ ,’ a ::bot)VAL⇒ (’ τ ,’ c :: collection )VAL )⇒

(’ τ Integer ⇒ ’τ Integer ⇒ ’τ Boolean)⇒
’τ Integer ⇒ ((’ τ ,’ a)VAL⇒ ’τ Boolean)”

” MultiplicityRestriction association operator term == λ self .
(operator ((association self )−>asSet()::(’τ ,’ c :: collection )VAL)−>size() term) and
(0 ≤ term)”

Using the Multiplicity Restriction pattern, we can define the constraint headCountRestric-
tion as follows.

context Manager
inv headCountRestriction: MultiplicityRestriction (employs, <=, headCount)

Injective Association, Surjective Association, Bijective Association. In Section 3.1.1,
we showed that it is generally possible to define associations in class models as injective,
surjective, or bijective. However, if the semantics of an association depends on the context
of the model instance, e. g., on attribute values, the semantics must be specified with an
OCL constraint. The following constraint patterns can be instantiated to specify injectivity,
surjectivity, and bijectivity.

pattern InjectiveAssociation (property:Sequence(Property)) =
self .property−>size() = 1 and
self . allInstances()−>forAll (x,y | x.property = y.property implies x=y)

pattern SurjectiveAssociation(property:Sequence(Property)) =
self .property.allInstances()−>forAll ( y |

self . allInstances()−>exists( x | x.property−>includes(y)))

pattern BijectiveAssociation(property:Sequence(Property)) =
InjectiveAssociation (property) and
SurjectiveAssociation(property)
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In HOL-OCL, the definitions read as follows.

constdefs
InjectiveAssociation :: ” ((’ σ U St ,’a :: bot)VAL⇒

(’ σ U St ,’b :: collection )VAL)⇒
((’ σ U St ,’a :: bot)VAL⇒ (’ σ U St) Boolean)”

” InjectiveAssociation property ==
(λself . (property self )−>size() =1 and

((OclAllInstances self )−>forAll(x |
((OclAllInstances self )−>forAll(y |
((property x) = (property y) implies x =y )))))) ”

constdefs
SurjectiveAssociation :: ” ((’ σ U St ,’a :: bot)VAL⇒

(’ σ U St ,’b :: bot)Set) ⇒
((’ σ U St ,’a :: bot)VAL⇒ (’ σ U St) Boolean)”

”SurjectiveAssociation property ==
(λself . ∀y ∈ (OclAllInstances ((property self ))) ·

(∃x ∈ (OclAllInstances self ) · ((property x)−>
includes((y ::(’ σ U St ,’b :: bot)VAL)) ))) ”

constdefs
BijectiveAssociation :: ” ((’ σ U St ,’a :: bot)VAL⇒

(’ σ U St ,’b :: bot)Set) ⇒
((’ σ U St ,’a :: bot)VAL⇒ (’ σ U St) Boolean)”

” BijectiveAssociation property ==
(λself . InjectiveAssociation property self and SurjectiveAssociation property self ) ”

Using these patterns, we can express the constraint hasManager from Section 3.1.1 as
follows.

context Manager inv hasManager:
if (not self . isCEO)
then SurjectiveAssociation(Sequence{employs})
else true
endif

If a manager is not the CEO, the employs association must be surjective, i. e., the manager
needs to work for another manager. As an example, consider the constraint that no two
employees may work in the same office. This can be expressed through the following
pattern instance.

context Employee
inv: InjectiveAssociation ( office )

Injectivity and related properties such as surjectivity and bijectivity can also be expressed
using multiplicities in the class diagram. However, these patterns become important if an
association is restricted under certain assumptions only, and not globally for all instances
of a model. This can be modeled using a composite pattern (cf. Section 4.3.2).

Object in Collection. Another example constraint that is related to the Unrestricted Mul-
tiplicity Elements anti-pattern is the following. A company may have the requirement that



44 4.3. AN EXTENSIBLE LIBRARY OF CONSTRAINT PATTERNS

managers need to work in the same office with at least one of their employees. We specify
this constraint in OCL as follows.

context Manager inv cooperation:
self .employs.worksIn.inhabitant−>includes(self)

The Object In Collection pattern can be used to express that the context element or parts of
it must be in a collection of related objects. It has two parameters. The first parameter set
denotes a navigation to a set of related elements. The second parameter element denotes
the part of the context object that is required to be in set, for example, a certain attribute.
If the context object as a whole is required to be in the set, then element must be empty.

pattern ObjectInCollection(set :Sequence(Property), element:Sequence(Property)) =
self .set−>includes(self.element)

This OCL template is not correct: If element is empty, the resulting OCL expression contains
the term (self.), which is not a valid OCL term. Therefore, we must define the pattern as
follows.

pattern ObjectInCollection(set :Sequence(Property), element:Sequence(Property)) =
if element−>notEmpty()
then self .set−>includes(self.element)
else self .set−>includes(self)
endif

HOL-OCL allows us to precisely define this constraint pattern without using conditional
statements. In the following definition, element is represented as a function. If element is
empty, the identity function λx.x can be used as the according representation in HOL-OCL.

constdefs
ObjectInCollection :: ” (’ τ ,’ b ::bot)Set⇒

((’ τ ,’ a ::bot)VAL⇒ (’ τ ,’ b ::bot)VAL)⇒
((’ τ ,’ a ::bot)VAL⇒’τ Boolean)”

ObjectInCollection def :
”ObjectInCollection myset element == λself. (myset−>includes(element self))”

We use this constraint pattern to express that a manager needs to work in the same office
with at least one employee, using the following instantiation.

context Manager inv cooperation:
ObjectInCollection(employs.worksIn.inhabitant,Sequence{})

In a second example, we require that managers must have an employee who has the same
salary.

context Manager inv fairSalary:
ObjectInCollection(employs.salary,self.salary)

4.3.1.2 Insufficiently Typed Associations.

In Section 3.1.2, we showed that associations between superclasses are often too coarse-
grained. In this subsection, we present constraint patterns that allow model developers to
specify details about such associations in a concise way.
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Type Restriction. In Section 3.1.2, we showed that properties that have a general type,
e. g., the property worksIn of type Office, often require further specification, which is not
possible in terms of the class-model meta-model. Therefore, OCL constraints need to be
defined that restrict the type of properties to a subset of the possible subtypes.

In our example, we want to constrain that employees may not work in single offices
and thus defined the following OCL constraint.

context Single
inv onlyManagers: self.inhabitant−>forAll(x | x.oclIsTypeOf(Manager))

The Type Restriction pattern can be used to restrict an association a that is defined between
the context class and a superclass C0. Using this pattern, it can be enforced that only
instances of certain subclasses C1, . . . , Cn of C0, the allowedClasses, may participate in
the relation. We use two nested quantifiers for the definition of this pattern, a universal
quantifier over the elements in the specified relation and an existential quantifier over the
set of allowed classes.

pattern TypeRestriction(property:Property, allowedClasses:Set(Class)) =
self .property−>forAll(x | allowedClasses−>exists(t | x.oclIsTypeOf(t)))

In HOL-OCL, the definition reads as follows.

constdefs
TypeRestriction ::
” ((’ τ ,’ a ::bot)VAL⇒ (’ τ ,’ b ::bot)Set) ⇒

(’ τ ,’ c :: collection )Set ⇒
((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)”

TypeRestriction def :
”TypeRestriction property allowedClasses == λself.

(∀ p ∈ ((property self )::(’ τ ,’ b ::bot)Set) · (
∃ t ∈ (allowedClasses) · ((p ::(’ τ ,’ b ::bot)VAL)

−>oclIsTypeOf((t::(’τ ,’ c)VAL))))) ”

We use this constraint pattern for defining invariant onlyManagers, which ensures that
only managers can work in single offices. The invariant reads as follows.

context Single inv onlyManagers:
TypeRestriction( inhabitant ,Set{Manager})

Type Relation. We introduce another constraint pattern that helps refine insufficiently
typed associations. The Type Relation pattern can be used to restrict an association a that
is defined between the context class and a superclass C0. Using this pattern, it can be
enforced that instances of certain subclasses C1, . . . , Cn of C0, the requiredClasses, must
participate in the relation.

pattern TypeRelation(property:Sequence(Property), requiredClasses:Set(Class)) =
requiredClasses−>forAll(c | self.property−>exists(p | p.oclIsTypeOf(p)))

In HOL-OCL, the definition reads as follows.

constdefs
TypeRelation ::
” ((’ τ ,’ a ::bot)VAL⇒ (’ τ ,’ b ::bot)Set) ⇒

(’ τ ,’ c :: collection )Set ⇒
((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)”
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TypeRelation def :
”TypeRelation property requiredClasses == λself.

(∀ t ∈ requiredClasses ·
(∃ p ∈ ((property self )::(’ τ ,’ b ::bot)Set) ·

((p ::(’ τ ,’ b ::bot)VAL)−>oclIsTypeOf((t::(’τ ,’c)VAL))))) ”

Whereas we used the previous pattern, Type Restriction, for requiring that only managers
may work in single offices, this constraint still permits managers to work in cubicle offices.
Let us assume that this is undesired and therefore, we define the following constraint that
requires managers to work in single offices.

context Manager inv onlySingleOffices:
TypeRelation(office,Set{Single})

4.3.1.3 Unrestricted Reflexive Associations.

In Section 3.1.3, we showed that unconstrained reflexive associations allow for instan-
tiations that may be undesired. In particular, instances of reflexive associations can be
cyclic, arbitrarily long, or multiple paths, i. e., diamonds, between two objects can exist.
In this section, we present three patterns that can be instantiated to avoid such undesired
instances.

No Cyclic Dependency. We showed that reflexive associations permit model instances
with cyclic paths. In our example, a manager anna worked for berta, who herself worked
for cindy, who herself worked for anna. In order to exclude such cycles, we defined the
following constraint that ensures that a manager does not appear in the transitive closure
of her worksFor association.

context Manager

def: closureWorksFor(S:Set(Manager)) : Set(Manager) =
worksFor−>union((worksFor − S)−>

collect (m : Manager | m.closureWorksFor(S−>including(self)))−>asSet())

inv noCycles: self.closureWorksFor(Set{})−>excludes(self)

To avoid writing such complicated recursive functions, we use the pattern No Cyclic De-
pendency, which uses another pattern closure that contains a definition for the transitive
closure.

pattern NoCyclicDependency(property: Sequence(Property)) =
self .closure(property)−>excludes(self)

pattern closure(property: Sequence(Property)) =
self .property−>union(self.property.closure(property))

In HOL-OCL, the definition reads as follows.

constdefs
NoCyclicDependency :: ”((’a,’b)VAL⇒ (’ a ,’ b)Set) ⇒

((’ a ,’ b ::bot)VAL⇒ ’a Boolean)”
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NoCyclicDependency def :
”NoCyclicDependency property == λself.

(( transitiveClosure (makeTuple2(self,property,OclMtSet )))::(’ a ,’ b ::bot)Set)−>
excludes((self ::(’ a ,’ b ::bot)VAL)) ”

For above definition, we use an auxiliary function makeTuple2 that maps a set of pa-
rameters to the OCL tuple type. In addition, we use an operator to compute the tran-
sitive closure of a reflexive association. Since OCL does not provide such an opera-
tor [Object Management Group (OMG), 2003], we need to define it in HOL-OCL. In the
following, we define a recursive function transitiveClosure . In HOL-OCL, a measure func-
tion must be specified for µ-recursive functions, which we call transitiveClosureMeasure.

constdefs
transitiveClosureMeasure::
” (’ a ,’ b ::bot ,((’ b⇒(’b)Set 0 ),((’ b)Set 0)) Tuple 0) Tuple
⇒ (’ a ,’ b ,((’ b⇒(’b)Set 0 ),((’ b)Set 0)) Tuple 0) Tuple
⇒ ’a Boolean”

transitiveClosureMeasure def:
”transitiveClosureMeasure X Y ==

( let (S1 ::(’ a ,’ b ::bot)Set) = OclSnd (OclSnd X) in
let (S2 ::(’ a ,’ b)Set) = OclSnd (OclSnd Y) in
S2−>size() ≥S1−>size())”

constdefs
transitiveClosure ::

” (’ a ,’ b ::bot ,((’ b⇒(’b)Set 0 ),(’ b)Set 0) Tuple 0) Tuple
⇒ (’ a ,’ b)Set”

transitiveClosure def :
” transitiveClosure args == OclWfrec transitiveClosureMeasure

(λ f X. let ( self ::(’ a ,’ b ::bot)VAL) = OclFst X in
let (S ::(’ a ,’ b)Set) = OclSnd (OclSnd X) in
let (path ::((’ a ,’ b)VAL⇒(’a,’b)Set)) = fixContext (OclFst (OclSnd X)) in
(path self ) ∪ ((( path self )−S)−>
collect (m| f (makeTuple2(m,path,(S ∪(makeSet1 self))))))

) args”

Using this pattern, we can express the constraint noCycles from Section 3.1.3 in a concise
way as follows.

context Manager
inv noCycles: NoCyclicDependency(worksFor)

Path Depth Restriction. Unconstrained reflexive associations make it possible to create
instances with arbitrarily long paths. In Section 3.1.3, we showed a path of length seven
between two managers anna and helen. We added the following OCL constraint to the
model to exclude such instances and restrict the maximum management hierarchy to 5.

context Manager

inv smallHierarchy: self .pathDepthWorksFor(4,0)
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def: pathDepthWorksFor(max: Integer, counter: Integer): Boolean =
if (counter > max or counter < 0 or max < 0) then false
else if (self .worksFor−>isEmpty()) then true

else self .worksFor−>forAll(m:Manager|m.pathDepthWorksFor(max, counter+1))
endif

endif

We generalize this constraint to the Path Depth Restriction pattern, which can be used to
limit the maximum length of reflexive associations. To instantiate the pattern, a parameter
property specifying the association and a parameter maxDepth specifying the maximum
path depth need to be specified. This pattern uses an auxiliary pattern pathDepthSatisfied,
which contains the recursive expression.

pattern PathDepthRestriction(property: Sequence(Property), maxDepth:Integer) =
self .pathDepthSatisfied(property,maxDepth−1,0)

pattern pathDepthSatisfied(property: Sequence(Property), max:Integer, counter:Integer) =
if (counter > max or counter < 0 or max < 0) then false
else if (self .property−>isEmpty()) then true

else self .property−>forAll(m|m.pathDepthSatisfied(property, max, counter+1))
endif

endif

In HOL-OCL, the definition reads as follows.

consts
PathDepthRestriction ::
” ((’ τ ,’ a ::bot)VAL⇒ (’ τ ,’ b ::bot)Set) ⇒
’τ Integer ⇒
((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)”

defs
PathDepthRestriction def:
”PathDepthRestriction property maxDepth == λself.
(pathDepthSatisfied (mkOclTuple 0 (mkOclTuple (maxDepth − 1)

(mkOclFnTuple self property))))”

Analogously to the transitive closure, we define a recursive function pathDepthSatisfied,
which we use in the definition of the Path Depth Restriction pattern. The definition of
pathDepthSatisfied reads as follows.

consts
pathDepthSatisfied ::
” (’ a ::bot,Integer 0 ,( Integer 0 ,(’ b ::bot ,(’ b ::bot⇒ (’b ::bot)Set 0)) Tuple 0) Tuple 0) Tuple
⇒ ’a Boolean”

defs
pathDepthSatisfied def :
”pathDepthSatisfied args == OclWfrec pathDepthSatisfiedMeasure

(λ f X. let (counter ::’ b ::bot Integer) = OclFst X in
let (MAX::’b Integer) = OclFst (OclSnd X) in
let ( self ::(’ b ,’ a ::bot)VAL) = (OclFst (OclSnd (OclSnd X))) in
let (path ::((’ b ,’ a ::bot)VAL⇒(’b,’a)Set)) =

fixContext (OclSnd (OclSnd (OclSnd X))) in
if (counter >MAX or counter <0 or MAX <0)
then OclFalse
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else if (OclIsEmpty (path self))
then OclTrue
else (∀ z ∈ ((path self )::(’ b ,’ a)Set) ·

( f (mkOclTuple (counter+1)
(mkOclTuple MAX (mkOclFnTuple (z::(’b,’a)VAL) path)))))

endif
endif

) args”

The definition of the measure function that ensures termination reads as follows.

consts pathDepthSatisfiedMeasure ::
” (’ a ::bot,Integer 0 ,( Integer 0 ,(’ b ::bot ,(’ b ::bot⇒ (’b ::bot)Set 0)) Tuple 0) Tuple 0) Tuple ⇒

(’ a ::bot,Integer 0 ,( Integer 0 ,(’ b ::bot ,(’ b ::bot⇒ (’b ::bot)Set 0)) Tuple 0) Tuple 0) Tuple ⇒
’a Boolean”

defs
pathDepthSatisfiedMeasure def:
”pathDepthSatisfiedMeasure == (λ X Y.

let (counter1 ::’ b ::bot Integer) = OclFst X in
let (counter2 ::’ b ::bot Integer) = OclFst Y in
counter2 >counter1)”

We use this pattern now to restrict the number of hierarchy levels in our company model
to five. Using the pattern, this constraint can be defined as follows.

context Manager
inv smallHierarchy: PathDepthRestriction(worksFor,5)

Unique Path. We have seen that so-called diamond configurations (cf. Definition 14)
can occur in object graphs when reflexive associations are unconstrained. In our example
in Section 3.1.3, anna managed two other managers, berta and cindy, who share one em-
ployee, daniela. Such configurations can cause problems because there is more than one
path between anna and daniela. We excluded such instances with the constraint noDia-
mond.

context Manager inv noDiamond:
self .worksFor−>exists(m1,m2 | m1−>closure(worksFor)−>intersect(

m2−>closure(worksFor))−>notEmpty()
implies m1=m2)

We generalize from this concrete constraint and derive the Unique Path pattern. This
pattern allows one to easily exclude diamond-shaped instances for its parameter, property.
The definition of the pattern reads as follows.

pattern UniquePath(property: Sequence(Property)) =
self .property−>exists(m1,m2 | m1−>closure(property)−>intersect(

m2−>closure(property))−>notEmpty()
implies m1=m2)

In HOL-OCL, the definition reads as follows.

consts
UniquePath :: ” ((’ τ ,’ a ::bot)VAL⇒ (’ τ ,’ b ::bot)Set) ⇒

((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)”
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defs
UniquePath def :
”UniquePath property == λself.

(∃ m1 ∈((property self )::(’ τ ,’ b ::bot)Set) · (∃ m2 ∈(property self ) ·
(((( transitiveClosure (makeTuple2(m1,property,OclMtSet))::((’τ ,’b::bot)Set)) ∩

transitiveClosure (makeTuple2(m2,property,OclMtSet)))−>isEmpty())
implies ((m1::(’τ ,’ b ::bot)VAL) =(m2::(’τ ,’ b ::bot)VAL))))) ”

A well-known example configuration that can be excluded with this pattern was identified
in [Reiter and Criscuolo, 1981] and became famous by the rather dramatic name of “di-
amond of death” in object-oriented programming languages. In this configuration, four
classes A, B, C and D are in the generalization relation≺= {(A,B), (A,C), (B,D), (C,D)}.
If B and C inherit a structural feature x from A, it is unclear whether D inherits B :: x or
C :: x. Thus, the path from a class to each superclass of its superclasses should be unique.

context Class
inv: UniquePath(superClass.superClass)

4.3.1.4 Missing Unique Identification.

Unique Identifier. We showed in Section 3.1.4 that objects should be uniquely identi-
fiable. We used the following constraint to express that each employee can be uniquely
identified by the name and by the office that the employee inhabits.

context Employee
inv uniqueness: self.allInstances()−>isUnique(e|Tuple(x=e.name,y=e.worksIn))

From this constraint, we derive the Unique Identifier pattern. This pattern is
also known as “semantic key” [Ackermann and Turowski, 2006], “primary identifier”
[Miliauskaitė and Nemuraitė, 2005] or “identifier” [Costal et al., 2006] pattern in the lit-
erature. The Unique Identifier pattern has one parameter property, which denotes a tuple
of properties that have to be unique for each object of the context class.

pattern UniqueIdentifier (property:Tuple(Property)) =
self . allInstances()−>isUnique(property)

In HOL-OCL, the definition reads as follows.

consts
UniqueIdentifier ::

” ((’ τ ,’ a ::bot)VAL⇒ (’ τ ,’ b ::bot)VAL)⇒ ((’τ ,’ a ::bot)VAL⇒ ’τ Boolean)”

defs
UniqueIdentifier def :
” UniqueIdentifier accessor == λself.

(OclAllInstances self )−>forAll(y | ((OclAllInstances self )−>forAll(z |
((¬(y=z)) implies ¬(accessor y =accessor z)))) ) ”

The constraint uniqueness, which requires that instances of the Employee class are uniquely
identifiable by their name and office, can be expressed using the Unique Identifier pattern
as follows.

context Employee
inv: UniqueIdentifier (Tuple{x1=name, x2=worksIn})
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4.3.1.5 Unrestricted Attribute Values.

In Section 3.1.5, we showed that textual constraints are necessary to express relations
between properties. In the following, we introduce three constraint patterns that can be
used to remedy the Unrestricted Attribute Values anti-pattern.

Attribute Sum Restriction. In Section 3.1.5, we showed a different source of low matu-
rity in which the cardinality of the association depends on the relation of several attributes.
In this example, the number of employees that managers can employ depends on the bud-
get of the respective manager and the salaries of his employees. The OCL constraint that
expresses this dependency reads as follows.

context Manager
inv budgetRestriction: self .employs.salary−>sum() <= self.budget

To capture this constraint, we use the Attribute Sum Restriction pattern, which has three
parameters. Besides the parameter navigation, which denotes a path expression to a re-
lated class, this pattern has two parameters. Parameter summation refers to the property
in the context class that denotes the value that must not be exceeded, and summand refers
to the property in the related class that is accumulated.

pattern AttributeSumRestriction(navigation: Sequence(Property),
summand: Property, summation: Property) =

self .navigation.summand−>sum() <= summation

In HOL-OCL, the definition reads as follows.

constdefs
AttributeSumRestriction :: ” ((’ τ ,’ a ::bot)VAL⇒ ’τ Integer) ⇒

((’ τ ,’ a ::bot)VAL⇒ (’ τ ,’ b ::bot)Set) ⇒
((’ τ ,’ b ::bot)VAL⇒ ’τ Integer) ⇒
((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)”

”AttributeSumRestriction sum nav summand == λself.
((OclCollect ((nav self )::(’ τ ,’ b ::bot)Set) (summand::((’τ ,’b::bot)VAL⇒

’τ Integer )))::(’ τ ,’ τ Integer)Set)−>sum() ≤(sum self)”

Using this constraint pattern, we can express the constraint budgetRestriction as follows.

context Manager
inv budgetRestriction: AttributeSumRestriction(employs,salary,budget)

Attribute Relation. In Section 3.1.5, we showed a state of the company model in which
the manager has a lower salary than his employee. We used constraint higherSalary to
exclude such states, which we defined as follows.

context Manager
inv higherSalary: self .employs−>forAll( e | self .salary > e.salary )

We abstract from this constraint to the Attribute Relation pattern. Using this pattern,
an attribute contextAttribute can be related to a remoteAttribute by an operator. The class
containing the contextAttribute and the class containing the remoteAttribute are related by a
navigation. We define this pattern as an OCL template as follows.
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pattern AttributeRelation (navigation:Sequence(Property), remoteAttribute:Property,
operator: OclExpression, contextAttribute :Property) =

self .navigation−>forAll( x | x.remoteAttribute operator contextAttribute )

We formally define the semantics in HOL-OCL as follows.

constdefs
AttributeRelation ::
” ((’ τ ,’ a ::bot)VAL⇒ (’ τ ,’ c :: bot)Set) ⇒ −− navigation

((’ τ ,’ c :: bot)VAL⇒ (’ τ ,’ b ::bot)VAL)⇒ −− remoteAttribute
((’ τ ,’ b ::bot)VAL⇒ (’ τ ,’ b ::bot)VAL⇒ ’τ Boolean)⇒ −− operator
((’ τ ,’ a ::bot)VAL⇒ (’ τ ,’ b ::bot)VAL)⇒ −− contextAttribute
((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)”

” AttributeRelation navigation remoteAttribute operator contextAttribute ==
λself . (navigation self )−>forAll(y |

operator (remoteAttribute y) ( contextAttribute self )) ”

Using this pattern, we can express the constraint higherSalary as follows.

context Manager
inv higherSalary: AttributeRelation (employs,salary,<,salary)

Attribute Value Restriction. In the background section on OCL, we introduced the con-
straint budgetGreaterZero, which we defined as follows.

context Manager
inv: budgetGreaterZero: self.budget > 0

This constraint represents a common kind of constraint, namely simple value restrictions
for attributes. We therefore introduce the Attribute Value Restriction pattern, which can be
used to restrict the values of attributes for all instances of the attributes’ class. We define
it as OCL template as follows.

pattern AttributeValueRestriction (property:Property,operator,value:OclExpression) =
self .property operator value

In HOL-OCL, the definition reads as follows.

consts
AttributeValueRestriction ::
” ((’ τ ,’ a ::bot)VAL⇒ (’ τ ,’ b ::bot)VAL)⇒

((’ τ ,’ b ::bot)VAL⇒ (’ τ ,’ b ::bot)VAL⇒ ’τ Boolean)⇒ (’ τ ,’ b ::bot)VAL⇒
((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)”

defs
” AttributeValueRestriction attribute operator term ==
λself . operator ( attribute self ) term”

Using the pattern, we can express the constraint budgetGreaterZero as follows.

context Manager
inv: AttributeValueRestriction (budget, >=, 0)
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4.3.1.6 Summary.

With these patterns, we have introduced a reusable remedy for each anti-pattern presented
in Section 3.2. As seen, there are often several constraint patterns that can be used to
prevent occurrences of the respective anti-pattern. Note that there can be more constraint
patterns for each anti-pattern because we elicited them heuristically based on modeling
experience. Thus, our collection of constraint patterns is not complete.

Figure 4.3 illustrates all elementary constraint patterns from our library as a taxonomy.
Furthermore, this figure also contains the composite constraint patterns that we define in
the subsequent section.

Constraint
Pattern

Elementary
Pattern

Composite
Pattern

Unrestricted
Multiplicity
Elements

Attribute
Sum
Restriction

Attribute
Value
Restriction

Unique
Identifier

Attribute
Relation

Object In
Collection

Type
Restriction
Type
Relation

Injective
Association
Surjective
Association

Insufficiently
Typed

Associations

Multiplicity
Restriction

No Cyclic
Dependency
Path Depth
Restriction

Unique Path

Negation

If-Then-Else

ForAll

Exists

Or

And

Unrestricted
Reflexive

Associations

Missing
Unique

Identification

Unrestricted
Attribute
Values

Bijective
Association

Figure 4.3: Overview of the constraint pattern library.

4.3.2 Composite Constraint Patterns.

Apart from elementary constraint patterns, each of which restrict a basic property of a
model, composite constraints can be used to express complex properties by integrating an
arbitrary number of other constraints (either elementary or composite). Thus, complex
constraints can be developed in a structured way by combining several simple constraints.
So far, we have identified the composite patterns Negation, If -Then-Else, Exists, ForAll, Or,
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and And, which are illustrated in Figure 4.3.
Since composite constraint patterns are higher-order constructs, i. e., they represent

constraints over constraints, they cannot be represented by OCL templates as previously
used in this thesis. We hence only provide the HOL-OCL definitions for the composite
patterns.

In the definitions for our composite patterns in Section 4.3.2, we will use operators
for the conjunction and disjunction of arbitrary lists of predicates. Such higher-order
operators do not exist in OCL, but we can define them in HOL-OCL as follows.

consts
oclAND :: ” ((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)list

⇒ ((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)”

primrec
”oclAND [] = (λx. OclTrue)”
”oclAND (x#xs) = (λa. ((x a) and ((oclAND xs a))))”

consts
oclOR :: ” ((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)list ⇒

((’ τ ,’ a ::bot)VAL ⇒ ’τ Boolean)”

primrec
”oclOR [] = (λa. OclFalse)”
”oclOR (x#xs) = (λa. ((x a) or ((oclOR xs a))))”

Negation. The Negation pattern can be used to logically negate another pattern instance.
We define it in HOL-OCL as a function from constraint ((’ τ , ’a ::bot)Set⇒ ’τ Boolean) to
constraint.

constdefs
Negation :: ” ((’ τ , ’a ::bot)Set⇒ ’τ Boolean)⇒

((’ τ , ’a ::bot)Set⇒ ’τ Boolean)”
”Negation P == (λself. not (P self )) ”

As an example constraint, we require that the association worksIn from Employee to Office
is not surjective, i. e., there must be at least one empty office. Using the Negation and
Surjective Association pattern, we define this constraint as follows.

context Employee
inv: Negation(SurjectiveAssociation(Sequence{worksIn}))

If-Then-Else. The If -Then-Else pattern denotes an if-then-else expression, which can be
used to express logical entailment between pattern instances. If the context element of the
constraint satisfies all properties, which are denoted by a set of constraints, it also needs to
satisfy all then constraints, otherwise, it needs to satisfy all else constraints. We define the
semantics of the If -Then-Else pattern as follows.

constdefs
IfThenElse :: ” ((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)list ⇒

((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)list ⇒
((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)list ⇒
((’ τ ,’ a ::bot)VAL⇒ ’τ Boolean)”
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”IfThenElse ifClause thenClause elseClause == λself.
if (oclAND ifClause self)

then (oclAND thenClause self)
else (oclAND elseClause self)

endif ”

If no else clause is needed, an empty list can be specified as parameter value for elseClause
because we defined the conjunction of an empty list as equivalent to true (oclAND [] ≡
OclTrue).

In the following example constraint, we require that managers who are the CEO must
have a budget of at least one million. Note that the else clause is empty, which corresponds
to true.

context Manager
inv: IfThenElse(AttributeValueRestriction (isCEO,=,true),

AttributeValueRestriction (budget,>,1000000),
)

Note that the if and then clause must be collections. For better readability, we left out the
set constructors as used in the example for the Negation pattern.

Exists. The Exists pattern is used to express existential quantification. In particular, it can
be used to restrict a pattern instance such that it must only hold for at least one object,
not for all objects of a certain class. We define its semantics in HOL-OCL as follows.

constdefs
Exists :: ” (’ τ , ’a ::bot)Set⇒ ((’ τ , ’a ::bot)VAL⇒ ’τ Boolean)list ⇒ ’τ Boolean”
”Exists S P == S−>exists(y | (oclAND P y))”

Using the Exists pattern, we state the requirement that every employee must have a man-
ager whose head count is exactly one. The constraint reads as follows.

context Employee
inv: Exists(worksFor,

AttributeValueRestriction (headCount,=,1))

For-All. The ForAll constraint pattern is used to express universal quantification over a
set of objects. We define its semantics in HOL-OCL as follows.

constdefs
ForAll :: ” ((’ τ , ’a ::bot)VAL⇒ ’τ Boolean)list ⇒ (’ τ , ’a ::bot)Set⇒ ’τ Boolean”
”ForAll P S == S−>forAll(y | (oclAND P y))”

Using the ForAll pattern, we can state that employees must have a salary of at least 4000
to be allowed to work in an office. This constraint reads as follows.

context Office
inv: ForAll ( inhabitant ,

AttributeValueRestriction (salary,>=,4000))

Or. The Or pattern is used to express the disjunction of a set of pattern instances. It uses
the previously defined function oclOR and is defined in HOL-OCL as follows.
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constdefs
Or :: ” ((’ τ , ’a ::bot)Set⇒ ’τ Boolean)list ⇒

((’ τ , ’a ::bot)Set⇒ ’τ Boolean)”
”Or P == oclOR P”

Using the Or pattern, we can express that an office has desks or it does not have any
inhabitants. The constraint reads as follows.

context Office
inv: Or(AttributeValueRestriction (desks,>,0),

MultiplicityRestriction ( inhabitant ,=,0))

And. The And pattern is used to express the conjunction of a set of pattern instances. It
uses the previously defined function oclAND and is defined in HOL-OCL as follows.

constdefs
And :: ” ((’ τ , ’a ::bot)Set⇒ ’τ Boolean)list ⇒

((’ τ , ’a ::bot)Set⇒ ’τ Boolean)”
”And P == oclAND P”

Using the And pattern, we can express that the name of each employee must be unique
and the budget of each manager must be higher than the employee’s salary. The constraint
reads as follows.

context Employee
inv: And(UniqueIdentifier({name}),

AttributeRelation (worksFor,budget,>,salary))

4.3.3 Using Arbitrary Constraints in Composite Patterns.

In case that not all parts of composite constraints can be expressed using constraint pat-
terns, it is desirable to allow model developers to use arbitrary OCL expressions as pa-
rameter values in instances of composite patterns. Therefore, we define the Literal OCL
pattern, which wraps arbitrary OCL expressions such that they can be used in instances of
composite patterns. The definition of this pattern in terms of an OCL template reads as
follows.

pattern LiteralOCL(expression:OclExpression) =
expression

In HOL-OCL, the definition reads as follows.

LiteralOCL :: ” ((’ τ , ’a ::bot)Set⇒ ’τ Boolean)⇒
((’ τ , ’a ::bot)Set⇒ ’τ Boolean)”

”LiteralOCL P == (λself. P self ) ”

Obviously, the following two invariants are equivalent because the second invariant wraps
the first invariant in an instance of the Literal OCL pattern.

context Office
inv: self .desks >= 0
inv: LiteralOCL(self.desks >= 0)
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4.4 Summary

In this chapter, we have introduced the concept of an extensible library of generic con-
straint patterns. In addition, we have introduced an example library of constraint patterns
that provides effective patterns for remedying the anti-patterns presented in Chapter 3.
We have added a high degree of expressiveness to existing pattern-based approaches by
adding logical structure and classifying patterns into elementary and composite patterns.

Such a flexible pattern-based approach offers an important improvement for the devel-
opment of constraint specifications compared to previous constraint-pattern approaches
and to writing OCL constraints by hand. In contrast to previous approaches that use con-
straint patterns, our approach offers a larger set of elementary constraint patterns and,
more importantly, the concept of composable constraint patterns. This is an improvement
in expressiveness compared to previous approaches. In contrast to writing OCL constraints
by hand, our approach helps to avoid many syntactic and structural errors because the de-
veloper can generate OCL code instead of writing it by hand. Furthermore, using our
solution, more concise constraint specifications can be developed, which helps to decrease
development time substantially. We evaluate our approach in Chapter 8 where we present
case studies and compare the pattern-based specification method to the traditional code-
based specification method.
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Chapter 5
Consistency of Constraint
Specifications

In the previous chapter, we showed how constraint patterns can be used to simplify the
development of constraint specifications. However, even when such a pattern approach
is used, model developers can still inadvertently develop inconsistent constraint specifi-
cations, which makes it impossible to instantiate the constrained model. Inconsistencies
need to be detected in the development process before the model is deployed and used,
e. g., for code generation.

Existing publications on this topic either discuss consistency of models without
OCL constraints, do not provide precise definitions, or merely define individual as-
pects of consistency [Ahrendt et al., 2005, Berardi et al., 2005, Gogolla et al., 2005,
Kaneiwa and Satoh, 2006, Maraee and Balaban, 2007, Queralt and Teniente, 2006].
There is no comprehensive examination of consistency for UML/OCL models or a
well-established notion of consistency of OCL specifications. Furthermore, it is unclear
what aspects of consistency are relevant in practice. In particular, there is no literature
that covers consistency in incremental development approaches. For example, in early
development phases, weaker definitions of consistency may be more appropriate than in
later development phases.

The contribution of this chapter is to investigate consistency concerns for OCL spec-
ifications and their practical relevance for different phases of development. We provide
formal definitions for the different concerns, and show how consistency analysis of an OCL
specification can be integrated into an MDE process. We investigate in Section 5.1 what as-
pects of consistency for an OCL specification are important in practice and formally define
several consistency notions appropriate for UML/OCL. In Section 5.2, we show an exam-
ple of how these consistency definitions can be used for a given constraint specification
by generating proof obligations and checking them with a theorem prover. We summarize
our findings in Section 5.3.

5.1 UML, OCL, and the Notion of Consistency

Before consistency analysis can be performed, we must define the precise meaning of
consistency for UML/OCL models. Requiring consistency in the classical sense of FOL for
UML/OCL models means that there must exist a state of the model that satisfies all invari-
ants in the OCL constraint specification and that contains at least one object for each class

59
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in the UML model. As indicated in Section 2.5.2, UML/OCL has some characteristic features
whose role for consistency needs to be investigated. In this section, we therefore discuss
subtyping, abstract classes, and state finiteness, and we eventually weaken the classical
notion of consistency to make it suitable for UML/OCL.

5.1.1 Notions of Consistency.

5.1.1.1 Subtyping.

The notion of subtype (or specialization in UML terminology) is an important concept
in object-oriented modeling, as it allows model developers to extend concepts and use
specialized concepts to replace more general concepts. An instance of a class C ′ is also an
instance of its superclass C and thus, needs to satisfy the invariants for both C and C ′.

The invariants specified for a superclass usually need not be added explicitly to its
subclasses. Instead, subclasses are usually annotated with additional invariants that their
instances must satisfy, as in the following example. The example constraints require that
the salary of all employees is positive and, in addition, the budget of all managers must
be positive for the company model.

context Employee inv positive salary:
inv: salary > 0

context Manager inv positive budget:
inv: budget > 0

In UML, an instance of a specific class is also considered an instance of each of its
superclasses [Object Management Group (OMG), 2006c, Sect. 7.3.20]. Thus, the instance
of a specific class needs to satisfy the invariants of all its superclasses. We call this property
subtype consistency and define it as follows:

Definition 15 (Subtype Consistency). A model M is subtype-consistent if and only if for
all C, C ′ ∈M , where C ′ is a subclass of C, an instance of C ′ is also a valid instance of C in
every state τ , or formally (in HOL-OCL),

∀C,C ′ ∈M. ∀τ. τ � C ′ ::allInstances()

→forall(x |
(
x .oclIsTypeOf(C ′) and x .oclIsKindOf(C)

)
implies (not x .oclAsType(C).oclIsUndefined())) .

The notion of subtype consistency defined in Definition 15 is popularly known as the
Liskov principle [Liskov and Wing, 1994]. This principle requires that if φ is a property that
holds for objects of type T , then φ should hold for objects of type S, where S is a subtype
of T (S ≤ T ). It is also known as class subsumption [Berardi et al., 2005] for class models
without OCL invariants or structural subtyping [Ahrendt et al., 2005] for models with OCL,
which requires that the invariant of a subclass implies the invariant of its superclass.

5.1.1.2 Abstract Classes and Interfaces.

In this subsection, we describe how the notion of subtype consistency can be used to
include abstract classes and interfaces in our consistency definitions to come. At first
glance, any model that contains abstract classes cannot be consistent because an abstract
class(ifier) “does not provide a complete declaration and can typically not be instantiated.”
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according to the UML specification [Object Management Group (OMG), 2006c]. Inter-
faces are treated similarly in the UML specification: “Since interfaces are declarations, they
are not instantiable.”

However, we argue the following for abstract classes and interfaces: Model developers
usually create an abstract class or interface C assuming that there should be at least one
concrete class C ′ that specializes C because otherwise, C would be superfluous. Thus, if C ′

can be instantiated, also C can be instantiated because an instance of a subclass C ′ is also
considered an instance of all of its superclasses in UML. Consequently, the classical notion
of consistency is applicable to UML with its concepts of interfaces and abstract classes,
subtype consistency provided. If subtype consistency was not a prerequisite, the following
invariant added to the model in Figure 2.5 would erroneously result in a consistent model
because class Manager, which is also an instance of Employee, could still be instantiated
when subtype consistency is not required.

context Employee inv contrived:
false

Note that in early phases of development, there may be abstract classes for which no con-
crete subclasses has been defined yet. Thus, we discuss fine-grained notions of consistency
in Section 5.1.1.4.

Without requiring subtype consistency, we can specify a state containing one object
o of type Manager, for which o.oclIsKindOf(Employee) and o.oclIsKindOf(Manager) holds.
Thus, Employee::allInstances()−>notEmpty() and Manager::allInstances()−>notEmpty(). How-
ever, the model is not subtype-consistent because an instance of Manager cannot be an
instance of Employee, which is required by Definition 15 for subtype consistency (not
o.oclAsType(Employee).oclIsUndefined()).

Surprisingly, we have not found any discussion in the literature about the role of ab-
stract classes and interfaces for the consistency of a UML/OCL model.

5.1.1.3 Finite vs. Infinite States.

The state of a given UML/OCL model can potentially contain an infinite number of objects.
Thus, there can be models that are consistent, but no model state exists with a finite
number of objects in which all class invariants are satisfied. Since states with an infinitely
large number of objects are rarely desirable in practice, we discuss the problem of finite
and infinite states in this subsection.

Recall the constraint noCycles from Section 4.3.1, which is defined using the No Cyc-
lic Dependency pattern and disallows cycles in the management hierarchy of a company,
i. e., managers must not be their direct or indirect (via transitivity) manager.

Since the multiplicity constraints in the UML model require that each employee is as-
sociated with at least one manager, noCycles can only be satisfied by a state in which
there are either no employees at all or infinitely many managers. However, states with no
employees violate consistency, and states with infinitely many managers are undesirable.

We can require that a model M needs to have at least one finite state by adding the
following requirement to M :

∀C ∈M. ∃τ. τ � notC ::allInstances()→size() .oclIsUndefined() (5.1)

In this expression, we exploit that HOL-OCL supports infinite sets, e. g., in HOL-OCL the
operation ::allInstances() can return an infinite set, and the size() operator is undefined for
infinite sets in HOL-OCL (cf. Section 2.6.2). Thus, requiring the existence of a state in
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which the size of ::allInstances() is defined ensures that the model does not have infinite
instances only.

We have found little discussion in the literature about the role of finite and infinite
instances for the consistency of a UML/OCL model. Whereas the existence of a finite
state is an important requirement [Maraee and Balaban, 2007], most publications on this
topic implicitly assume that infinitely large instances are witnesses for the consistency of
a model without further discussion.

Having investigated the characteristic features of UML/OCL, we can check whether our
example company model is consistent, and it will turn out that the classical notion of con-
sistency is often too strong in UML/OCL, which motivates weaker notions of consistency.
In the following subsection, we incrementally weaken the classical notion of consistency
and thus obtain fine-grained notions of consistency for UML/OCL.

5.1.1.4 Fine-grained Notions of Consistency.

According to the classical notion of consistency, the company model is consistent, but we
have seen in the previous subsection that there is no finite state of the model that satisfies
all invariants. However, if we change the multiplicity of the worksFor association end from
1..∗ to ∗, we get a model company’. This model has finite states, of which we show one in
Figure 5.1 as τ .

τ

e1:Employee

name = ‘Boris’
salary = 1000

m1:Manager

name = ‘Paul’
salary = 2000
budget = 5000
headCount = 2
isCEO = true

s1:Single

desks = 2

c1:Cubicle

desks = 2

Figure 5.1: Consistent state of the company’ model.

However, it is not always possible to find a single state in which all classes of a given
model can be instantiated. Consider the following invariant, which allows companies to
have either offices of type Single or of type Cubicle, but not both.

context Company inv workConditions:
Single :: allInstances()−>isEmpty() or
Cubicle:: allInstances()−>isEmpty()

The company model with workConditions is inconsistent with respect to the classical
notion of consistency because no instance of the model exists in which all classes are in-
stantiated and the workConditions constraint is satisfied. However, the model developer
may have deliberately created this scenario described above and does not consider it in-
consistent. To reconcile the developer’s intention with a formal notion of consistency,
we need to weaken the classical notion of consistency. To this end, we investigate what
notions of consistency a model developer can be concerned about.
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Can each class be instantiated in the same state? As shown, if a set of constraints is
consistent in the classical sense, there exists at least one state in which all classes can be
instantiated. This is a strong requirement, but it can be useful for UML/OCL models with
strong dependencies between the classes in the model, i. e., an instance of a class can only
exist if instances of all other classes also exist.

In the remainder of this chapter, we refer to the classical notion of consistency as strong
consistency, which we define as follows:

Definition 16 (Strong Consistency). A UML/OCL model M is strongly-consistent if and
only if there exists a state in which all classes of M are instantiated, or formally,

∃τ.∀C ∈M. τ � C ::allInstances()→exists(x | x .oclIsKindOf(C)),

which is equivalent to

∃τ.∀C ∈M. τ � C ::allInstances()→notEmpty() . (5.2)

Can each class be instantiated in some state? Since strong consistency is sometimes
too strong, we weaken the previous requirement and ask for the existence of a set of states
for M such that each class in M is instantiated in at least one of these states.

This notion of consistency is appropriate for the workConditions constraint: This con-
straint is satisfied by a state τ1 that contains objects of type Single only and by a state
τ2 that contains objects of type Cubicle only. Thus, each class of the UML model can be
instantiated, although in different states, which is visualized in Figure 5.2. We call this
weaker notion of consistency class consistency and define it as follows:

Definition 17 (Class Consistency). A UML/OCL model M is class-consistent if and only if
for each class Ci ∈M there exists a state that contains an instance of class Ci, or formally,

∀C ∈M. ∃τ. τ � C ::allInstances()→notEmpty() . (5.3)

τ1

e1:Employee

name = ‘Boris’
salary = 1000

m1:Manager

name = ‘Paul’
salary = 2000
budget = 5000
headCount = 2
isCEO = true

s1:Single

desks = 2

τ2
c1:Cubicle

desks = 2

Figure 5.2: Witnesses for the class consistency of company’.

Clearly, every strongly-consistent model is also class-consistent, i. e., strong consistency
implies class consistency, but not vice versa.

Can any class of the model be instantiated? In early phases of the software develop-
ment process, it can happen that certain classes in a model do not yet have an implemen-
tation. It can also happen that certain classes are still in the model, but using them is
discouraged or they do not have an implementation anymore.
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According to the previously defined notions of consistency, such models are neither
strongly-consistent nor class-consistent because not all classes can be instantiated. How-
ever, as explained above, such a situation may be desired, e. g., in early phases of devel-
opment. Thus, the developer may want to know whether there is a nonempty subset of
all classes in M that can be instantiated. We capture this notion of consistency as weak
consistency.

Definition 18 (Weak Consistency). A UML/OCL model M is weakly-consistent if and only
if a nonempty subset of the classes of M can be instantiated in some state, or formally,

∃C ⊆M. C 6= ∅ ∧ ∀C ∈ C. ∃τ. τ � C ::allInstances()→notEmpty() . (5.4)

Every class-consistent model is also weakly-consistent, but not vice versa. Given a
UML/OCL model that is weakly-consistent, the model developer can incrementally adapt
the model to achieve a stronger notion of consistency. If a model M is not even weakly-
consistent, we call it inconsistent, which we define as follows:

Definition 19 (Inconsistency). A UML/OCL model M is inconsistent if and only if there
does not exist a state in which any class of M can be instantiated.

The three different notions of consistency can be found in the literature, but nei-
ther is the difference between the notions used motivated nor are the notions precisely
defined. The notion of strong consistency can be found in [Kaneiwa and Satoh, 2006,
Maraee and Balaban, 2007], the notions of class consistency and weak consistency can be
found in [Berardi et al., 2005, Maraee and Balaban, 2007, Queralt and Teniente, 2006].

5.1.2 Discussion.

We have investigated the role of the characteristic features of UML/OCL for consistency.
Consequently, we have presented different consistency definitions and discussed finite-
ness of model instances. We propose that practically relevant UML/OCL models should be
subtype-consistent, class-consistent, and have at least one finite instance for the follow-
ing reasons: We consider subtype consistency a necessary requirement for object-oriented
models [Liskov and Wing, 1994], and if a model is not subtype-consistent, it should be
revised. We further require class consistency for practically relevant models because every
class should be instantiable in at least one system state or be removed otherwise. Fi-
nally, we propose that models should have finitely large states, unless infinite states are
an explicit requirement of the modeled domain.

In the remainder of this chapter, we explain how proof obligations can be generated
for the different notions of consistency and how HOL-OCL can be used to prove these
obligations.

5.2 Consistency Analysis with HOL-OCL

Having formally defined different notions of consistency, we are now able to use these
definitions to analyze the consistency of a given UML/OCL model. In this section, we
illustrate how consistency analysis can be performed with HOL-OCL. To this end, we show
how to generate appropriate proof obligations and how they can be proven in a formal
manner.
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In contrast to existing analysis approaches that focus on proof automa-
tion [Distefano et al., 2000, Gogolla et al., 2005, Jackson et al., 2000], our approach fo-
cuses on two features. First, our approach supports exchangeable notions of consistency,
i. e., proof obligations for strong consistency can be generated first and if they cannot be
proven, they can be replaced by proof obligations for class consistency. In the automatic
analysis approaches listed above, one consistency notion is “hard-coded” into the system
and in addition, it is typically unclear which notion it is exactly. Second, HOL-OCL offers a
sound and complete proof calculus, whereas the above-mentioned automatic approaches
are incomplete (cf. Section 2.3.1).

5.2.1 Generating Proof Obligations.

For a given UML/OCL model M = {C1, . . . , Cn}, we can generate proof obligations for
strong (5.2), class (5.3), and weak (5.4) consistency. Subtype consistency (5.1) is a nec-
essary prerequisite for the datatype package of HOL-OCL and thus automatically proven
during model import [Brucker and Wolff, 2006]. Models that are not subtype-consistent
are therefore rejected by HOL-OCL’s import mechanism.

Within HOL-OCL, we cannot reason about the meta-level of the model, e. g., proving
properties of the set of all classes in the model. Therefore, we instead generate a model-
specific instance of the corresponding proof obligations. For strong consistency (5.2), we
generate the following proof obligation:

∃τ. ( τ � C1 ::allInstances()→notEmpty()∧ . . .

∧ τ � Cn ::allInstances()→notEmpty())
(5.5)

The proof obligation (5.6) for class consistency (5.3) requires that for each class in the
UML/OCL model, a state τ exist in which the class can be instantiated:

(∃τ0. τ0 � C1 ::allInstances()→notEmpty()) ∧ . . .

∧ (∃τn−1. τn−1 � Cn ::allInstances()→notEmpty())
(5.6)

Finally, the proof obligation (5.7) for weak consistency (5.4) requires that a state τ exist
in which at least one class can be instantiated:

∃τ. ( τ � C1 ::allInstances()→notEmpty()∨ . . .

∨ τ � Cn ::allInstances()→notEmpty())
(5.7)

The proof obligation for class consistency of the company model thus reads as follows.

theorem ”∃ τ . τ |=Manager::allInstances()−>notEmpty() ∧
∃ τ . τ |=Employee::allInstances()−>notEmpty() ∧
∃ τ . τ |=Office :: allInstances()−>notEmpty() ∧
∃ τ . τ |=Single :: allInstances()−>notEmpty() ∧
∃ τ . τ |=Cubicle:: allInstances()−>notEmpty()”

5.2.2 Proving the Proof Obligations.

In this subsection, we show how consistency proofs can be carried out in HOL-OCL. To this
end, we show how to prove the first conjunct of the previously generated proof obligation
for the company model, i. e., we prove that the class Manager can be instantiated in some
state τ .
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The underlying principle of proving consistency with HOL-OCL comprises three steps.
First, one has to unfold the definitions related to the class encoding and the user supplied
data model. Second, a witness for a consistent state has to be provided. And third, we
have to show that this witness fulfills the invariants of the model. Obviously, finding the
right witness is the most challenging step in this process.

The proof obligation to express that the class Manager can be instantiated reads as
follows.

lemma ”∃τ. τ � Manager::allInstances()−>notEmpty()”

We start our proof by unfolding the definitions OclAllInstancescompany Manager def for
the operator ::allInstances() and Manager def for the class Manager. In HOL-OCL, this is
done by applying the simplifier (called simp) with the default set of rules extended by the
definitions as explained above.

apply (simp add: OclAllInstancescompany Manager def Manager def)

Next, we give a witness, i. e., we instantiate the existential quantifier ( rule tac x = . . . in
exI) with an instance of Manager that fulfills its invariants. In our example, such a witness
is a manager named “Paul” who does not manage any employees. Paul has a salary of
2000, does not have a manager (∅), does not have an office (∅), has a budget of 5000, a
head count of 2, is a CEO, and does not have any employees (∅).

apply (rule tac x = (λ τ.
Some(mk Manager((((OclAny tag, oid),

((Employee tag, {oid},”Paul”, 2000, ∅, ∅),
(Manager tag, {oid}, 5000, 2, true, ∅)))))))

in exI)

Finally, we have to show that our witness fulfills the class invariants. In the company
model, the class Manager is coarsely constrained by the multiplicities of its associations to
Office and Manager, which are inherited from Employee, and to the association to Employee.
Furthermore, Manager is constrained by the invariants introduced in the course of this the-
sis, e. g., budgetGreaterZero or hasManager. The following command unfolds the invariants
and thus evaluates all invariants for Manager against the specified witness.

apply (auto simp: Manager inv def)
done

After the last simplification, all proof goals are closed and we can finish the proof success-
fully with the command “done.”

5.2.3 Using Constraint Patterns in Consistency Proofs.

Since we defined the semantics of our constraint patterns in HOL-OCL, we can use them
in consistency proofs for increasing the degree of proof automation. This can be achieved
in two steps. First, general statements can be proven for the constraint patterns, e. g., as-
sumptions under which certain pattern instances are consistent or inconsistent. Second,
these statements can be added to the simplification tactic of the underlying theorem
prover. This allows previously proven knowledge to be automatically applied in future
proofs.

We explain these two steps by an example. We formulate a lemma that states that
if the multiplicity of some property a is restricted to be less than or equal to some i us-
ing an instance of the Multiplicity Restriction pattern and i is negative, this implies false.
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The lemma requires the assumption that the cardinality of a is greater than or equal to
zero, which holds for all objects of type Property because the lower multiplicity bound
of each MultiplicityElement must be positive [Object Management Group (OMG), 2006c].
The lemma reads as follows.

lemma negativeMultiplicity:
” [| (τ |=(a self )−>size() ≥0;

(τ |=( MultiplicityRestriction a ≤ i ) self );
(τ |= i <0) |]
=⇒ false ”

This lemma can be proven by invoking the simplification tactic and unfolding the defini-
tion of the Multiplicity Restriction pattern.

Having proven lemma negativeMultiplicity , we can use it in subsequent proofs by in-
voking the following proof command.

apply (rule negativeMultiplicity )

Applying the previously proven theorem replaces statements of the form (τ |=
( MultiplicityRestriction a ≥ i ) self ) ∧ (τ |= i <0) by false. This saves the proof expert from
proving previously proven theorems again. Thus, it increases the degree of automation
for future proofs on constraint patterns.

Alternatively, the implication proven in negativeMultiplicity can be added to the sim-
plifier of the theorem prover by invoking the following command. Then, HOL-OCL tries
to apply the knowledge from negativeMultiplicity every time the simplification tactic is
invoked.

declare negativeMultiplicity [simp]

Although constraint patterns can help to increase the level of automation of consis-
tency proofs, proving consistency using provers such as HOL-OCL still requires significant
expertise in theorem proving. In the following chapter, we thus present an approach in
which previously proven knowledge about constraint patterns is used for an automatic,
heuristic consistency analysis.

5.3 Summary

In this chapter, we have investigated consistency concerns for OCL specifications of UML
models and have presented distinct formal consistency definitions for OCL. We illustrated
how these definitions can be used to generate proof obligations for an interactive theorem
prover and showed how these obligations can be formally proven. Furthermore, we have
shown how using constraint patterns can contribute to increase the degree of automation
in such proofs.

We have seen that consistency analysis by HOL-OCL requires significant expertise in
interactive theorem proving. The degree of automation in consistency proofs could be
increased by introducing sophisticated proof tactics, which primarily leaves the task of
specifying a witness to the proof expert. However, it is questionable whether the degree
of automation can be sufficiently high such that specifying a witness is the only task that
has to be performed manually. In practice, there are two more hurdles for using theorem
provers in MDE. Whereas the technical interface between MDE tools and theorem provers
represents the smaller hurdle, we have noticed that MDE tools and theorem provers typ-
ically have specific platform requirements, e. g., they run on different operating systems.
This makes a tight integration of interactive theorem proving in the MDE process difficult.
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Thus, an automatic consistency analysis for UML/OCL models is desirable as a means
for model developers to get immediate feedback about the consistency of the constraints
developed. In the next chapter, we therefore compare existing approaches for consis-
tency analysis of UML/OCL and point out their drawbacks. Subsequently, we introduce
a novel approach for analyzing pattern-based constraint specifications that runs fully au-
tomatically. This approach ties in with the theorem approach of Section 5.2.3 by using
previously proven knowledge about constraints pattern.



Chapter 6
Consistent Model Refinement Using
Patterns

UML class models that do not contain textual constraints can be automatically proven to
be consistent [Lenzerini and Nobili, 1990, Maraee and Balaban, 2007]. However, if con-
straint specifications in OCL are added to the models, the consistency of the models and
their constraints cannot be decided because OCL is undecidable.

This leaves two choices for consistency analysis: automatic, but incomplete, and inter-
active, but complete, approaches. In this chapter, we give an overview of different meth-
ods for consistency analysis. Subsequently, we introduce a novel, tractable approach for
the consistency analysis of pattern-based constraint specifications. This heuristic approach
enables incremental consistency analysis, which allows model developers to analyze the
model consistency in each refinement step. We develop this approach with an emphasis
on automation and tractability. The approach requires a preceding analysis of the con-
straint pattern library in which dependencies between the patterns are investigated. For
the actual consistency analysis, it suffices to check certain assumptions defined in the de-
pendency analysis, which can be done in polynomial time.

This chapter is structured as follows. In Section 6.1, we give an overview of existing
approaches to consistency analysis of UML/OCL models and discuss their advantages and
disadvantages. In Section 6.2, we introduce our heuristic approach to consistency anal-
ysis based on constraint patterns. In Section 6.3, we analyze dependencies between the
elementary constraint patterns of our example library from Section 4.3 and thus make the
patterns in the library usable for our approach. In Section 6.4, we examine consistency
of composite constraint patterns. In Section 6.5, we discuss advantages, disadvantages,
and limitations of our approach. In Section 6.6, we discuss how our analysis approach
integrates into the MDE process. We summarize this chapter in Section 6.7.

6.1 Evaluation of Existing Analysis Approaches

In this section, we first define the criteria that we use for evaluating existing approaches.
Subsequently, we evaluate existing analysis approaches and discuss their advantages and
disadvantages. We evaluate approaches for the consistency analysis of UML/OCL models
by the following criteria.

Coverage Is the modeling language fully covered by this approach, or is only a subset of
UML/OCL supported?

69
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Hypothesis What is the hypothesis that is being checked? Typically, analyses use either
“model is consistent” or “model is inconsistent” as hypotheses.

Flexibility Is the approach limited to a certain notion of consistency? What effort is
necessary for analyzing models for different notions of consistency?

Input What is the necessary input for the analysis? Is there further input required besides
the model and the constraint specification?

Output What is the output of the analysis? Typically, this is “yes”, “no”, or “don’t know.”

Failure What if the hypothesis cannot be proven? Are there any descriptive messages or
counter-examples?

Computational Complexity How expensive is it to compute the result with respect to
the size of the model and the constraint specification? Does the analysis always
terminate?

Degree of Automation What effort is necessary for the user to use the analysis?

In the following, we provide an overview of existing consistency checking approaches
for constraint specifications and subsequently introduce a new approach.

6.1.1 Overview of Existing Analysis Approaches.

In this section, we introduce three existing analysis approaches: interactive theorem prov-
ing, witness creation, and model checking.

6.1.1.1 Interactive Theorem Proving.

In this approach, a proof expert uses a theorem prover to carry out consistency proofs.
The proof obligations for different notions of consistency can be automatically generated,
but the proofs have to be carried out interactively. We know of two implementations of
this approach, one for the theorem prover Isabelle/HOL (HOL-OCL, cf. Section 2.6) and
one for PVS [Kyas et al., 2005].

In both implementations of this approach, most elements of UML and OCL are covered.
Only few elements are not covered, the most important being multiple subtyping in HOL-
OCL and partial functions in the PVS-based analysis. The hypothesis used depends on
the proof obligation generated. Proof obligations for both “specification is consistent” or
“specification is inconsistent” can be automatically generated and subsequently be proven.
Thus, this approach offers a high flexibility with respect to different notions of consistency
because proof obligations can be generated for any notion of consistency.

The input to this approach is the model, its constraint specification, a generated proof
obligation, and a proof. The output of this approach depends on whether the proof obli-
gation could be proven by the user or not. In Isabelle/HOL, successful proofs are finished
with the keyword done, whereas unsuccessful proof attempts are abandoned by the user
with oops. In the latter case, a proof obligation for a weaker notion of consistency can
be generated, or the hypothesis can be changed. Since this approach is interactive, the
effort of using this approach is very high. Proof expertise is required and significant time
is necessary to carry out interactive proofs.
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6.1.1.2 Witness Creation.

In this approach, the model developer is instructed to specify a witness for the model,
i. e., a model state that satisfies all constraints. Typically, the model developer creates
several states that are checked against the constraints and the consistency notions. Alter-
natively, tool support can help the user create the instances.

For example, the user is instructed to create exactly one model instance that contains
at least one object per class if strong consistency of the model is required. If this instance
does not satisfy the constraints, the user is shown the constraints that are violated and has
to modify the model state until it satisfies strong consistency.

There are several tools that validate model states against OCL constraints and
support full UML/OCL. These include the tools OSLO [Fraunhofer Fokus, 2007],
OCLE [Chiorean et al., 2003], USE [Gogolla et al., 2005], the OCL component
of the Eclipse Model Development Tools (MDT) [Eclipse Foundation, 2007a],
ITP/OCL [Clavel and Egea, 2006], and the Kent Modeling Frame-
work [Akehurst and Patrascoiu, 2004]. Of all of them, only USE provides a scripting
language that can be used to generate a set of model states and automatically search for
a witness.

In this approach, all language elements of UML and OCL are supported. Since the
core of this approach is finding a witness state, the hypothesis used is that the constraint
specification is consistent. The flexibility of this approach is high. Model developers can
create different witnesses for different notions of consistency, but they need to be aware
of the different notions.

The input to this approach is the model, its constraint specification, and a candidate
witness. The output is “yes” if the user-provided model state satisfies the constraint spec-
ification. Otherwise, the invariants that are violated by the candidate witness can be
displayed and the model developer can adapt the state. Model developers need to invest
time and must have domain knowledge, but in comparison to interactive theorem prov-
ing, they do not require proof expertise. The weakness of this approach is that the model
developer may not be able to find a valid witness although the model is consistent. This
can happen if there is a larger witness, i. e., a model state with more objects, than consid-
ered by the developer that satisfies the constraints. Such a witness can even contain an
infinitely large number of objects (cf. Section 5.1.1.3) and thus, cannot be found with this
approach.

6.1.1.3 SAT and Model Checking.

The UML/OCL model and the consistency definitions are transformed into a SAT prob-
lem within a predefined size. The problem is then fed to a SAT solver where
the problem is either proven or disproven. We know of one such approach us-
ing the Alloy Analyzer [Jackson, 2000], which processes models translated using
UML2Alloy [Bordbar and Anastasakis, 2005].

A similar approach is to translate UML/OCL into a model checking problem.
[Distefano et al., 2000] describes such an approach and provides a mapping of a sub-
set of OCL into a temporal logic called BOTL. For specifications in pure first-order logic,
[Reif et al., 2001] shows how a counterexample search can be integrated with theorem
proving.

In such approaches, typically all elements of UML, but only a subset of OCL are sup-
ported. The hypothesis of the analysis is that the constraint specification is consistent. The
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flexibility of such approaches is low. Typically, one notion of consistency is hard-coded into
the transformation from UML/OCL to the temporal logic.

The input to this approach is the model and its constraint specification. The output is
“Yes” if a witness is found or “Don’t know” otherwise. In case no witness can be found,
model developers can be shown the model states that violate certain constraints. Subse-
quently, the model or the constraint specification can be adapted. This approach is fully
automated, but the computational complexity is exponential in the size of model elements.

6.1.2 Discussion.

In Figure 6.1, we summarize the different approaches, highlighting the degree of automa-
tion and the complexity of each approach. Whereas interactive theorem proving is the
only complete analysis approach, it offers the least degree of automation when used in the
classical way. Note that interactive theorem proving could also be used with semi-decision
procedures, which offer a high degree of automation for the cost of completeness. Witness
creation also requires user interaction and thus has a similarly low degree of automation.
As explained, witness creation approaches are incomplete. The degree of automation
is significantly higher in SAT-based approaches and model checking. However, such ap-
proaches are incomplete and have exponential complexity. In this figure, we have also
positioned the pattern-based heuristics approach, which we introduce in the next section.
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Figure 6.1: Overview of analysis approaches.

In existing approaches to consistency analysis, there is typically no explicit notion of
consistency. In contrast, it is often not clear if a model that is shown consistent is strongly-
consistent or class-consistent and if it has states with a finite number of objects or not.
Furthermore, the consistency definitions are “hard-wired” into the tools, i. e., tools that
check strong consistency cannot easily be changed to check class consistency. An exception
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to this rule is HOL-OCL because the desired consistency notion can be explicitly stated as
proof obligation.

In practice, automatic approaches based on model checking are desirable during the
development phase because they allow developers to easily check their models for con-
sistency without additional effort by the developer. However, they have one major disad-
vantage: Certain types of inconsistencies cannot be detected. For instance, if a model has
states with an infinitely large number of objects only, a model checking approach will only
generate states with a finite number of objects and then report “Don’t know.” In addition,
such approaches have an exponential complexity and can cause significant interruptions
of the user’s workflow.

In the subsequent section, we introduce a novel heuristic analysis approach based on
constraint patterns that automatically analyzes constrained class models. We intend to
develop this approach with three advantages over the other analysis approaches. First,
this approach runs fully automatically when invoked by the model developer and thus
does not need user interaction such as interactive theorem proving and witness creation.
Second, constraint specifications can be efficiently checked in a Computer Aided Software
Engineering (CASE) tool whether its constraints are in some consistent or inconsistent sub-
set (otherwise, we “don’t know”) unlike SAT-based approaches, which have exponential
complexity. Third, this approach allows for detecting certain cases in which a model has
infinite states only, which can usually not be achieved in witness creation and SAT-based
approaches.

6.2 Heuristic Analysis Based on Pattern Theorems

In this section, we introduce a novel approach to consistency analysis of pattern-based
constraint specifications. In general, this approach comprises proving general consistency
properties of the constraint patterns once and subsequently use this knowledge for an
automatic and efficient heuristic analysis on pattern instances within the development
tool.

6.2.1 Consistency Theorems.

We capture the general consistency properties of a pattern Π as a set of assumptions under
which adding an instance of Π to the constraint specification preserves the respective
consistency of the specification. This analysis has to be done only once for each constraint
pattern in a given pattern library. As a result, we formulate and prove a consistency theorem
for each pattern.

Definition 20 (Consistency Theorem). A consistency theorem for a constraint pattern Π
comprises sufficient syntactic conditions P1, . . . , Pn under which adding an instance of Π to a
consistent model M and its constraint specification ΦM preserves the { weak, class, strong }
consistency of the model. It has the following structure:

• Assume 〈M,ΦM 〉 x-consistent. Let ψ be an instance of pattern Π.

• Assume properties P1(M,ΦM ), . . . , Pn(M,ΦM ) about the model and its constraint spec-
ification.

• Then, 〈M,ΦM ∪ {ψ}〉 x-consistent.
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When the patterns are used, it is sufficient to check whether the assumptions P1, . . . , Pn
hold. Since these assumptions are syntactic properties of the UML/OCL model 〈M,ΦM 〉,
they can be checked in polynomial time. In our approach, we assume that the initial class
model without OCL constraints is consistent, which is a decidable property that can be
computed in linear time [Maraee and Balaban, 2007].

The main challenge in this approach is identifying which patterns can potentially con-
tradict a given pattern Π. To this end, we divide elementary constraint patterns into two
types of patterns, namely those that restrict the value of attributes, e. g., Unique Identifier,
and those that restrict the structure of the object graph spanned by objects and links be-
tween them, e. g., Surjective Association. It is a basic observation that constraint patterns
of one kind are independent of constraint patterns of the other kind, i. e., an instance of a
pattern constraining an attribute value can never contradict an instance of a pattern con-
straining the object graph. The only exception is the Multiplicity Restriction pattern, which
relates the multiplicity of an association to an attribute value and thus restricts both an
attribute value and the object graph. This distinction helps us to determine which patterns
can potentially contradict a given pattern Π.

We use the No Cyclic Dependency pattern to illustrate consistent model refinement using
constraint patterns. To this end, we state the following theorem that defines the necessary
assumptions under which a constrained model remains strongly-consistent after instan-
tiating this pattern. We chose to require strong consistency in the consistency theorems
in this thesis because the proofs for this notion of consistency are more compact and il-
lustrative. The theorems can be easily adapted to other notions of consistency though,
e. g., class consistency. After the proof for the following theorem, we provide a variant of
the theorem for class consistency.

Theorem 1. LetM be a model and ΦM be a strongly-consistent constraint specification based
on patterns, φ be an instance of the No Cyclic Dependency pattern with classC as context and
navigation path p1.p2. . . . .pn. Further assume there is no instance of the Object In Collection
pattern in ΦM on any element of the path p1.p2. . . . .pn. If there are j, k ∈ {1, . . . , n} such
that

(i) the lower multiplicity bound of pj and p−1
k in M is zero and

(ii) there is no instance of the Surjective Association or Bijective Association pattern in
ΦM with parameter value pk, and

(iii) there is no instance of the Multiplicity Restriction pattern in ΦM with pj and p−1
k as

values for any parameter,
then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

In the following, we sketch the ideas behind the assumptions of this theorem and
show a full proof of this theorem in Section 6.3. Because of the requirement that the
initial model is strongly-consistent, there exists a state τ in which each class of M is
instantiated. If τ does not satisfy the new constraint ψ, we construct a state τ ′ from τ as
follows. First, we delete the jth link from the cycle. Now, τ ′ |= φ, but τ ′ may not satisfy the
multiplicity constraints in ΦM . Thus, we walk the path backwards starting from position
j and instantiate and link new objects until the multiplicity constraints hold. This will
eventually be the case because of the existence of pk and its properties that we assume.
Thus, τ ′ |= ΦM and M and 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

The assumptions (i)-(iii) are crucial for the correctness of above construction. As-
sumption (i) requires the existence of an association end pj on the constrained path that
has a lower multiplicity bound of zero, and there must be an association end pk whose
inverse association end has a lower multiplicity bound of zero. Generally speaking, this
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assumption allows us to delete existing links in the above construction and ensures its
termination.

However, it is not sufficient that the lower multiplicity bound of these association ends
is zero. In addition, there must be no constraints in the constraint specification ΦM of
the model M that constrain the lower multiplicity bound of these association ends. There
are three constraint patterns in our library that can be used to restrict lower multiplicity
bounds: Surjective Association, Bijective Association, and Multiplicity Restriction. Therefore,
we added assumptions (ii) and (iii) to the consistency theorem. In addition, we exclude
that the reflexive path is constrained by an Object In Collection constraint, which would
otherwise affect these association ends.

The theorem for the No Cyclic Dependency pattern for class consistency is almost iden-
tical to the theorem for strong consistency with the exception that the term “strongly-
consistent” is replaced by “class-consistent”. The theorem reads as follows.

Theorem 2. LetM be a model and ΦM be a class-consistent constraint specification based on
patterns, φ be an instance of the No Cyclic Dependency pattern with class C as context and
navigation path p1.p2. . . . .pn. Further assume there is no instance of the Object In Collection
pattern in ΦM on any element of the path p1.p2. . . . .pn. If there are j, k ∈ {1, . . . , n} such
that

(i) the lower multiplicity bound of pj and p−1
k in M is zero and

(ii) there is no instance of the Surjective Association or Bijective Association pattern in
ΦM with parameter value pk, and

(iii) there is no instance of the Multiplicity Restriction pattern in ΦM with pj and p−1
k as

values for any parameter,
then, 〈M,ΦM ∪ {φ}〉 is class-consistent.

Whereas the theorems for strong consistency and class consistency are almost iden-
tical, the proofs require some adjustments. Since our basic assumption is now the class
consistency of the constraint specification, there exists a set of states T = {τ1, . . . , τn} in
which each class of M is instantiated. For each τi ∈ T that does not satisfy φ, we perform
the construction that we introduced in the proof for strong consistency for τi. As a result,
we obtain a set of states T ′ in which each τ satisfies both ΦM and φ. Thus, it is a witness
for the class consistency of 〈M,ΦM ∪ {φ}〉.

We are interested in sufficient conditions that pattern instances preserve the consis-
tency of the model. Thus, the theorems typically have the form P ⇒ Q, where P is a set
of syntactic assumptions and Q is the fact that the refined model is consistent. In general,
it is not possible to have consistency theorems in the form P ⇔ Q because the semantics
of the patterns is based on OCL, which is an undecidable language.

6.2.2 Using Consistency Theorems for Analysis.

For analyzing pattern-based constraint specifications for consistency, it is sufficient to
check for each pattern instance whether the assumptions defined in the respective pat-
tern theorem hold, which consists of syntactic checks that can be performed in polynomial
time. We will see in the next section that the complexity for checking the assumptions for
one consistency theorem is O(|Φ| · |P |), where |Φ| is the number of pattern instances in the
constraint specification and |P | is the length of the longest path used as parameter value
for the pattern instances.

For each pattern instance in the constraint specification, consistency analysis can ei-
ther result in consistent if the assumptions in the respective theorem hold or don’t know
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otherwise. In the latter case, the consistency of the constraint specification must be proven
by different means as described in Section 6.1.1. Note that using consistency theorems as
defined in Definition 20, the analysis cannot result in inconsistent. However, our approach
can be extended by a complementary set of theorems that state the assumption under
which a given pattern instance violates the consistency of a model. We consider this future
work and thus illustrate it further in Section 9.2.

Besides using consistency theorems for an automatic analysis, they can also be used
for increasing the degree of automation in interactive consistency proofs. As explained
in Section 5.2.3, theorems can be used as simplification rules once they are proven. This
can simplify future proofs of theorems that contain statements that can be inferred from
previously proven theorems or that contain previously proven theorems as proof goals.

In the next section, we state and prove consistency theorems for each constraint pat-
tern from Section 4.3 in detail. Note that we do not carry out the proofs in HOL-OCL us-
ing the HOL-OCL semantics of the constraint patterns because such formal proofs would
require a deep embedding (cf. [Boulton et al., 1992]) of the pattern semantics and the
consistency notions in contrast to the current shallow embedding (cf. Section 2.6.2). Such
a deep embedding, in turn, is beyond the scope of this thesis.

6.3 Dependencies between Elementary Patterns

In this section, we investigate under which assumption instances of the constraint patterns
presented in Section 4.3 preserve the consistency of a model. Starting from a model M
and a strongly-consistent constraint specification ΦM , we add instances of our constraint
patterns and analyze potential conflicts. We assume that all pattern instances are not
negated and that there are no instances of the Literal OCL pattern, which contains arbitrary
OCL expressions. We discuss these limitations in Section 6.5 where we also elaborate
on using the theorems about elementary patterns for analyzing composite patterns and
scaling this approach when new patterns are added.

We use the example model in Figure 6.2, which represents a simple class model with
classes, attributes, associations, and generalization, for illustrating our findings — our
consistency theorems make statements about arbitrary class models of course.

A

i : Integer

B C

s : String

j : Integer

D E

ab

*

- a

*

- b

ac

*

- a

*

- c

bc

*

- b

*

- c

Figure 6.2: Generic class diagram.
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6.3.1 Association-Restricting Patterns.

6.3.1.1 No Cyclic Dependency.

The No Cyclic Dependency pattern can be instantiated to disallow cyclic links between
objects on a certain navigation path. We defined it as follows in Section 4.3.

pattern NoCyclicDependency(property: Sequence(Property)) =
self .closure(property)−>excludes(self)

pattern closure(property: Sequence(Property)) =
self .property−>union(self.property.closure(property))

If the pattern is instantiated on a navigation path p, it has to be ensured that the multi-
plicities of the association ends included in p allow noncyclic instantiations, as expressed
by the following theorem.

Theorem 3. Let 〈M,ΦM 〉 be a strongly-consistent model, φ be an instance of the No Cyclic
Dependency pattern with class C as context and navigation path p1.p2. . . . .pn. Further
assume there is no instance of the Object In Collection pattern in ΦM on any element of the
path p1.p2. . . . .pn. If there are j, k ∈ {1, . . . n} such that

(i) the lower multiplicity bound of pj and p−1
k is zero and

(ii) there is no instance of the Surjective Association pattern or Bijective Association pat-
tern in ΦM with parameter value pk, and

(iii) there is no instance of the Multiplicity Restriction pattern in ΦM with pj and p−1
k as

values for any parameter,

then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. We distinguish two cases:

Case 1: τ |= ΦM ∧ φ. In this case, τ does not contain a cyclic link between objects of
class C on path p1.p2. . . . .pn. Thus, τ ′ = τ .

Case 2: τ 6|= ΦM ∧ φ. In this case, there is an object o1 : C ∈ τ and a sequence
(o1, . . . , om, o1) of objects that represent a cyclic link in which the link from object oi−1

to oi is an instance of association end pi. We construct τ ′ from τ by deleting the link from
oj−1 to oj . This deletion does not violate any invariant of Cj−1 because our assumptions
state that no relation between objects of class Cj−1 and Cj is required by a Object In Col-
lection constraint, and objects of class Cj−1 are not required to relate to objects of class
Cj because the lower multiplicity bound of association end pj is zero (i) and not further
constrained (iii). Now, τ ′ |= φ.

If after the deletion of the link τ ′ |= ΦM holds, the construction is finished. If not, the
deletion has violated the multiplicity constraints of at least one class of which an object
participated in the cycle. In this case, we initially create an object o′j−1 of type Cj−1 and
link it to oj . Counting an index i from j − 1 down to 1 (and potentially from m to j + 1
afterwards), we create an object of type Ci−1 and link it to oi only if class Ci requires a link
to class Ci−1; otherwise, the algorithm terminates. It eventually terminates because there
exists a class Ck that does not require a link to class Ck−1 because the lower multiplicity
bound of the opposite association end of pk can be zero and is not further constrained
(i-iii), and there is no Object In Collection constraint on pk. After this construction, the
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multiplicity constraints hold that were violated by the deletion and thus, τ ′ |= ΦM , and,
as shown before, τ ′ |= φ. Thus, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Figure 6.3 shows the construction that we use in the proof by an example. In this example,
there exists a state τ in which there is a cyclic link between the objects. We construct a
state τ ′ according to the construction in the proof; the association end b is the required pj
and c the required pk.

a1: A b1: B c1: C

a1: A b1: B c1: C

a2: Ac2: C

τ’

τ

Figure 6.3: Illustration of the proof for Theorem 3.

An example of inconsistent pattern instances reads as follows.

context A
inv: NoCyclicDependency(b.c.a)
inv: MultiplicityRestriction (b,>=,1)

context B
inv: MultiplicityRestriction (c,>=,1)

context C
inv: MultiplicityRestriction (a,>=,1)

These constraints are inconsistent because the first invariant disallows cycles on the path
b.c.a whereas the remaining invariants require each object on the path to be connected
to at least one successive object. Thus, model states can either contain zero or infinitely
many objects of classes A, B, and C, which violates strong consistency.

6.3.1.2 Object In Collection.

The Object In Collection pattern can be instantiated to require objects of a class to be
contained in a set of related elements. We defined it as follows.

pattern ObjectInCollection(set :Sequence(Property), element:Sequence(Property)) =
self .set−>includes(self.element)

In Theorem 3, we stated dependencies between this pattern and the No Cyclic Dependency
pattern. In addition, there are further dependencies, as stated in the following theorem.

Theorem 4. Let 〈M,ΦM 〉 be a strongly-consistent model, φ be an instance of the Object In
Collection pattern with context class C, set = p1.p2. . . . .pm, and element = p1.p2. . . . .pn.
If

(i) there is no instance of the No Cyclic Dependency pattern in ΦM with parameter prop-
erty = set and

(ii) the upper multiplicity bound of pm is at least one, and
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(iii) there is no instance of the Multiplicity Restriction pattern in ΦM with any pi ∈
{p1, . . . , pm} as value for the navigation parameter,

then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. In the following, we do not consider the trivial case
and thus assume τ 6|= φ.

For each object o0 of type C for which the Object In Collection constraint does not hold,
we perform the following construction, which we illustrate in Figure 6.4. Starting from o0,
we navigate along the path p1.p2. . . . .pm. This path ends at an object ok because of τ 6|= φ.
For all i, k < i < m, create an object oi of class type(pi) and link it to the previous object.
This does not violate any constraints because at least one relation between these objects
can exist because their multiplicities are not constrained (iii). Connect the last object of
type(pm−1) to o0. This does not violate any constraints because arbitrary many objects of
type C can be connected to objects of type type(pm−1) because the multiplicity of pm is
at least one (ii). The last step creates a cyclic link between o0 and itself, which does not
violate any constraint because cycles are not forbidden (i). Due to this cycle, τ ′ |= φ and
thus, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

τ’

a1: A b1: B c1: C

a1: A b1: B c1: C

c2: C

τ

Figure 6.4: Illustration of the proof for Theorem 4.

An example of inconsistent pattern instances reads as follows.

context A
inv: ObjectInCollection(b.c.a)
inv: NoCyclicDependency(b.c.a)

These invariants are inconsistent because the first invariant requires each object of class
A to be in the set of objects reachable via path b.c.a, which implies a cycle. However, the
second invariant explicitly forbids such cycles.

6.3.1.3 Surjective Association.

The Surjective Association pattern can be instantiated to make an association end surjec-
tive. We defined it as follows.

pattern SurjectiveAssociation(property:Sequence(Property)) =
self .property.allInstances()−>forAll ( y |

self . allInstances()−>exists( x | x.property−>includes(y)))
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We define the consistency theorem for the Surjective Association pattern as follows.

Theorem 5. Let 〈M,ΦM 〉 be a strongly-consistent model, φ be an instance of the Surjective
Association pattern with class C as context and navigation path P = p1.p2. . . . .pn. If

(i) for each 1 ≤ i ≤ n, the upper multiplicity bound of property p−1
i is greater than zero,

(ii) there is no instance of the Multiplicity Restriction pattern in ΦM that restricts any
opposite association end p−1

i for all i, 1 ≤ i ≤ n, and
(iii) there is no instance of the No Cyclic Dependency pattern in ΦM with navigation path

p1.p2. . . . .pn
then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. In the following, we do not consider the trivial case
and thus assume τ 6|= φ.

In this case, there is an object y of class type(pn) in τ that is not linked to an object
of class C via path P . We establish a link between an object of class C and y as follows.
From y, we navigate for each 1 ≤ i < n backwards on path P . For each part i of the path
for which there does not exist a link, we either create an instance of pi between object
oi+1 and an existing object oi if the multiplicity constraints of class type(oi) allow oi be
connected to oi or otherwise, we create a new object o′i of class type(oi). Creating such a
link is possible because objects of class type(oi+1) can be connected to objects of type(oi)
since the multiplicity of association end p−1

i is at least one (i) and not further restricted by
an Multiplicity Restriction (ii). Since we try to connect to an existing object, a cycle can be
introduced, but because cycles on this part are not forbidden (iii), this construction does
not violate ΦM . This construction terminates after the nth step connecting an object of
type C to a path that leads to y. Therefore, τ ′ |= φ, and since this construction has not
violated any constraint in ΦM , 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

τ’

a1: A b1: B c1: C
τ

a1: A b1: B c1: C

Figure 6.5: Illustration of the proof for Theorem 5.

An example of inconsistent pattern instances reads as follows.

context A
inv: SurjectiveAssociation(b)

context B
inv: MultiplicityRestriction (a,<,1)

Whereas the first invariant requires every object of class B to be connected to an object
of class A, the second invariant forbids this by stating that no objects of class A may be
connected to objects of class B.
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6.3.1.4 Injective Association.

The Injective Association pattern can be instantiated to make an association end injective.
We defined it as follows.

pattern InjectiveAssociation (property:Sequence(Property)) =
self .property−>size() = 1 and
self . allInstances()−>forAll (x,y | x.property = y.property implies x=y)

We define the consistency theorem for the Injective Association pattern as follows.

Theorem 6. Let 〈M,ΦM 〉 be a strongly-consistent model, φ be an instance of the Injective
Association pattern with class C as context and navigation path P = p1.p2. . . . .pn. If

(i) the upper upper multiplicity bound of the opposite association end of each pi ∈
{p1, . . . , pn} is either one or * and

(ii) there is no instance of the Multiplicity Restriction pattern in ΦM that restricts the
opposite association end of any pi ∈ {p1, . . . , pn},

then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. In the following, we do not consider the trivial case
and thus assume τ 6|= φ.

In this case, there are two or more objects of class C in τ that are connected to the
same object of class type(pn) as illustrated in Figure 6.6. We construct τ ′ from τ as follows.
For every object on of class type(pn), we walk the path P backwards. For each i, 1 ≤ i < n,
if there is more than one link to from oi to oi+1, we nondeterministically delete all but
one link. This preserves the invariants of the classes on the “right-hand side” of the link,
because exactly one link will be left and the multiplicity of this association is either one or
unlimited (*) (i) and not further constrained (ii). After this construction, there is at most
one link from an object of class C to an object of class type(pn) and thus, τ ′ |= φ.

However, the multiplicities of the classes on the “left-hand side” of the deleted links
may have been violated by the previous construction. We repair the multiplicities as fol-
lows. For each object of class C, we walk path P from 1 ≤ i < n. If the multiplicity
invariants of class type(pi) are violated, we create objects of class type(pi+1) until the
invariants are satisfied. Since each newly created object oi is connected to exactly one
object oi−1, τ ′ |= φ still holds. After this second part of the construction, the all multi-
plicity constraints hold and thus, τ ′ |= ΦM . Because τ ′ |= φ also holds, 〈M,ΦM ∪ {φ}〉 is
strongly-consistent.

An example of inconsistent pattern instances reads as follows.

context A
inv: InjectiveAssociation (b)

context B
inv: MultiplicityRestriction (a,>,1)

Whereas the first invariant states that no object of class B may be connected to more than
one object of class A, the second invariant states the exact opposite.

6.3.1.5 Bijective Association.

The Bijective Association pattern can be instantiated to make an association bijective. We
defined it as follows.
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τ’

τ
a1: A b1: B c1: C

a2: A

a1: A b1: B c1: C

a2: A b2: B

Figure 6.6: Illustration of the proof for Theorem 6.

pattern BijectiveAssociation(property:Sequence(Property)) =
InjectiveAssociation (property) and
SurjectiveAssociation(property)

We define the consistency theorem for the Bijective Association pattern as follows.

Theorem 7. Let 〈M,ΦM 〉 be a strongly-consistent model, φ be an instance of the Bijective
Association pattern with class C as context and navigation path P = p1.p2. . . . .pn. If

(i) for each 1 ≤ i ≤ n, the upper multiplicity bound of property p−1
i is greater than zero,

(ii) there is no instance of the Multiplicity Restriction pattern in ΦM that restricts any the
opposite association end p−1

i for all 1 ≤ i ≤ n,
(iii) there is no instance of the No Cyclic Dependency pattern in ΦM with navigation path

p1.p2. . . . .pn,
(iv) the upper upper multiplicity bound of the opposite association end of each pi ∈

{p1, . . . , pn} is either one or * and
(v) there is no instance of the Multiplicity Restriction pattern in ΦM that restricts the

opposite association end of any pi ∈ {p1, . . . , pn},
then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Note that assumptions (i)-(iii) are the assumptions from the Surjective Association pattern
and assumptions (iv) and (v) are the assumptions from the Injective Association pattern.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. In the following, we do not consider the trivial case
and thus assume τ 6|= φ.

We construct a state τ ′ from state τ by making the navigation path P = p1.p2. . . . .pn
both surjective and injective. Making this navigation path surjective is possible because
of the assumptions (i)-(iii) (cf. Theorem 5) and (iv)-(v) (cf. Theorem 6). After this
construction, P is both surjective and injective. Thus, P is bijective and 〈M,ΦM ∪ {φ}〉 is
strongly-consistent.
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An example of inconsistent pattern instances reads as follows.

context A
inv: BijectiveAssociation (b)

context B
inv: MultiplicityRestriction (a,>,1)

These invariants are inconsistent because the first invariant entails a one-to-one relation
between objects of classes A and B whereas the second invariant imposes a one-to-many
relation between objects of B and objects of A.

6.3.1.6 Type Restriction.

The Type Restriction pattern can be used to restrict an association that is defined between
some class and some superclass by limiting the allowed subclasses. We defined it as fol-
lows.

pattern TypeRestriction(property:Property, allowedClasses:Set(Class)) =
self .property−>forAll(x | allowedClasses−>exists(t | x.oclIsTypeOf(t)))

We define the consistency theorem for the Type Restriction pattern as follows.

Theorem 8. Let 〈M,ΦM 〉 be a strongly-consistent model, φ be an instance of the Type Re-
striction pattern with class C as context, a navigation path P = p1.p2. . . . .pn and a set
S = {C1, . . . , Cn} of allowed classes. If

(i) for each 1 ≤ i ≤ n, the lower multiplicity bound of property p−1
i is zero,

(ii) there is no instance of the Multiplicity Restriction pattern in ΦM that restricts any the
opposite association end p−1

i for all 1 ≤ i ≤ n,
(iii) there is no instance ψ(p′, S′) of the Type Relation pattern in ΦM where p′ is a suffix of

p and S′ − S 6= ∅, and
(iv) there is no other instance ψ(p′, S′) of the Type Restriction pattern in ΦM where p′ is a

suffix of p and S′ ∩ S 6= ∅,
then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. In the following, we do not consider the trivial case
and thus, τ 6|= φ.

In this case, there exists a path between an object o1 of class C to an object on with
class(on) /∈ {C1, . . . , Cn}. We construct τ ′ by deleting all links between objects of class
type(p−1

n ) and on as shown in Figure 6.7. This does not violate the multiplicity constraints
of class(on) because this class can be related to zero objects of class type(p−1

n ) because the
lower multiplicity bound of p−1

n is zero (i) and not further constrained (ii). The deletion
of the link does not violate any Type Relation constraint because no object of class(on) is
required to be on path P (iii). Now, τ ′ |= φ.

If the multiplicity constraints of class type(p−1
n ) are violated, we create objects of any al-

lowed class Ci ∈ {C1, . . . , Cn} until the multiplicity constraints of class type(p−1
n ) are satis-

fied. Furthermore, the newly created objects do not violate any Type Restriction constraint
in ΦM because there is no other type restriction that requires any class not in {C1, . . . , Cn}
(iv). Now, also τ ′ |= ΦM holds and thus, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

The following invariants applied to the model in Figure 6.2 are not strongly-consistent
because no instance of D can be created.
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τ
a1: A b1: B c1: C

d1: D e1: E

τ’
a1: A b1: B c1: C

d1: D e1: E

Figure 6.7: Illustration of the proof for Theorem 8.

context A
inv: TypeRestriction(b,E)

context D
inv: MultiplicityRestriction (a,>,0)

In particular, the first invariant requires that only objects of the subclass E of B may be
connected to objects of class A on the association end b. However, the second invariant
requires that objects of class D, the other subclass of B, must be connected to at least one
object of class A, which contradicts the first invariant.

6.3.1.7 Type Relation.

The Type Relation pattern can be used to enforce that instances of certain subclasses
C1, . . . , Cn of C0, the requiredClasses, must participate in some relation. We defined the
pattern as follows.

pattern TypeRelation(property:Sequence(Property), requiredClasses:Set(Class)) =
requiredClasses−>forAll(c | self.property−>exists(p | p.oclIsTypeOf(p)))

We define the consistency theorem for the Type Relation pattern as follows.

Theorem 9. Let 〈M,ΦM 〉 be a strongly-consistent model, φ be an instance of the Type Re-
lation pattern with class C as context, a navigation path P = p1.p2. . . . .pn and a set
S = {C1, . . . , Cn} of required classes. If

(i) there exists a pi ∈ {p1, . . . , pn} for which the upper multiplicity is greater than or equal
to |S|,

(ii) there is no instance of the Multiplicity Restriction pattern in ΦM that restricts the
above-mentioned association end pi, and

(iii) there is no instance ψ(p′, S′) of the Type Restriction pattern in ΦM where p′ is a suffix
of p and S′ − S 6= ∅,

then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. In the following, we do not consider the trivial case
and thus, τ 6|= φ.
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In this case, there is an object o1 : C that is not linked to an object of class Cj ∈ S. Walk
the path P from o1 to pi. At pi, create a new object o′i of class type(pi) and link it to the
previous object in the path as illustrated in Figure 6.8. After this construction, τ ′ |= ΦM

still holds because the unlimited multiplicity of pi (i), which is not further constrained
(ii),allows one to connect an unlimited number of elements to the previous objects in the
path.

From o′i, continue to walk path P , creating a new object in each step. The last object in
the path must be of type Cj . This is possible because objects of this class are not forbidden
to connect to this path by any instance of the Type Restriction pattern (iii). Then, τ ′ |= φ,
and thus, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

τ
a1: A b1: B c1: C

d1: D e1: E

τ’
a1: A b1: B c1: C

d1: D e1: E

Figure 6.8: Illustration of the proof for Theorem 9.

The following set of invariants is inconsistent.

context A
inv: TypeRelation(b,{D,E})
inv: MultiplicityRestriction (b,<=,1)

The first invariant requires every object of class A to be related to objects of class D and
objects of class E, whereas the second invariant allows objects of class A to be related to
at most one object of class B, the superclass of D and E.

6.3.1.8 Unique Path.

The Unique Path pattern can be used to limit the number of links between two objects to
one. We defined it as follows.

pattern UniquePath(property: Sequence(Property)) =
self .property−>exists(m1,m2 | m1−>closure(property)−>intersect(

m2−>closure(property))−>notEmpty()
implies m1=m2)

We define the consistency theorem for the Unique Path pattern as follows.

Theorem 10. Let 〈M,ΦM 〉 be a strongly-consistent model, φ be an instance of the Unique
Path pattern with class C as context and a navigation path P = p1.p2. . . . .pn. If there are
no pi, pj ∈ P such that

(i) the upper multiplicity bound of pi and p−1
j is greater than one and
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(ii) there is an instance of the Multiplicity Restriction pattern in ΦM on pi or p−1
j ,

(iii) there is no instance of the Injective Association or Bijective Association pattern on P
or P−1 in ΦM ,

then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. In the following, we do not consider the trivial case
and thus, τ 6|= φ.

In this case, there is more than one path between an object o0 of class C and an object
on of class type(pn). We start walking past the objects oi on path P starting from object o0.
If object oi has more than one link to objects of class Ci+1, we nondeterministically delete
one link, as illustrated in Figure 6.9. This does not violate the multiplicity constraints of
class Ci of object oi because oi is still connected to at least one object of class Ci+1 and the
upper multiplicity bound of pi is at most one (i, ii). Now, τ ′ |= φ.

However, the multiplicity constraints of the object oi+1 at the opposite end of the
deleted link may be violated. We thus create a new object o′i of class Ci and connect it to
oi+1. Now, the multiplicity constraints for oi+1 are satisfied. If the multiplicity constraints
of o′i are not satisfied, we create the objects with which o′i is required to have relations and
connect them to o′i. Object on is now connected to two different objects of class C, which
is legal because path P is not required to be injective (iii). Now, also τ ′ |= ΦM holds and
thus, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

τ
a1: A b1: B c1: C

b2: B

τ’
a1: A b1: B c1: C

b2: Ba2: A

Figure 6.9: Illustration of the proof for Theorem 10.

The following set of invariants is inconsistent.

context A
inv: UniquePath(b.c)
inv: MultiplicityRestriction (b,=,2)

context B
inv: MultiplicityRestriction (a,=,1)
inv: MultiplicityRestriction (c,=,1)

context C
inv: MultiplicityRestriction (b,=,2)
inv: InjectiveAssociation (b.a)
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The first invariants limits the number of allowed paths between objects of class A and
class C to one. However, all Multiplicity Restriction constraints enforce a diamond config-
uration in combination with the Injective Association constraint, which contradicts the first
invariant.

6.3.1.9 Path Depth Restriction.

The Path Depth Restriction pattern can be used to limit instances of reflexive associations
to a certain length. We defined it as follows.

pattern PathDepthRestriction(property: Sequence(Property), maxDepth:Integer) =
self .pathDepthSatisfied(property,maxDepth−1,0)

pattern pathDepthSatisfied(property: Sequence(Property), max:Integer, counter:Integer) =
if (counter > max or counter < 0 or max < 0) then false
else if (self .property−>isEmpty()) then true

else self .property−>forAll(m|m.pathDepthSatisfied(property, max, counter+1))
endif

endif

We define the consistency theorem for the Path Depth Restriction pattern as follows.

Theorem 11. Let 〈M,ΦM 〉 be a strongly-consistent model, φ be an instance of the Unique
Path pattern with class C as context, a navigation path P = p1.p2. . . . .pn, and a maximum
depth of n. 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. In the following, we do not consider the trivial case
and thus, τ 6|= φ.

In this case, there is an instance of path P in τ of length m with m > n. We know that
the path has finite length because 〈M,ΦM 〉 is strongly-consistent. Thus, we know that
instances of this path with finite length can exist.

We create a state τ ′ from τ as follows. Starting from the first element o0 on the path of
class C, we follow the path instance n times, ending up at another object oi of class C. We
cut the path by deleting the link between oi and oi+1, as shown in Figure 6.10. Next, we
restore the head of the remainder of the path by instantiating a new object of class C and
linking it to oi+1. We recursively apply these steps until the end of the path is reached.
With this construction, we have split the instance of the path into parts with a maximum
size of n each and thus, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.
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τ
a1: A b1: B c1: C

b2: Bc2: C a2: A

a3: A b3: B c3: C

a4: A

τ’
a1: A b1: B c1: C

b2: Bc2: C a2: A

a3: A b3: B c3: C

a4: Aa5: A

Figure 6.10: Illustration of the proof for Theorem 11.

6.3.2 Attribute-Restricting Patterns.

Values of two or more attributes can be mutually dependent. Consider the following
example.

context A
inv: self .b−>forAll( b | self .x > b.y ) −− Attribute Relation

context B
inv: self .y = self .c−>sum(z) −− AttributeSumRestriction

context C
inv: self .z = self .a.x −− AttributeValueRestriction

In every model state, each summand of the sum restriction for class B is greater than the
sum. This is a contradiction and thus, no satisfying instance exists. We reflect this in the
following consistency theorems by not warranting consistency if attributes are restricted
by more than one constraint.

6.3.2.1 Attribute Relation.

Using the Attribute Relation pattern, attributes can be related to other attributes. We
defined this pattern as follows.

pattern AttributeRelation (navigation:Sequence(Property), remoteAttribute:Property,
operator: OclExpression, contextAttribute :Property) =

self .navigation−>forAll( x | x.remoteAttribute operator contextAttribute )

We define the consistency theorem for the Attribute Relation pattern as follows.

Theorem 12. Let 〈M,ΦM 〉 be a strongly-consistent model, φ(navigation, remote-
Attribute, op, contextAttribute) be an instance of the Attribute Relation pattern with class
C as context. If
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(i) there is no instance of the Attribute Sum Restriction, Attribute Value Restriction, Mul-
tiplicity Restriction, or another Attribute Relation pattern in ΦM in which context-
Attribute is used as a parameter,

(ii) remoteAttribute 6= contextAttribute, and
(iii) there is no instance of the Unique Identifier pattern in ΦM in which contextAttribute

is one of the unique properties,
then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. In the following, we do not consider the trivial case
and thus, τ 6|= φ.

In this case, there exists an o : C in τ for which the contextAttribute violates φ. We
set the value of contextAttribute such that it satisfies φ as shown in Figure 6.11. Now,
τ ′ |= φ. Furthermore, no constraint in ΦM is violated because contextAttribute is not related
to another property (i), to itself (ii), and its value does not have to be unique (iii). Thus,
τ ′ |= ΦM , 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

τ

a1:A

i = 3

c1:C

j = 2

c2:C

j = 3

τ’

a1:A

i = 4

c1:C

j = 2

c2:C

j = 3

Figure 6.11: Illustration of the proof for Theorem 12.

The following constraints are inconsistent: Whereas the first invariant requires that for
each object of class A, the value of attribute i must be less than the same attribute of all
related A objects, the second invariant requires that the value of attribute i must be equal
to the sum of the values of attribute i of all related A objects.

context A
inv: AttributeRelation (b.c.a, i ,>, i )
inv: AttributeSumRestriction(i ,b.c.a, i )

6.3.2.2 Attribute Sum Restriction.

The Attribute Sum Restriction pattern can be used limit the value of an integer attribute to
the sum of related attributes. We defined the pattern as follows.

pattern AttributeSumRestriction(navigation: Sequence(Property),
summand: Property, summation: Property) =

self .navigation.summand−>sum() <= summation
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We define the consistency theorem for the Attribute Sum Restriction pattern as follows.

Theorem 13. Let 〈M,ΦM 〉 be a strongly-consistent model, φ(navigation, sum-
mand, summation) be an instance of the Attribute Sum Restriction pattern with class
C as context. If

(i) there is no instance of the Attribute Relation, Attribute Value Restriction, Multiplicity
Restriction, or another Attribute Sum Restriction pattern in ΦM in which summation
is used as parameter and

(ii) if navigation is reflexive and summation = summand, there is no instance of the
Unique Identifier pattern in ΦM in which summation is one of the unique properties,

then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. In the following, we do not consider the trivial case
and thus, τ 6|= φ.

In this case, there exists an object o : C for which the summation attribute does not
have the correct value. To this end, we set the value of summation to the sum of the
summand properties of all objects related to o via navigation as shown in Figure 6.12.
Now, τ ′ |= φ. Further, the value of summation is not related to any other property (i) and
it is not related to itself (ii). Thus, no existing constraint in ΦM is violated, τ ′ |= ΦM , and
〈M,ΦM ∪ {φ}〉 is strongly-consistent.

τ

a1:A

i = 3

c1:C

j = 2

c2:C

j = 3

τ’

a1:A

i = 5

c1:C

j = 2

c2:C

j = 3

Figure 6.12: Illustration of the proof for Theorem 13.

The following constraints are inconsistent: Whereas the first invariant requires that the
value of attribute i must be equal to the sum of the values of all i attributes of related A
objects, which leaves zero as the only possible value for i for two or more related objects,
the second invariant requires i to have a unique value for all objects of class A, which is a
contradiction.

context A
inv: AttributeSumRestriction(i ,b.c.a, i )
inv: UniqueIdentifier ( i )
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6.3.2.3 Attribute Value Restriction.

The Attribute Value Restriction pattern represents a common kind of constraint, namely
simple value restrictions for attributes. We defined it as follows.

pattern AttributeValueRestriction (property:Property,operator,value:OclExpression) =
self .property operator value

We define the consistency theorem for the Attribute Value Restriction pattern as follows.

Theorem 14. Let 〈M,ΦM 〉 be a strongly-consistent model, φ(p, op, v) be an instance of the
Attribute Value Restriction pattern with class C as context. If

(i) there is no instance of the Attribute Sum Restriction, Attribute Relation, Multiplicity
Restriction, or another Attribute Value Restriction pattern in ΦM in which p is used as
a parameter,

(ii) if op is “=”, there is no instance of the Unique Identifier pattern in ΦM in which p is
one of the unique properties,

then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. In the following, we do not consider the trivial case
and thus, τ 6|= φ.

In this case, there exists an o : C in τ for which property p violates φ. We set the
value of p such that it satisfies φ as shown in Figure 6.13. Now, τ ′ |= φ. Furthermore,
no constraint in ΦM is violated because p is not related to another property or to itself
(i), and its value does not have to be unique (ii). Thus, τ ′ |= ΦM , 〈M,ΦM ∪ {φ}〉 is
strongly-consistent.

τ
a1:A

i = 1

c1:C

j = 2

τ’
a1:A

i = 3

c1:C

j = 2

Figure 6.13: Illustration of the proof for Theorem 14.

The following constraints are obviously inconsistent.

context A
inv: AttributeValueRestriction ( i ,<,0)
inv: AttributeValueRestriction ( i ,>,0)

6.3.2.4 Unique Identifier.

Using the Unique Identifier pattern, a tuple of properties can be specified that have to be
unique for each object of the context class. We defined it as follows.
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pattern UniqueIdentifier (property:Tuple(Property)) =
self . allInstances()−>isUnique(property)

We define the consistency theorem for the Unique Identifier pattern as follows.

Theorem 15. Let 〈M,ΦM 〉 be a strongly-consistent model, φ be an instance of the Unique
Identifier pattern with class C as context, and a set P of properties. If for all p ∈ P ,

(i) the domain of the type of p is infinite,
(ii) there is no instance ψ(p, , p) of the Attribute Sum Restriction pattern in ΦM ,

(iii) there is no instance ψ( , ,=, p) of the Attribute Relation pattern on C in ΦM , and
(iv) there is no instance ψ(p,=, ) of the Attribute Value Restriction pattern in ΦM ,

then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. In the following, we do not consider the trivial case
and thus, τ 6|= φ.

In this case, there exist two objects o1, o2 of class C for which pi(o1) = pi(o2) for all
pi ∈ P . We nondeterministically choose some i and change the value of pi(o2) such that
there is no other o : C with pi(o) = pi(o2), as shown in Figure 6.14. Now, τ ′ |= φ.
This is possible because there are infinitely many possible values for pi (i). Furthermore,
there would be only one possible value for pi in the presence of a reflexive Attribute Sum
Restriction constraint, which we exclude in the assumptions (ii) and objects of class C are
not required to have the same value (iii, iv). After this change, it is possible that τ ′ 6|= ΦM

if pi is the parameter of an instance of the Attribute Sum Restriction, Attribute Relation, or
Attribute Value Restriction pattern. In this case, the attribute values in τ ′ must be changed
such that τ ′ |= ΦM . This is possible because each attribute value is constrained by at
most one constraint because of the assumption that 〈M,ΦM 〉 is strongly-consistent and
Theorems 13, 12, and 14. Now, τ ′ |= ΦM and 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

τ
a1:A

i = 1

a2:A

i = 1

τ’
a1:A

i = 1

a2:A

i = 2

Figure 6.14: Illustration of the proof for Theorem 15.

The following constraints are inconsistent as explained above for the Attribute Sum Re-
striction pattern.

context A
inv: UniqueIdentifier ( i )
inv: AttributeSumRestriction(i ,b.c.a, i )
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6.3.3 Other Patterns.

There is only one pattern that restricts both the structure of the object graph and attribute
values, Multiplicity Restriction.

6.3.3.1 Multiplicity Restriction.

The Multiplicity Restriction pattern can be instantiated to limit the multiplicity of an asso-
ciation to a given attribute value. We defined it as follows.

pattern MultiplicityRestriction (navigation: Sequence(Property),
operator: OclExpression, value:OclExpression) =

self .navigation−>asSet()−>size() operator value

Since the Multiplicity Restriction pattern restricts both the structure of the object graph
and attribute values, it is related to almost all other patterns as shown in the previous
theorems. We take this into account in the consistency theorem, which we define for the
Multiplicity Restriction pattern as follows.

Theorem 16. Let 〈M,ΦM 〉 be a strongly-consistent model and φ(P, op, v) be an instance of
the Multiplicity Restriction pattern with class C as context. If

(i) v is not a property that is used as parameter for an instance of the Attribute Sum
Restriction, Attribute Relation, Attribute Value Restriction, or another Multiplicity
Restriction pattern in ΦM ,

(ii) the tuple (op, v) is not one of the following: (<, 1), (=, 0), (≤, 0) while the lower multi-
plicity bound of the last element of P is greater than zero,

(iii) for each p ∈ P , the multiplicity is unbounded (*),
(iv) there is no other instance of the Multiplicity Restriction pattern on any p ∈ P in ΦM ,

and
(v) p is not used as part of a parameter value for any instance of the No Cyclic Dependency,

Object In Collection, Surjective Association, Injective Association, or Type Relation
pattern in ΦM , and p−1 is not used in any instance of the Type Restriction pattern in
ΦM ,

then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. Because 〈M,ΦM 〉 is strongly-consistent, there exists a state τ in which each class
of M is instantiated. Based on τ , we construct a state τ ′ that serves as a witness for the
strong consistency of 〈M,ΦM ∪ {φ}〉. In the following, we do not consider the trivial case
and thus, τ 6|= φ.

In this case, there exists an object o : C that has either too few or too many links to
objects of class type(P ). To this end, we create or delete objects of class type(P ) until
τ ′ |= φ as shown in Figure 6.15. Creating or deleting such objects does not violate any
constraint in ΦM because P is not constrained by any other constraint (v); furthermore, at
least one object of class type(P ) will remain because the case is excluded that zero objects
of class type(P ) are connected to o. This is because of the following reasons: The value of
v is not constrained if v is a property (i), the multiplicity of P is unbounded (iii), there is
no other instance of Multiplicity Restriction on p (iv), and the parameters of φ allow for at
least one link (ii). Thus, τ ′ |= ΦM , and 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

The following constraints are inconsistent: Whereas the first invariant limits the number
of associations between an A object and a B object to the value of i , the second invariant
determines this value to be zero. The third invariant contradicts the previous two by
requiring at least one B object to be related to each A object.
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τ
a1: A b1: B

b2: B

τ’
a1: A b1: B

Figure 6.15: Illustration of the proof for Theorem 16.

context A
inv: MultiplicityRestriction (b,<=,i)
inv: AttributeValueRestriction ( i ,=,0)
inv: MultiplicityRestriction (b,>=,1)

6.3.4 Summary of Constraint Pattern Dependencies.

We have analyzed the dependencies between the elementary constraint patterns from the
constraint pattern library defined in Section 4.3. This allows for deciding whether pattern
instances used for refinement are consistent or whether further consistency analysis is
required. Figure 6.16 summarizes the possible conflicts between instances of constraint
patterns.

Path Depth
Restriction

Multiplicity
Restriction

Unique
Path

No Cyclic
Dependency

Surjective
Association

Object In
Collection

Type
Restriction

Type
Relation

Attribute
Relation

Unique
Identifier

Attribute Value
Restriction

Attribute Sum
Restriction

Bijective Association

Injective
Association

Figure 6.16: Possible conflicts between instances of constraint patterns.

The patterns in Figure 6.16 are divided into two parts. Patterns that constrain asso-
ciations are in the left half, patterns that constrain attribute values are in the right half,
and the Multiplicity Restriction pattern belongs to both halves. Interestingly, there is no
direct dependency between patterns in the left part and patterns in the right part. This
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means that an instance of a pattern that restricts an association can never contradict an
instance of a pattern that restricts the value of an attribute. However, they can contradict
each other as soon as the Multiplicity Restriction pattern is instantiated. This motivates the
following corollary.

Corollary 1. Two pattern instances φ1, φ2 ∈ Φ can be inconsistent iff there exists a path
between them in the graph in Figure 6.16 and there exists a pattern instance in Φ for each
node on this path.

Having introduced consistency theorems for the elementary patterns in our library, we
discuss the consistency of composite patterns next.

6.4 Consistency of Composite Constraint Patterns

In Section 6.3, we have discussed the relations between elementary patterns only. How-
ever, in Chapter 4, we have defined the concept of composite constraint patterns, which
can be used to logically connect pattern instances. In the following, we discuss how the
consistency of composite constraint patterns can analyzed. Note that with the current set
of consistency theorems, all composite patterns can be analyzed except for Negation.

Negation.

In our consistency observations in Section 6.3, we assume that all pattern instances are not
negated. The reason is that, among all composite patterns, this pattern has the strongest
consequences for the consistency of constraint specifications: The consistency theorems
as stated previously often do not hold anymore if negation is used. If negated pattern
instances occur in a constraint specification, our analysis currently warns the user that
the respective pattern instance cannot be analyzed. The user must subsequently decide
whether the warning is a false positive or an actual inconsistency.

In order to support negation, the set of consistency theorems would need to be ex-
tended by one new consistency theorem for every negated pattern. The effort for such
an extension varies between the constraint patterns: Whereas the consistency theorems
of some patterns would still hold if the respective pattern instances were negated, e. g., of
the Attribute Value Restriction pattern (¬(x < y) ⇔ x ≥ y), the negation of other pat-
terns can introduce new inconsistencies. For example, a negated instance of the No Cyclic
Dependency pattern can contradict an instance of the Path Depth Restriction pattern.

An alternative approach would be to convert pattern instances into a normal form in
which negation does not occur. For example, the following pattern instances are equiva-
lent.

context Office
inv: MultiplicityRestriction ( inhabitant,<=,desks)
inv: Negation( MultiplicityRestriction ( inhabitant,>,desks))

Such transformation into normal form may require the introduction of new patterns. For
example, the pattern library must be complemented with an inverse of the No Cyclic De-
pendency pattern, i. e., a pattern that requires cycles to occur in model states. We consider
developing such a normal form an interesting direction for future work.
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Conjunction and Disjunction.

Conjunctions of pattern instances can be expressed using the And pattern. Pattern in-
stances that are part of a conjunction do not have to be treated specially in consistency
analysis because each conjunct must hold such that the conjunction holds. In our analysis,
we thus treat each conjunct as an elementary constraint that must be consistent with all
other constraints. Therefore, we establish the following consistency theorem.

Theorem 17. Let 〈M,ΦM 〉 be a strongly-consistent model and φ(P ) be an instance of the
And pattern with a list P = p1. . . . .pn of pattern instances. If 〈M,ΦM ∪ {p1, . . . , pn}〉 is
strongly-consistent, then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. The theorem holds because the implication (Φ ` P and Φ ` Q)⇒ (Φ ` P ∧Q) is a
rule of the sequent calculus for first-order logic [Gallier, 1986].

Disjunctions of pattern instances can be expressed using the Or pattern. If a pattern
instance is part of a disjunction and its consistency assumptions do not hold, the disjunc-
tion can still be consistent if there is another pattern instance in the same conjunction for
which the consistency assumptions hold because of the equivalence

∨
Pi ⇔ ∃i.Pi. We

establish the following consistency theorem for the Or pattern.

Theorem 18. Let 〈M,ΦM 〉 be a strongly-consistent model and φ(P ) be an instance of the
Or pattern with a list P = p1. . . . .pn of pattern instances. If there exists a pi ∈ P such that
〈M,ΦM ∪ {pi}〉 is strongly-consistent, then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. The theorem holds because the implication (Φ ` P or Φ ` Q) ⇒ (Φ ` P ∨ Q) is a
rule of the sequent calculus for first-order logic [Gallier, 1986].

Implication.

The If -Then-Else pattern can be used to model implication between pattern instances. A
formula (if I then T else E) is equivalent to the expression (¬I ∨ T ) ∧ (I ∨ E). Since our
analysis does not handle negated constraints, we must state stronger assumptions in the
consistency theorem for the If -Then-Else pattern: If both T and E are consistent, then the
instance of the If -Then-Else pattern is consistent because T ∧E ⇒ (¬I∨T )∧(I∨E). Thus,
T ∧ E is a sufficient, but not necessary condition for the consistency of the If -Then-Else
statement. We establish the following consistency theorem.

Theorem 19. Let 〈M,ΦM 〉 be a strongly-consistent model and φ(I, T, E) be an instance of
the If-Then-Else pattern with I, T, E being lists of pattern instances. If

(i) 〈M,ΦM ∪ {
∧
T}〉 is strongly-consistent and

(ii) 〈M,ΦM ∪ {
∧
E}〉 is strongly-consistent,

then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

Proof. The semantics of If -Then-Else (I,T,E) is I ⇒ T ∧ ¬I ⇒ E, which is equivalent to
(¬I ∨ T ) ∧ (I ∨ E). Thus, if T and E are consistent, If -Then-Else (I,T,E) is consistent.

Note that the consistency observations in Theorem 19 are independent of the assumptions
I.
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Quantification.

Using the Exists and ForAll patterns, pattern instances can be limited such that they do not
need to hold for all instances of a certain class, but only for a subset. For both patterns,
the pattern instances used in their parameters must be consistent such that the quantified
expression is consistent. The consistency theorem for the ForAll pattern reads as follows.

Theorem 20. Let 〈M,ΦM 〉 be a strongly-consistent model and φ(P, S) be an instance of
the ForAll pattern with P being a list of pattern instances and S being a set of objects. If
〈M,ΦM ∪ {

∧
P}〉 is strongly-consistent, then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

The consistency theorem for the Exists pattern reads as follows.

Theorem 21. Let 〈M,ΦM 〉 be a strongly-consistent model and φ(P, S) be an instance of
the Exists pattern with P being a list of pattern instances and S being a set of objects. If
〈M,ΦM ∪ {

∧
P}〉 is strongly-consistent, then, 〈M,ΦM ∪ {φ}〉 is strongly-consistent.

For both patterns, the assumptions under which instances of the respective patterns
are consistent are sufficient but not necessary because the pattern instances P must only
hold for elements in S. However, our assumptions are independent of S and thus, more
strict. This simplifies consistency analysis and the following proof, which is applicable to
both theorems.

Proof. If P (x) is consistent, both ∀x.P (x) and ∃x.P (x) are consistent. Formally, P (x) ⇒
∀y.P (y) and P (x)⇒ ∃y.P (y) [Gallier, 1986].

6.5 Discussion

We have introduced an approach for analyzing the consistency of pattern-based constraint
specifications. In addition, we have stated and proven a consistency theorem for each
constraint pattern in our pattern library.

In this section, we discuss the theoretical and practical limitations and implications of
our approach. In particular, we illustrate the limitations of our approach (Section 6.5.1)
and evaluate our approach in comparison to other analysis approaches (Section 6.5.2).

6.5.1 Limitations of the Approach.

In this subsection, we point out four limitations of our analysis approach: arbitrary OCL
constraints cannot be analyzed, return values of methods cannot be used as parameter val-
ues in patterns, adding new constraint patterns requires substantial effort, and providing
sufficient conditions in the consistency theorems generates false positives.

Arbitrary OCL Constraints Our analysis only analyzes the consistency of constraints
that are instances of constraint patterns. Thus, the consistency of models that are addi-
tionally annotated with arbitrary OCL constraints, which includes instances of the Literal
OCL pattern, cannot be analyzed.

We see two choices if arbitrary OCL constraints appear in a constraint specification.
First, each OCL constraint can be abstracted into a constraint pattern and a consistency
theorem for this new pattern can be established. However, this is often not feasible be-
cause adding new constraint patterns to a pattern library requires significant effort in
updating the existing consistency theorems. Second, the development process can be split
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into two phases. In the first phase, the model is only augmented with pattern instances
and subsequently analyzed for consistency. This allows model developers to receive imme-
diate feedback about the consistency of one part of the constraint specification because of
the polynomial complexity of our approach. In the second phase, the model is augmented
with the remaining constraints in OCL. The model developer must then analyze the con-
sistency of the fully constrained model using one of the analysis approaches introduced in
Section 6.1, which typically consumes more time than our approach.

Method Calls in Pattern Instances In our pattern library from Section 4.3, the types of
the pattern parameter are typically properties or sets thereof, classes, or integer. In typical
constraint languages, it is also possible to call methods in invariants. For example, the fact
that managers should not be able to hire themselves could be expressed as an invariant as
not self.hire(self) – although such a condition should clearly be stated in the pre-condition
of hire () . When analyzing the consistency of this invariant, the definition of hire () must
be taken into account. Since methods can be recursive and potentially nonterminating,
which further complicates analysis, we do not allow methods as parameter types for our
patterns, following [Darvas and Müller, 2006].

Adding New Constraint Patterns In Chapter 4, we have emphasized that the library of
constraint patterns presented is extensible. However, when the library gets extended, two
tasks must be carried out with respect to consistency. First, a new consistency theorem for
the newly added constraint pattern must be established. Second, the consistency theorems
of all existing patterns must be revised. In particular, for each theorem, it must be analyzed
whether instances of the newly added pattern can cause inconsistencies with instances of
the respective pattern. Not all consistency theorems must be changed though: If the newly
added pattern is a pure attribute-restricting pattern, it will not contradict pure association-
restricting patterns and vice versa.

False Positives Since the assumptions in our consistency theorems represent sufficient
conditions and not necessary conditions, there are models that are consistent, but our
analysis cannot determine the consistency because the assumptions are overly restrictive.
Consider the following example.

context Manager
inv: TypeRelation(worksIn,{Single})
inv: MultiplicityRestriction (worksIn,=,1)

These constraints are consistent because they are satisfied by a model state in which
an instance of Manager works in an instance of a Single office. However, our analysis
cannot determine this consistency because assumption ii of the Type Restriction pattern
and, by symmetry, assumption v of the Multiplicity Restriction pattern are violated. Thus,
our analysis creates false positives, i. e., it warns of potential inconsistencies when the
constraints are actually consistent. The amount of false positives can be decreased by
weakening the assumptions in the consistency theorems. We consider this future work
and discuss it in Section 9.2.

6.5.2 Evaluation of our Approach.

In this subsection, we evaluate our approach. First, we report on the fundamental proper-
ties of our approach: completeness, correctness, and complexity.
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Completeness.

A consistency analysis is complete if for each UML/OCL model, the analysis returns true
if the model is consistent and false otherwise. Our approach is a heuristic approach.
As a consequence, it returns true if the model can be shown consistent and don’t know
otherwise. Thus, our approach is incomplete.

Correctness.

A consistency analysis is correct if it returns true for each consistent UML/OCL model and
does not return true for an inconsistent model. Since our approach only returns true if
the consistency assumptions, which have been proven, hold, and does not return anything
otherwise, it is correct.

Complexity.

The complexity of a consistency analysis is the computational effort that is necessary to
compute the result. In our approach, the consistency assumptions for each pattern in-
stance must be checked. This involves searching for pattern instances in the constraint
specification Φ that can violate the assumptions. Many consistency theorems contain as-
sumptions about a given path P , for which each element must be analyzed. Thus, checking
the assumptions for one consistency theorem is O(|Φ| · |P |) in the worst case, where |Φ| is
the number of pattern instances in the constraint specification and |P | is the length of the
longest path used as parameter value. The analysis of a whole constraint specification Φ
is thus in O(|Φ|2 · |P |).

Next, we evaluate our approach according to the criteria defined in Section 6.1. Our ap-
proach covers all elements of UML and the subset of OCL that is expressible using constraint
patterns. The hypothesis of our approach is that the constraint specification is consistent.
Our approach is flexible with respect to different notions of consistency because different
notions of consistency can be supported by stating and proving consistency theorems for
the respective consistency notion.

The input to our approach is the model and its constraint specification as a set of pat-
tern instances. The output is “Yes” in case that all pattern instances satisfy the consistency
assumptions of their respective pattern definition or “Don’t know” otherwise. In the lat-
ter case, a secondary analysis is required, which we discuss this in detail in Section 6.6.
Whereas stating and proving the consistency theorems is manual, the actual consistency
analysis is fully automated and can be done in polynomial time (O(|Φ|2 · |P |)).
In Table 6.1, we give an overview of all analysis approaches discussed in this chapter,
including our novel approach based on constraint patterns.
As explained in Section 6.2, we have developed our approach with focus on efficiency and
automation. Besides SAT-based approaches, our approach is the only one that offers full
automation to model developers. In contrast to SAT-based approaches, our approach has
polynomial complexity, which allows consistency analysis also for large models. In Chap-
ter 8, we perform case studies using our approach and report on practical experiences.
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Interactive
Theorem
Proving

Witness
Creation

SAT and
Model

Checking

Pattern-Based
Heuristics

coverage Almost full
UML/OCL

Full UML/OCL UML, subset of
OCL

UML, subset of
OCL

hypothesis exchangeable “consistent” “consistent” “consistent”
flexibility high high low medium
input model, con-

straints, proof
obligations,
proof

model, con-
straints, wit-
ness

model, con-
straints

model,
pattern-based
constraints

output done or oops yes or don’t
know

yes or don’t
know (diver-
gence, out-of-
memory)

yes or don’t
know

failure use weaker
obligation

no information increase
search space

secondary
analysis

complexity undecidable undecidable exponential polynomial
automation little little high high

Table 6.1: Comparison of consistency analysis approaches.

6.6 A Consistency-Aware MDE Process

In this section, we show how our analysis approach integrates into an MDE process. Fig-
ure 6.17 shows such a process as a workflow model. The first and the last task in this
process, specify class model and generate code, are the same as in common MDE processes.
Compared to common MDE processes, we introduce one new task, refine model, extend one
common task, analyze consistency, and change the control flow with two new decisions c1
and c2.

specify
class
model

refine
model

analyze
consistency

generate code

constraint
patterns

c1

yes

uncertain
c2

consistency
definitions

yes

nouncertain

Figure 6.17: A consistency-aware MDE process.

The new task, refine model, is based on constraint patterns stored in a repository. This
repository also stores the consistency theorem for each pattern, which describe the as-
sumptions under which instances of the respective pattern preserve the consistency of the
model. Refining the model is an iterative task and thus displayed with a loop in the fig-
ure. In each refinement step, the model developer chooses a constraint pattern x from
the repository and instantiates it. Upon instantiation, the assumptions in the consistency
theorem for x are checked.
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After the model has been refined, the control flow splits at c1. If during refinement,
each pattern instance has satisfied the consistency assumptions of the respective constraint
pattern, the model consistent and the control flow proceeds to generate code. If the con-
sistency assumptions of one or more refinement steps do not hold, the consistency of the
whole specification is uncertain. In this case, the model developer has two choices. First,
he can go back in the process and either adjust the class model or the constraint speci-
fication. Second, a secondary consistency analysis can be carried out in the task analyze
consistency using the approaches and tools introduced in Section 6.1. The control flow
splits again at c2: If after the secondary analysis the constraint specification is still in-
consistent, control flow can go back either to specify class model where the model can be
changed or to refine model where the pattern instances can be revised.

If the constraint specification could be shown consistent, control flow goes to gener-
ate code. In this task, the constraint-pattern instances are automatically transformed into
sentences in a formal specification language, e. g., OCL. Subsequently, the generated spec-
ification can be used to validate model states against the constraints.

To support users in the step “refine model,” we have implemented an extension to
the CASE tool IBM Rational Software Architect (RSA) that adds a repository of constraint
patterns to the tool. When a constraint pattern is instantiated and parametrized, the tool
analyzes whether the consistency assumptions of the respective pattern hold. We elaborate
on tool support in Chapter 7.

6.7 Summary

In this chapter, we have introduced an approach to consistency analysis of class models
constrained by pattern-based constraint specifications. To this end, we have stated and
proven for each elementary constraint pattern a theorem that defines sufficient conditions
for the consistency of the pattern’s instances. Furthermore, we have shown that it can
be decided in polynomial time whether the consistency assumptions for a given pattern
instance hold. Our approach complements existing approaches for the consistency analysis
of UML/OCL by providing an efficient way of heuristically determining consistency and
thus, it can be effectively used after each single refinement step.



102 6.7. SUMMARY



Chapter 7
Tool Support

In the previous chapter, we have introduced an approach to developing consistent con-
straint specifications based on constraint patterns. Since the success of MDE strongly
depends on tool support, we have implemented a set of plug-ins for the MDE tool IBM
Rational Software Architect (RSA) that enables consistency-preserving refinement of UML
class models with constraint patterns.

We call this set of plug-ins COPACABANA, and we describe them in detail in this chap-
ter. COPACABANA supports model developers in the four phases of our approach: con-
straint elicitation, constraint specification, consistency analysis, and code generation of
constraints in class models.

This chapter is structured as follows. We first give a brief overview of RSA and its
Application Programming Interface (API). In Section 7.2, we give an overview of the
components of COPACABANA and how they integrate in RSA. We summarize this chapter
in Section 7.3 and elaborate on details of the implementation in Appendix B.

7.1 A Short Introduction to IBM Rational Software Architect

Our tool support builds on the MDE tool IBM Rational Software Architect (RSA), which
itself builds on the generic development platform Eclipse [Eclipse Foundation, 2007b].
Choosing a “commercial off-the-shelf” tool as basis for our tool support has several ad-
vantages. First, building on an existing tool increases the acceptance among target users.
Second, it speeds up development of our tools because RSA provides various frameworks,
which offer APIs for extensibility. In particular, we extend the following frameworks.

Modeling The modeling framework provides support for modeling UML models and
graphically representing them. In particular, its Graphical User Interface (GUI) al-
lows model developers to edit models by graphical means, e. g., drag-and-drop. In
addition, the modeling framework comprises an OCL parser that checks OCL expres-
sions for syntactic correctness and type conformance.

Patterns The patterns framework adds support for any kind of patterns. It provides a
graphical editor for defining patterns and their signatures in a model-driven way.
The pattern semantics can be defined in Java by specifying code that is executed
when patterns are instantiated and parameterized. All available patterns are shown
to the model developer in a special view, the pattern explorer. From this view, pat-
terns can be chosen and instantiated. As shown in Section 2.4, pattern instances are
represented as UML collaborations in RSA.
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Validation The validation framework provides a uniform interface to model validation
rules to both rule developers and rule users. From the user’s point of view, models
and their elements can be validated against available validation rules from the mod-
els’ context menus. The validation results are uniformly displayed in the problems
view of RSA. From the developer’s point of view, new validation rules can be added
to the system using the API of the framework. The rules can be evaluated either in
“live” mode when a model is changed or in “batch” mode by explicit invocation of
the validation framework.

Transformations The transformations framework provides a uniform interface to model
transformations to both transformation developers and transformation users. From
the user’s point of view, all available transformations are displayed in a joint view
and can be invoked from there after a transformation configuration has been cre-
ated. Transformation configurations specify the parameters for the transformations
such as the input model and the output model. From the developer’s point of view,
transformations can be specified as rules for certain kinds of model elements. When
the user invokes a transformation on a given model, the transformation framework
iterates over all elements in the model and invokes the appropriate transformation
rules.

7.2 Overview of COPACABANA

COPACABANA supports users in developing concise and consistent constraint specifications
for class models. The tool is based on and extends IBM Rational Software Architect (RSA)
via a plug-in mechanism. Figure 7.1 provides an overview of the architecture of our
solution. The top row shows the different components of our approach. The vertical axis
shows how the components build on the frameworks of RSA. For example, the constraint
elicitation component builds on the modeling framework of RSA. Each framework of RSA
builds on the Eclipse platform.

Eclipse

Modeling

Constraint
Elicitation

Patterns Validation

Constraint
Specification

Consistency
Analysis

Platform

RSA
Frameworks

Solution

Transfor-
mations

Code
Generation

Figure 7.1: The architecture of COPACABANA.

Figure 7.2 shows a screenshot of RSA with the COPACABANA plug-ins. The largest view
(1) contains the company model and a collaboration that represents an instance of the
No Cyclic Dependency pattern. In this view, models can be edited and pattern instances be
parametrized via drag-and-drop. Underneath, the constraint elicitation view (2) shows the
results of the constraint elicitation component.

The bottom part of the window contains two more views. First, the results of the
consistency analysis are shown in the bottom left part in the problems view (3) of RSA.
The last view in this figure is the above-mentioned pattern explorer (4), which displays
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1

2

43

Figure 7.2: Screenshot of the COPACABANA prototype in RSA.

available patterns along with a description. The pattern explorer furthermore displays all
available transformations in RSA’s transformation framework.

In the following, we provide detailed explanations about each component shown in
Figure 7.1. To this end, we apply our approach to the company model.

7.2.1 Constraint Elicitation.

This component searches class models for occurrences of the anti-patterns as defined in
Chapter 3 and complements domain analysis as explained in the same chapter. These
anti-patterns comprise model elements that are typically specified at a high level of ab-
straction and thus typically require refinement with textual constraints. With COPACA-
BANA, constraint elicitation can be invoked from the context menu of a model as shown in
Figure 7.3.

The constraint elicitation component displays a view in which the analysis results are
presented in a table. Each result comprises four parts: a context, i. e., the class that matches
an anti-pattern, a description of the anti-pattern that this class is a part of, the priority of
the respective anti-pattern as defined in Section 3.2, and a list of constraint patterns that
can be used to remedy the respective anti-pattern. The entries in the table can be sorted
by either the context class or the priority by clicking on the header of the corresponding
table column. Figure 7.4 shows the constraint elicitation view for the company model.
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Figure 7.3: Invoking constraint elicitation.

Figure 7.4: Results of constraint elicitation.

As we pointed out in Section 3.3, not all results represent actual problems. However,
the model developer is advised to browse the list, identify actual problems, and react ac-
cordingly. For immediate reaction, each analysis result offers a context menu from which
a solution for the respective problem can be automatically instantiated in the form of con-
straint patterns suitable for the respective result. From the context menu of each analysis
result, an appropriate constraint pattern can be selected as instant fix and automatically
be instantiated. This involves the constraint pattern library, as explained in the following
subsection.

Such tool support has the following advantages. First, the user is supported in detect-
ing anti-patterns, which is usually time-consuming, requires a high level of expertise from
the model developer, and some anti-patterns may not be detected by the model developer,
which may cause problems in the remainder of the development process. Second, the
model developer can specify most constraints by simply instantiating and parameterizing
constraint patterns instead of manually writing OCL expressions, which is time-consuming
and error-prone because some constraints are fairly complicated, e. g., constraints for re-
flexive associations (cf. Section 3.1.3).

7.2.2 Constraint Specification.

COPACABANA provides an implementation of the library of composable constraint patterns
introduced in Chapter 4. The implementation of constraint patterns builds on RSA’s pat-
terns framework as illustrated in Figure 7.1. Constraint patterns can be instantiated in
two ways. First, they can be manually selected from RSA’s pattern explorer and dragged-
and-dropped onto a class model. Second, they can be automatically instantiated from the
context menu of each analysis result from the constraint elicitation view.

When the model developer chooses to manually instantiate a certain constraint pat-
tern, he selects the pattern from the pattern explorer view and creates an instance of the
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pattern by dragging-and-dropping it onto the class diagram. Subsequently, he can set the
values for the parameters of the pattern instance. The values for parameters of nonprim-
itive types, e. g., Class or Property, can be set by dragging-and-dropping the appropriate
model elements into the parameter slots of the graphical representation of the pattern
instance. For example, the parameter property of the No Cyclic Dependency pattern can be
set this way, as shown in Figure 7.2 (1). Values for primitive types, e. g., Integer or String,
can be entered as text.

The model developer can also automatically instantiate constraint patterns from the
constraint elicitation view. This way, the values for those parameters that are known from
the constraint elicitation are automatically set. For example, the Unrestricted Reflexive
Associations anti-pattern is detected for the class Manager and its property workFor. The
model developer is suggested to instantiate the No Cyclic Dependency pattern, and if he
does, both parameters of the pattern, context and property, can be set. For other patterns,
not all parameters can be automatically set; the remaining parameters can be specified
manually as described above.

Since constraint patterns are represented as UML collaborations, the parameters of
composite patterns are of type Collaboration, which enables drag-and-drop composition of
constraint patterns in the GUI. Figure 7.5 shows an example of using composite constraint
patterns in our approach.

Employee

# name : String

# salary : Integer

Manager

- budget : Integer

- headCount : Integer

- isCEO : Boolean

refined multiplicity

IfThenElse

if [1..*] : manager is not CEO 

then [1] : manager has a manager 

else [1] :

manager has a manager

MultiplicityRestriction

navigation [1..*] : worksFor 

operator [1] : ">=" 

value [1] : "1" 

context [1] : Manager 

manager is not CEO

AttributeValueRestriction

property [1..*] : isCEO 

operator [1] : "=" 

value [1] : "false" 

context [1] : Manager 

employment

*

+ employs

*

+ worksFor

Figure 7.5: Example instance of a composite pattern.

7.2.3 Consistency Analysis.

COPACABANA provides an implementation of the pattern-based consistency analysis intro-
duced in Chapter 6. To this end, we store with each pattern the assumptions from the
respective consistency theorem, i. e., the assumptions under which the pattern can be in-
stantiated in a consistency-preserving way.

The analysis uses these consistency assumptions and checks for each pattern instance
whether the assumptions hold or not. If they hold, the constraint specification is con-
sistent. If they do not hold, no statement about consistency can be made, as explained
in Chapter 6. In this case, the consistency analysis component issues a warning that the
pattern instance is potentially inconsistent, i. e., the consistency assumptions do not hold.

Figure 7.6 shows the analysis results for the company model and its constraints that
we have added throughout this thesis. It shows a warning that constraint noCycles can-
not be shown consistent. As explained in Section 5.1.1.3, this is caused by the fact that
noCycles disallows cyclic management hierarchies, whereas the company model requires
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every manager to have at least one superior manager. As a result, there is no state of the
company model with a nonempty, finite set of managers.

Figure 7.6: Consistency analysis results of the constrained company model.

In the case that consistency cannot be shown, the model developer must examine the
warning. This can be either done by a secondary consistency analysis as explained in
Section 6.6 or by a manual examination of the model and its constraint specification.
Subsequently, the model developer can either adapt the model or correct the wrongly
specified constraint if the warning represents an actual error.

In the case of the noCycles constraint, we decide to change the model to establish
consistency. In order to satisfy the consistency assumptions for the No Cyclic Dependency
pattern, we change the multiplicity of the worksFor association end from 1..∗ to ∗, which
makes it optional for employees to have superior managers. Now, the model is consistent
because companies can be modeled with noncyclic management hierarchies in which the
top manager does not have a superior manager.

7.2.4 Code Generation.

COPACABANA supports model developers in the fourth phase of our method by providing
a model transformation that generates OCL code from pattern instances. This transforma-
tion can be found together with all other available transformations in the pattern explorer.

Figure 7.7 shows a screenshot of the pattern explorer with the context menu of our
transformation. As explained in Section 7.1, model developers can create an new transfor-
mation configuration for the model under development and subsequently run the trans-
formation.

Figure 7.7: Invoking code generation in the pattern explorer view.

The result of the transformation is shown in Figure 7.8 and comprises two parts. First,
the transformation has added an OCL constraint to the model, which is attached as an
invariant to class Manager. Second, this invariant invokes an operation that computes the
transitive closure of the worksFor association, as explained in Section 3.1.3. This operation
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has been added to class Manager and its body is defined declaratively in OCL. Note that in
Figure 7.8, we have also adapted the multiplicity of the worksFor association end to make
the model consistent as described in the previous subsection.

Figure 7.8: Company model after transformation of noCycles constraint.

We have used COPACABANA to refine the company model and went through the four
phases of our approach: constraint elicitation, constraint specification, consistency anal-
ysis, and code generation. As a result, we have created a consistent OCL specification
without having written a single line of OCL.

7.3 Summary

We have presented COPACABANA, an implementation of our pattern approach to develop-
ing consistent constraint specifications. We implemented COPACABANA as an extension
to IBM Rational Software Architect (RSA). It provides effective tool support for con-
straint elicitation, constraint specification using constraint patterns, consistency analysis
for pattern-based constraint specifications, and code generation.

Since we built COPACABANA on top of various frameworks in RSA as explained in Sec-
tion 7.2, the code base for COPACABANA merely contains the application logic and is thus
rather small. In total, COPACABANA comprises around 4200 lines of code, which is dis-
tributed over 101 classes.

COPACABANA has been published as IBM Constraint Patterns and Consistency Analysis
on the IBM developerWorks website [IBM, 2007a]. The plug-ins are bundled as a reusable
asset for RSA; using the Reusable Asset Specification (RAS) explorer in RSA, the plug-ins
can be downloaded and used for free. On the website, there is also a tutorial available
that guides model developers step-by-step through the installation and the development
process.

In the following chapter, we report on larger case studies that we performed using CO-
PACABANA. We elaborate on the details of COPACABANA’s implementation in Appendix B.
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Chapter 8
Validation

In this chapter, we use the approach developed in this dissertation to develop consistent
and concise constraint specifications for real-world models. To this end, we first define a
set of criteria that we use to validate our approach in Section 8.1. In the remainder of
this chapter, we present three case studies, one in the area of business monitoring (Sec-
tion 8.2), one in the area of process-model merging (Section 8.3), and one for the “Royal
& Loyal” model, which is frequently used as benchmark for MDE approaches (Section 8.4).
For each case study, the model and a predominantly informal constraint specification were
given initially. Based on the informal specification, we develop a formal specification using
constraint patterns and evaluate the results of each case study according to the quantita-
tive criteria that we specify in 8.1. In Section 8.5, we summarize the results of the case
studies and evaluate our approach according to the qualitative criteria listed in the follow-
ing section.

8.1 Evaluation Criteria

In Chapter 1, we claimed that our approach supports the development of concise and con-
sistent constraint specifications. In the following, we present quantitative and qualitative
evaluation criteria to validate our claim.

Quantitative Criteria.

Specification Coverage. What percentage of a given set of constraints can be expressed
using the library of composable constraint patterns from Chapter 4?

Conciseness. To what extent is the pattern-based specification more concise than the
same specification in textual languages, e. g., OCL or Java?

Analysis Performance. How does the performance of our analysis method compare to
other automatic analysis tools?

Elicitation Coverage. Given a constraint specification, what percentage of it is covered
by the constraint-elicitation component? What is the nature of the constraints that
are automatically elicited, but do not appear in the constraint specification?
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Qualitative Critera.

Analysis Quality. For a pattern-based constraint specification, what is the quality of the
consistency analysis regarding false positives and how to deal with them? Are the
assumptions in the consistency theorems too weak or too strong?

Limitations. What limitations have we come across in the course of the case studies? Are
there disadvantages of our approach compared to traditional approaches?

8.2 Case Study 1: Business Monitoring

In this section, we perform a case study on the monitor model, a meta-model for business
monitors used in IBM WebSphere Business Modeler (WBM) [IBM, 2007b]. Business mon-
itors monitor events generated from processes, aggregate metrics from these events, and
react to predefined situations by issuing events.

The task of the original case study was to implement the constraints from the spec-
ification of the monitor model. Most of these constraints were specified informally in
English, which caused numerous cases of ambiguity in the specification. A small part of
the constraints was formalized in OCL, but the given OCL code was often incomplete or
syntactically incorrect.

We worked together with the product development group of WBM on the formalization
of the constraints such that instances of the model can be automatically evaluated against
the specification. At the end of the day, the team implemented the constraints from the
specification in Java, which resulted more than 5,000 lines of complicated code. Further-
more, writing this code involved many repetitive tasks and – because of the complexity of
the code – an enormous amount of bug hunting.

This chapter is structured as follows. In Section 8.2.2, we present the meta-model
and provide a high-level description of the business monitor’s semantics. In Section 8.2.3,
we provide a list of constraints from the specification document of the monitor model.
Where possible, we provide a formalization of each constraint using the pattern library
from Section 4.2. Subsequently, we provide a quantitative evaluation of our approach
regarding the criteria defined in Section 8.1.

8.2.1 Business Monitoring in a Nutshell.

Business monitors, e. g., IBM WebSphere Business Monitor (MON) [IBM, 2007c], are ac-
tive components that assess the performance of business processes executed on a process
server as illustrated in Figure 8.1. They receive events issued by the processes, e. g., the
start and termination of tasks, and subsequently process these events. In the course of this
processing, business monitors compute values by aggregating data from incoming events
and store them in metrics. A special type is the key performance indicator (KPI), which is
used to store business-critical values.

The behavior of business monitors is determined by monitor models, which define
the types of events that the monitors react to, the way that values are aggregated, and
the monitors’ reaction to predefined situations, e. g., occurrence of critical values. The
aggregation of values resembles calculations in spread sheets where values can be written
in a certain cell, which itself is the input for another calculation [Frank, 2007].
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event bus

process server

process
models

business monitor

monitor
models

Figure 8.1: Business monitoring in a nutshell.

8.2.2 The Meta-Model for Monitor Models.

As explained, business monitors observe inbound events, calculate metrics from these
events, and react to certain situations by issuing outbound events. In total, the meta-
model consists of 25 classes and 49 associations. In Figure 8.2, we show the core elements
of a monitor model’s workflow. Inbound events (InboundEventDefinition) serve as inputs to
maps (Map Definition ) as a special type of InputslotDefinition . A map is a function that maps
a set of inputs to an output (OutputSlotDefinition) according to the function definition in its
outputValue. A special kind of output is an output event (OutboundEventDefinition).

MapDefinition

InputSlotDefinition

OutputSlotDefinition

InboundEventDefinition

OutboundEventDefinition

ValueSpecification

* + input

1 1..*

+ outputValue

+ outputSlot

*

Figure 8.2: Monitor model: maps and their inputs and outputs.

Besides incoming events, there are four more kinds of inputs for maps: met-
rics ( MetricDefinition ), keys (KeyDefinition), timers (Timer Definition ), and counters
(CounterDefinition). The latter three and ReadWriteMetricDefinition can also serve as outputs
for maps. Furthermore, there are several special types of metrics: ReadOnlyMetricDefinition,
its subclass ExternalMetricDefinition , and KPIDefinition. Figure 8.3 gives an overview of these
classes and their relations.
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InputSlotDefinition

MetricDefinition

ReadWriteMetricDefinitionReadOnlyMetricDefinition

isStatic : Boolean

ExternalMetricDefinition

KeyDefinition

KPIDefinition

TimerDefinition CounterDefinition

OutputSlotDefinition

SlotDefinition

1

*

+ queryParameter

0..1

+ keepHistoryFor

Figure 8.3: Monitor model: metrics.

Besides maps, the behavior of monitors is controlled by situations
as shown in Figure 8.4. A situation ( SituationDefinition ) occurs when a
specific event occurs (evaluatedWhen.onEvent), when the value of a cer-
tain metric changes (evaluatedWhen.onValueChange), or in specific intervals
(evaluatedWhen.ownedEvaluationTime). Upon occurrence of a situation, the computation of
a map can be triggered (situationTriggeredMap), an outgoing event (situationTriggeredEvent)
can be issued, or a counter can be manipulated.

OutboundEventDefinition

EvaluationStrategy

InboundEventDefinition MetricDefinition MapDefinition

RecurringTimeIntervals AnchorPointTimeIntervals

SituationDefinition CounterDefinition

*

+ situationTriggeredEvent* + onEvent * + onValueChange

*+ ownedEvaluationTime

*

+ onSituation

1..*

+ evaluatedWhen
*

+ triggeringSituation

*+ situationTriggeredMap

0..1*

*

+ setToZeroWhen

*

*

+ decrementedWhen
*

+ decrement

*

+ increment

*

+ incrementedWhen

Figure 8.4: Monitor model: situations and triggers.

Metrics, events, and situations can be aggregated in monitoring contexts
(MonitoringContextDefinition) as shown in Figure 8.5. A monitoring context is created in
the monitor for each instance of the observed business process and can be terminated by
certain situations. A hierarchy of monitoring contexts can be created using context rela-
tions (ParentContextRelationship). If necessary, business monitors can automatically create
parent context definitions if parentContextAutoCreated is set to true.

A MonitoredEntity is a model element representing a permanent real-world thing under
observation. A MonitoredEntity references a MonitoringContextDefinition, which is instanti-
ated to reflect the real-world asset that the MonitoredEntity represents when the monitor
model is loaded into a monitor, as shown in Figure 8.6. The resulting monitoring context
will be the proxy of the real-world asset represented by the MonitoredEntity.

In addition, the monitor model has a type system similar to the UML meta-
model [Object Management Group (OMG), 2006c]. Figure 8.7 shows a relevant extract
of the model: slots are typed elements, and types can basically be data types or events.

In the monitor model, events can be filtered and correlated using conditions. Fig-
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MonitoringContextDefinition

ParentContextRelationship

parentContextMandatory : Boolean

parentContextAutoCreated : Boolean

CounterDefinition KeyDefinitionInboundEventDefinition

noCorrelationMatches : EventDeliveryOption

oneCorrelationMatch : EventDeliveryOption

multipleCorrelationMatches : EventDeliveryOption

TimerDefinition SituationDefinition

isRepeatable : Boolean

1+ parentContextDefinition

*+ childContextRelationship

1 + childContextDefinition

*

+ parentContextRelationship

* 1..** *

*

*

+ terminatedBy

1

*

+ situationDefinition

Figure 8.5: Monitor model: monitoring contexts.

MonitoredEntity OutputSlotValueSpecification

OutputSlotDefinitionMonitoringContextDefinition

+ MonitoredEntity *

+ outputSlotValue

1

1

1

1

+ targetOutputSlotDefinition

Figure 8.6: Monitor model: monitored entities.

SlotDefinition

TypedElement Type

EventType

Classifier

isAbstract : Boolean

PrimitiveType

DataType

ValueSpecification

value

OpaqueExpression

MonitoringContextDefinition

1

1 0..1

+ type

1

*

+ superClassifier

Figure 8.7: Monitor model: types.
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ure 8.8 shows the relevant extract of the meta-model.

Condition
InboundEventDefinition

noCorrelationMatches : EventDeliveryOption

oneCorrelationMatch : EventDeliveryOption

multipleCorrelationMatches : EventDeliveryOption

OutboundEventDefinition

InputSlotDefinition

1
*

+ input

0..1

+ filteredEvent

*
+ filter

0..1

+ correlatedEvent0..1

+ correlationPredicate

0..1+ OutboundEventDefinition

*+ filter

Figure 8.8: Monitor model: filters.

Figure 8.9 shows an example instance of the monitor model. It represents a mon-
itor that counts the number of pages printed on some printer. It reacts to pagePrinted
events: upon occurrence of this event, a pagePrintedSituation is triggered because the
EvaluationStrategy of the situation is defined through the onEvent association. The counter
pageCounter is thus increased on every occurrence of the pagePrinted event. All this ele-
ments are grouped in a monitoring context mcd1.

mcd1 : MonitoringContextDefinition

pagePrinted : InboundEventDefinition

pageCounter : CounterDefinition

pagePrintedSituation : SituationDefinition

strategy : EvaluationStrategy

+ inboundEventDefinition

+ situationDefinition

+ counterDefinition

+ onEvent

+ increment

+ incrementedWhen

+ situationDefinition

+ evaluatedWhen

Figure 8.9: Example monitor configuration.

Each monitor model must satisfy certain constraints that ensure that each step in the
computation is well-defined and terminates. Furthermore, it needs to be ensured that
computations stay within the bound of the correct context definitions. These constraints
are listed in a specification document where they are specified informally in English.

In the subsequent section, we show the list of constraints from the specification of the
monitor model. For each constraint, we provide the original description in English from
the specification document and add a formal definition.



CHAPTER 8. VALIDATION 117

8.2.3 Constraints for the Monitor Model.

For each constraint, we copy its informal description from the specification and formalize
it using OCL. Wherever informal constraint descriptions were ambiguous, we consulted
the authors of the specification to disambiguate the constraints.

We furthermore specify each constraint using our library of constraint patterns. If
the pattern representation is not intuitive, we provide further information that justifies
our choice of constraint patterns. Thus, studying this section may help model developers
using constraint patterns in their modeling projects.

We structured the constraints according to the central model elements of the monitor
model. For making this chapter more readable, we have moved the majority of constraints
to Appendix C. This subsection contains some representative constraints and comprises
the constraints for maps and events. This subsection is followed by a quantitative evalua-
tion in Section 8.2.4.

8.2.3.1 Maps.

Constraint 8.2.1 (map inputs). If a map has in inbound event as input, then it must be the
only input.

context MapDefinition inv map inputs:
self . input−>exists(x | x.oclIsTypeOf(InboundEventDefinition))
implies self . input−>size()=1

Since this constraint is an implication, we represent it using an instance of the If -Then-Else
pattern. The assumption is a Type Relation and the conclusion is a Multiplicity Restriction.

context MapDefinition inv map inputs:
IfThenElse(TypeRelation(MapDefinition,input,{InboundEventDefinition}),

MultiplicityRestriction (MapDefinition,input ,=,1),
)

Constraint 8.2.2 (map diamonds). There should be at most one map per metric in the
execution path.

This constraint ensures that monitor models do not include diamond-shaped map config-
urations, i. e., two maps trigger the computation of a third map, which leads to lack of
synchronization.

context MapDefinition inv map diamonds:
self . input .mapDefinition−>forAll(m1, m2 |

m1.allInputMaps()−>intersect(m2.allInputMaps)−>isEmpty())

This constraint can be specified using the Unique Path pattern, which ensures that there is
only one path from one map to its predecessors.

context MapDefinition inv map diamonds:
UniquePath(MapDefinition,input.MapDefinition)

Constraint 8.2.3 (gated maps). If a timer is an input slot of a map then this map must be
gated by a situation, i. e., the map must be related to a situation via its triggeringSituation
association.
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context MapDefinition inv gated maps:
self . input−>exists( i | i .oclIsTypeOf(TimerDefinition))

implies self . triggeringSituation−>size() >0

The pattern representation of this constraint is analog to map inputs.

context MapDefinition inv gated maps:
IfThenElse(TypeRelation(MapDefinition,input,TimerDefinition),

MultiplicityRestriction (MapDefinition, triggeringSituation , >, 0),
)

Constraint 8.2.4 (map context). Each triggeringSituation must be owned by the same
MonitoringContextDefinition as the one owning the OutputSlotDefinition of the map.

context MapDefinition inv map context:
self . triggeringSituation−>forAll(s |

s.monitoringContextDefinition = self .outputSlot.monitoringContextDefinition)

The pattern representation of this pattern uses the composite pattern ForAll.

context MapDefinition inv map context:
ForAll (MapDefinition, triggeringSituation ,

AttributeRelation ( SituationDefinition ,monitoringContextDefinition, =,
situationTriggeredMap.outputSlot.monitoringContextDefinition))

Constraint 8.2.5 (map types). The expression type of each outputValueSpecification must
conform to the type of the targetSlotDefinition.

context MapDefinition inv map types:
self .outputValue−>forAll( v | v.type = outputSlot.type)

context MapDefinition inv map types:
AttributeRelation (MapDefinition, outputSlot.type, =,

outputValue, type)

Constraint 8.2.6 (map multiplicities). The number of outputValue specifications must be
less or equal to the multiplicity of the outputSlot Definition. (Loosely speaking, a MapDefini-
tion must not specify more output values than there are array positions in the target slot.)

context MapDefinition inv map multiplicities :
if (not outputSlot.oclIsKindOf(ReadWriteMetricDefinition))
then outputValue−>size() <= 1

else let metric = outputSlot.oclAsType(ReadWriteMetricDefinition) in
metric.mapDefinition−>outputValue−>size()<= metric.upperBound.value

endif

context MapDefinition inv map multiplicities :
IfThenElse(Negation(TypeRelation(MapDefinition, outputSlot, {ReadWriteMetricDefinition})),

MultiplicityRestriction (MapDefinition, outputValue, <=, 1),
MultiplicityRestriction (MapDefinition, outputSlot.MapDefinition, <=,

outputSlot.upperBound.value))
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Constraint 8.2.7 (map parameters). If the outputSlotDefinition is also a kind of Input-
SlotDefinition, then it must be amongst the parameters of each outputValue Specification.

context MapDefinition inv map parameters:
outputSlot.oclIsKindOf( InputSlotDefinition ) implies

outputValue−>forAll(input−>includes(outputSlot))

For the conclusion of this constraint, we use the Literal OCL pattern.

context MapDefinition inv map parameters:
IfThenElse(TypeRelation(MapDefinition, outputSlot, { InputSlotDefinition }),

LiteralOcl (MapDefinition, ”outputValue−>forAll(input−>includes(outputSlot))”))

Constraint 8.2.8 (map aggregation). When parent refers to a metric in its child, it can
only refer to it using an aggregation function across all the instances of that child, but what
if we need to send a specific value from the child to the parent then the map must be owned
by the child. A child can own a parent map but a parent cannot own a child map.

context InputSlotDefinition
def: getContext(): MonitoringContextDefinition =

if self .oclIsTypeOf(TimerDefinition)
then self .oclAsType(TimerDefinition).monitoringContext
else

if self .oclIsTypeOf(CounterDefinition)
then self .oclAsType(CounterDefinition).monitoringContext

else
if self .oclIsTypeOf(InboundEventDefinition)

then self .oclAsType(InboundEventDefinition).monitoringContext
else

if self .oclIsTypeOf(MetricDefinition )
then self .oclAsType(MetricDefinition).monitoringContext

endif
endif

endif
endif

context MapDefinition
def: getContext(): MonitoringContextDefinition =

self . descriptor . classifier −>select(c | c.oclIsKindOf(DescriptorType))−>
select(d | d.name = ’OwnerMapModelingPropertiesType.MapDefinition’).ownedAttribute−>
select(a | a.name = ’OwningMonitoringContext’).slot.value−>select(v |
v.oclIsKindOf(InstanceValue)).instance. classifier −>any()

inv map aggregation:
self . input−>forAll( i | self .getContext() = i .getContext() or

self .getContext().getAncestors()−>includes(i.getContext()))

Since this constraint employs numerous user-defined functions, we cannot express it using
our predefined constraint patterns.

Constraint 8.2.9 (map inputs 2). Maps only access elements in their input slots.
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context MapDefinition inv map inputs 2:
map.outputValue−>forAll(value |

if (value.oclIsTypeOf(StructuredOpaqueExpression))
then (value.oclAsType(StructuredOpaqueExpression).getInputs())−>

forAll ( o | map.input−>includes(o))
else true
endif)

Since this constraint uses type casts, it cannot be expressed using our constraint patterns.
As explained in Section 6.5.1, method calls cannot be used as parameter values for pattern
instances.

Constraint 8.2.10 (map outputs). Maps must not target read-only attributes of output
slots.

context MapDefinition inv map outputs:
self .outputSlot.type.isPrimitiveType () or
self .outputValue−>size() <= 1 or
self .outputValue−>forAll( v | v.oclAsType(InstanceValue).instance.slot−>forAll(s |

s.definingFeature.isReadOnly and s.value−>size()=0) )

context Type
def: isPrimitiveType () : Boolean =

self .oclIsTypeOf(Boolean) or
self .oclIsTypeOf(Duration) or
self .oclIsTypeOf(Integer) or
self .oclIsTypeOf(String) or
self .oclIsTypeOf(UnlimitedNatural) or
self .oclIsTypeOf(Real) or
self .oclIsTypeOf(Time)

This constraint employs a user-defined function and can thus not be represented using our
patterns.

In Figure 8.10, we show the pattern instances on maps as represented in RSA. The
name of the respective constraint can be found in the top compartment of each collabora-
tion. Out of 10 constraints in this section, 7 can be expressed using patterns.
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Figure 8.10: Pattern instances for maps.

8.2.3.2 Events.

Constraint 8.2.11 (event correlation). Each inbound event needs to specify the event cor-
relation options.

context InboundEventDefinition inv event correlation:
self .noCorrelationMatches−>size() > 0 and
self .oneCorrelationMatch−>size() > 0 and
self .multipleCorrelationMatches−>size() > 0

We split this constraint into three parts in order to represent it with constraint patterns.

context InboundEventDefinition inv event correlation 1:
MultiplicityRestriction (InboundEventDefinition,noCorrelationMatches,>,0)

context InboundEventDefinition inv event correlation 2:
MultiplicityRestriction (InboundEventDefinition,oneCorrelationMatch,>,0)

context InboundEventDefinition inv event correlation 3:
MultiplicityRestriction (InboundEventDefinition,multipleCorrelationMatches,>,0)

Constraint 8.2.12 (event type 1). The type of an inbound event must be a non-abstract
EventType.
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context InboundEventDefinition inv event type 1:
self . type.oclIsKindOf(EventType) and
(not type.oclAsType(Classifier ). isAbstract )

context InboundEventDefinition inv event type 1a:
TypeRestriction(InboundEventDefinition,type,{EventType})

context InboundEventDefinition inv event type 1b:
AttributeValueRestriction (InboundEventDefinition,type.isAbstract,=, false )

Constraint 8.2.13 (event context). A triggering situation of each outbound event must be
defined in a related context.

context OutboundEventDefinition inv event context:
self .monitoringContextDefinition = self . triggeringSituation .monitoringContextDefinition

context OutboundEventDefinition inv event context:
AttributeRelation (OutboundEventDefinition,

monitoringContextDefinition,
=,
triggeringSituation ,
monitoringContextDefinition)

Constraint 8.2.14 (filter type). The expression of a filter of a correlationPredicate must
return a Boolean.

context InboundEventDefinition inv filter type :
filter .value−>forAll(type=Boolean) and
correlationPredicate .value−>forAll( type = Boolean)

context InboundEventDefinition inv filter type 1 :
ForAll (InboundEventDefinition,

filter .value,
{TypeRestriction(ValueSpecification,type,{Boolean})})

context InboundEventDefinition inv filter type 2 :
ForAll (InboundEventDefinition,

correlationPredicate .value,
{TypeRestriction(ValueSpecification,type,{Boolean})})

Constraint 8.2.15 (filter condition). The filter condition of InboundEventDefinitions can
only be parameterized by event content.

context InboundEventDefinition inv filter condition :
filter −>forAll(input=Sequence{self})

context InboundEventDefinition inv filter condition :
ForAll (InboundEventDefinition,

filter ,
{AttributeValueRestriction (Condition,input ,=,Sequence{FilteredEvent})})
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Constraint 8.2.16 (event type 2). The type of an InboundEventDefinition must be an
EventType (any event received must conform to it).

context InboundEventDefinition inv event type 2:
type.oclIsKindOf(EventType)

context InboundEventDefinition inv event type 2:
TypeRestriction(InboundEventDefinition,type,{EventType})

Constraint 8.2.17 (correlation value). Only certain values are permitted for the no / one
/ multiple correlation-matches attributes of an InboundEventDefinition.

context InboundEventDefinition inv correlation value:
Set{’ignore’ , ’ raiseException’, ’createNewContext’}−>includes(noCorrelationMatches) and
Set{’ignore’ , ’ raiseException’, ’deliverEvent’}−>includes( oneCorrelationMatch ) and
Set{’ignore’ , ’ raiseException’, ’deliverToAny’, ’ deliverToAll ’}−>

includes(multipleCorrelationMatches)

This constraint can be expressed using our patterns, but we need to split it. The reason
is that the Attribute Value Restriction pattern allows only a single element to be the value
parameter. We split the constraint twice: First, we turn the explicit conjunction into an im-
plicit conjunction, which results in the constraints correlation value 1 to correlation value 3.
Second, we use the equivalence x ∈ S ≡

∨
i x = si for each conjunct.

context InboundEventDefinition inv correlation value 1:
Or(AttributeValueRestriction (InboundEventDefinition,noCorrelationMatches,=,ignore),

AttributeValueRestriction (InboundEventDefinition,noCorrelationMatches,=,raiseException),
AttributeValueRestriction (InboundEventDefinition,noCorrelationMatches,=,createNewContext))

context InboundEventDefinition inv correlation value 2:
Or(AttributeValueRestriction (InboundEventDefinition,oneCorrelationMatch,=,ignore),

AttributeValueRestriction (InboundEventDefinition,oneCorrelationMatch,=,raiseException),
AttributeValueRestriction (InboundEventDefinition,oneCorrelationMatch,=,deliverEvent))

context InboundEventDefinition inv correlation value 3:
Or(AttributeValueRestriction (InboundEventDefinition,multipleCorrelationMatches,=,ignore),

AttributeValueRestriction (InboundEventDefinition,multipleCorrelationMatches,=,
raiseException),

AttributeValueRestriction (InboundEventDefinition,multipleCorrelationMatches,=,deliverToAny),
AttributeValueRestriction (InboundEventDefinition,multipleCorrelationMatches,=,deliverToAll))

Similar to Constraint C.4.3, expressing this constraint using our constraint patterns re-
quires significant user sophistication. This motivates the introduction of a new constraint
pattern that generalizes the Attribute Value Restriction pattern. In Section 8.2.4, we thus
introduce the Attribute Value Is-One-Of pattern.

Constraint 8.2.18 (map trigger). An event entry must trigger maps that set all of their
contexts’ key values.

context InputSlotDefinition
def downStreamSlotDefinitions() : Set(OutputSlotDefinitions) =

let children = MapDefinition::allInstances()−>select(m |
m.input−>includes(self)).outputSlot in
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children−>union(children−>select(o | o.oclAsType(InputSlotDefinition).
downStreamSlotDefinition()))

context InboundEventDefinition inv map trigger:
noCorrelationMatches = ’createNewContext’ implies

monitoringContextDefinition.keyDefinition−>forAll(
k | self .downstreamSlotDefinitions()−>includes( k ) )

Since this constraint employs numerous user-defined functions, we cannot express it us-
ing our predefined constraint patterns. Figure 8.11 shows how the constraints from this
section are represented in RSA. Out of 8 constraints in this section, 6 can be expressed
using patterns.
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Figure 8.11: Pattern instances for events.
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8.2.4 Quantitative Evaluation.

In this subsection, we perform a quantitative evaluation of the patterns approach for the
monitor meta-model. We use the following criteria as defined in Section 8.1: specification
coverage, conciseness, performance, and elicitation coverage.

Specification Coverage.

In total, there are 71 constraints, of which 51 constraints can be expressed using the
current set of patterns. 20 constraints cannot be expressed using patterns. This means
that around 70% of all patterns in this case study can be expressed using patterns, whereas
30% cannot.

To express these 51 constraints, 116 instances of constraint patterns are required,
which are used in composite patterns to a large extent. Table 8.1 displays how often
individual patterns are instantiated.

Occurrences Pattern
24 Multiplicity Restriction
17 Attribute Value Restriction
11 Attribute Relation
9 ForAll
9 Literal OCL
8 Type Restriction
8 If -Then-Else
7 Type Relation
7 Or
5 No Cyclic Dependency
5 Unique Identifier
2 Object In Collection
2 Unique Path
2 Negation

Table 8.1: Pattern instances in the monitor model specification.

Although the majority of constraints can be represented using instances of constraint
patterns, some constraints cannot. Some constraints can be represented using a com-
bination of pattern instance and literal OCL expression. For instance, seven instances
of the Literal OCL pattern that we used contain simple OCL expressions only such as
self.anchorPoint.oclIsUndefined() or self.oclIsTypeOf(StructuredOpaqueExpression).

In Table 8.2, we present a list of constraints that we cannot express using constraint
patterns and briefly explain why this is the case. Of the 20 constraints that we cannot
express, two constraints could be expressed by introducing a new pattern to our library
of patterns. For Constraints C.10.3 and C.10.4, we introduce the pattern NoInstances and
define it as follows.

pattern NoInstances(class:Class) =
class :: allInstances()−>isEmpty()
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Constraint(s) Description
8.2.8 We need to define a recursive function to compute the an-

cestors of a monitoring context. Similarly, the following
constraints require the definition of user-defined functions:
8.2.9, 8.2.10, C.2.7, C.2.8, C.2.13, C.2.14, C.3.7, C.5.2,
8.2.18, C.5.1, C.6.1, C.6.2, and C.7.3.

C.2.3 This constraints requires unique values for attributes. How-
ever, as explained, it is not covered by the Unique Identifier
pattern because the constraint requires only a certain subset
of all counters to have unique names.

C.2.5 Comprises nontrivial parsing of recursive data structure.
This is a domain-specific task and can thus not be gener-
alized in a pattern.

C.2.6,C.8.3 In the ForAll pattern, the predicate for the quantified vari-
able has a fixed structure. Thus, not all universally quanti-
fied formulas can be expressed using the pattern. Since this
constraint requires a navigation from quantified elements to
the parent element, it cannot be expressed.

C.10.3,C.10.4 There is no pattern that prevents that a class can be instan-
tiated. We therefore discuss introducing a new pattern, No
Instances.

Table 8.2: Constraints not expressible using our patterns.

Using this pattern, we can specify Constraints C.10.3 and C.10.4 as follows.

context MonitorModel inv no external values:
NoInstances(ExternalMetricDefinition)

context MonitorModel inv no data entries:
NoInstances(DataEntryFieldDefinition)

Thus, by adding one new pattern, the percentage of constraints that can be expressed us-
ing patterns could be raised from around 70% to around 75% for our case study. However,
models to which the NoInstances pattern is applied can be neither strongly-consistent nor
class-consistent. If a flexible approach is desired, such weak consistency could be allowed
in early phases of development, but a stronger notion of consistency should be established
when models are finalized. Weak consistency also plays an important role in our second
case study in Section 8.3.

New constraint patterns can also be introduced to allow model developers to write
more concise specifications. For example, Constraint 8.2.17 could be expressed using
existing constraint patterns, but the resulting expression was more complicated than the
original constraint. Thus, we introduce the Attribute Value Is-One-Of pattern, which we
define as follows.

pattern AttributeValueIsOneOf(property:Property,set:Set(OclAny)) =
set−>includes(property)

Using this new pattern, Constraint 8.2.17 can be expressed as follows.

context InboundEventDefinition inv correlation value:
AttributeValueIsOneOf(noCorrelationMatches,
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Set{’ignore’ , ’ raiseException’, ’createNewContext’}) and
AttributeValueIsOneOf(oneCorrelationMatch,

Set{’ignore’ , ’ raiseException’, ’deliverEvent’}) and
AttributeValueIsOneOf(multipleCorrelationMatches,

Set{’ignore’ , ’ raiseException’, ’deliverToAny’, ’ deliverToAll ’})

Conciseness.

In this subsection, we compare the pattern-based specification approach to other ap-
proaches in terms of conciseness. To this end, we have implemented the constraint spec-
ification for the monitor model in Java, which was a time-consuming and error-prone
endeavor. This Java code validates monitor models against the constraints and comprises
around 3500 lines of code.

Although many developers have a preference for code, we encourage developing con-
straint specifications in a concise declarative language instead of Java code for model val-
idation for the following reasons. First, the vast quantity of code necessary to implement
the constraints takes significant amount of time to be developed; in addition, maintaining
such code is difficult: Upon changes in the model or in the constraints, the code needs
to be analyzed for necessary changes. Second, many constraints require navigating from
the context object to related objects, as represented by self.x.y in OCL. However, such nav-
igation operations require nested loops in Java which result in verbose and complicated
statements. Third, developing model validation code in Java is error-prone due to the
extent and the intricacy of the code.

In contrast, constraints written in OCL are less verbose and intricate because OCL has
been developed as a concise declarative language for object-oriented models. However,
apparently simple facts can result in complicated OCL expressions. For instance, Con-
straint C.2.1 requires that there can only be one relation between two monitoring con-
texts, but two existential quantifiers are needed for its OCL formalization. Thus, expertise
in formal languages is required to formalize constraints in OCL, and the maintenance of
OCL constraints needs both expertise and significant effort.

Constraint specifications developed using our constraint patterns promise to be even
more concise. In total, we required 116 pattern instances to express all constraints from
the monitor model specification. Most pattern instances can be defined using between two
and five lines of code, which results in significantly more concise specifications.

For illustration, we provide three different formalizations of Constraint C.2.1. First, we
define it in OCL, second, we provide a Java method that evaluates to true if the constraint
holds, and third, we specify the constraint using our patterns.

context ParentContextRelationship inv context relations:
not ParentContextRelationship.allInstances()

−>exists(x, y | x<>y and x.childContextDefinition=y.childContextDefinition and
x.parentContextDefinition=y.parentContextDefinition)

public boolean validateContextRelation(List<ParentContextRelationship> allRelations) {
for (ParentContextRelationship x : allRelations )

for (ParentContextRelationship y : allRelations ) {
if (x!=y &&

x.getChildContextDefinition()==y.getChildContextDefinition() &&
x.getParentContextDefinition()==y.getParentContextDefinition())

return false; }
return true; }



CHAPTER 8. VALIDATION 129

context ParentContextRelationship inv context relations:
UniquePath(MonitoringContextDefinition,childContextRelationship.childContextDefinition)

Certain types of constraints benefit in particular from a pattern approach, such as con-
straints on reflexive associations because such constraints are typically complex, but show
very similar structure. Other types of constraints are difficult to express using patterns, in
particular constraints that are specific to a certain domain or involve user-defined func-
tions. One example is Constraint 8.2.17, a rather simple constraint for which 13 pattern
instances are necessary to express it.

Constraints that can be expressed more concisely in OCL than using constraint patterns
leave two choices. First, they can be generalized and thus, give rise to new constraint
patterns. Second, if they are part of more complex expressions, they can be used in
composite constraint patterns using the Literal OCL pattern, which wraps arbitrary OCL
expressions. However, as discussed in Section 6.5, arbitrary OCL constraints cannot be
analyzed by our analysis.

Analysis Performance.

Running consistency analysis on the fully constrained monitor model takes about four sec-
onds on a common personal computer. It checks all 116 pattern instances used, which
means that constraints that are composed of multiple constraint patterns can give rise to
multiple warnings. This is a conscious design choice and can also be changed in our anal-
ysis algorithm such that at most one warning can be raised for each composite constraint.

From the 116 pattern instances, 86 can be shown consistent by our analysis. For
the remaining 30 constraints for which the analysis issued warnings, we have performed a
secondary analysis (cf. Section 6.6) as follows. For each warning, we created a model state
that satisfies the respective set of pattern instances and thus identifies the warning as false
positive. This manual analysis showed that all warnings are not actual problems, i. e., the
model is consistent. Note that we did not carry out this secondary analysis in a formal
way. However, we envision to use to complement our analysis approach with a witness
creation approach as discussed in Section 6.1. Besides a higher degree of automation,
such an extension can provide a formal and, thus, more reliable analysis result.

For further evaluating our approach to consistency analysis, we performed the consis-
tency analysis with another tool for (almost) automatic consistency analysis of UML/OCL
models, USE [Gogolla et al., 2005]. To this end, we have implemented a simple model
transformation that transforms models in the RSA representation into the textual format
of USE and generates a script for generating model instances.

The first run of USE on the monitor model was rather disillusioning: the tool was not
able to validate the pure class model without having added any OCL constraint. In fact,
the consistency analysis of USE did not even terminate. After consulting the developers of
USE, it is clear that the current version of USE cannot cope with such a large number of
associations as in the monitor model. After all, our USE specification contains 76 classes
and 84 associations.

The second tool for automatic consistency analysis, UML2Alloy
[Bordbar and Anastasakis, 2005], is not suitable for analyzing the company model
and its specification because of the limitations of its current version. It does not support
multiple inheritance, but for example, TimerDefinition in the meta-model is both a
OutputSlotDefinition and an InputSlotDefinition . Further, the return type of operations in
UML2Alloy must be either boolean or void, and in addition, operations must not have
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any parameters. Therefore, most constraints that require user-defined functions cannot
be translated by UML2Alloy, e. g., Constraint C.2.13.

Elicitation Coverage.

Although the constraint specification for the monitor was already given and thus, no con-
straint elicitation had to be performed, we will perform the constraint elicitation on the
unconstrained monitor model and once again on the constrained model. Subsequently,
we compare the results and draw conclusions.

For the initial unconstrained model, our analysis provided 272 suggestions for refine-
ment. After refining the model with the constraints from the specification, the analysis
reported 198 remaining suggestions, which provides two interesting insights.

First, the constraint specification covers only around 25% of the possible problems that
our analysis finds. Since our analysis provides an over-approximation, i. e., it searches for
potential problems, it seems natural that only a fraction of these suggestions is actually car-
ried out. Note that the remaining 198 suggestions that are not covered by the specification
contain a large number of reflexive relations. We consider reflexive relations one of the
most important modeling concept that requires refinement because reflexive relations can
cause cycles in the object graph, which in turn can result in nonterminating computations.
Although certain cyclic dependencies may not pose a problem in the implementation, we
suggest browse the list of elicitation results and extend the specification with instances of
the No Cyclic Dependency pattern where necessary.

Second, the specification contains constraints not suggested by the analysis. This is
caused by the fact that our analysis searches for problems that are independent of the ap-
plication domain of the model, whereas the constraint specification for the monitor model
contains domain-specific constraints. As shown in Chapter 3, domain-specific constraints
are elicited manually by domain experts using domain analysis. For example, constraint
Constraint 8.2.2 requires that there must be at most one path between to objects of class
MapDefinition.
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8.3 Case Study 2: Merging Process Models

In this section, we present a case study on constraints for process models that are inter-
nally used by IBM WebSphere Business Modeler (WBM) [IBM, 2007b]. These constraints
originate from a research team in the IBM Zurich Research Laboratory working on process
merging, i. e., merging different versions of one process model into a common model, or
merging an as-is and a to-be model. The first version of the process-merging prototype did
not support all process models, but a large subset. This subset is characterized by a set of
restrictions on input models that were originally specified in natural language and as Java
code.

In Figure 8.12, we present a screenshot of the process-merging prototype in WBM.
The screenshot comprises three main parts: In the upper third and the middle third, two
versions of a business process are modeled. In the bottom third of the window, a difference
view shows the differences between the models and suggests different kinds of actions to
the user to unify the two versions.

Figure 8.12: Screenshot of the process-merging prototype in WBM.

In this case study, we formally capture the restrictions for this subset using our pat-
terns approach. This section is structured as follows. In Section 8.3.1, we introduce the
part of the process meta-model that is relevant for this case study. In Section 8.3.2, we
present the limitations on input models for the process-merging prototype in the form
of constraints using the patterns approach developed in this thesis. In Section 8.3.3, we
provide a quantitative evaluation of the results.
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8.3.1 The Process Model.

In this section, we introduce the process model, which is used for describ-
ing business processes. It is based on concepts used in UML Activity Dia-
grams [Object Management Group (OMG), 2006c]. We give an overview of the most im-
portant concepts and introduce further details in the remainder of this section where
needed.

Figure 8.13 and Figure 8.14 show class diagrams of the process model’s meta-model,
which consists of 33 classes and 43 associations in total. Figure 8.13 gives an overview
of different kinds of activity nodes. In general, there are two kinds of activity nodes,
ExecutableNode and ControlNode. An executable node can either be an Action, i. e., an
atomic task within the business process, or a StructuredActivityNode such as a LoopNode,
which can aggregate other activity nodes. A ControlNode can be either an InitialNode or
a FinalNode. There are two specialized subclasses of FinalNode: Whereas instances of
FlowFinalNode terminate the execution of a single branch, instances of TerminationNode
terminate the whole process.

ActivityEdge

ActivityNode

StructuredActivityNode

LoopNode

InitialNode

ControlNodeExecutableNode

Action

TerminationNode

FinalNode

FlowFinalNode

1

+ inStructuredNode *

+ edgeContents

0..1

+ inStructuredNode

*

+ nodeContents

Figure 8.13: Process model: activity nodes.

Nodes are connected by a Pin mechanism. As depicted in Figure 8.14, each action
has a set of input and output pins for control flow and a set of input and output pins for
object flow. Two pins can be connected by an ActivityEdge; control pins are connected by
a ControlFlow and object pins are connected by an ObjectFlow.

Object flow and control flow can be split by using a ControlAction, which is a special
type of Action. As depicted in Figure 8.15, there are four types of control actions: Decision
and Merge are used for modeling alternative branches in a process, whereas Join and Merge
are used for modeling parallel branches.

Figure 8.16 shows an example process model with a single action, Receive Order. This
action is connected to an initial node by a control flow edge and an input control pin and
it is connected to a flow final node by an output control pin and another control flow edge.

8.3.1.1 Semantics in a Nutshell.

Process models are typically executed on process servers. The execution of process models
follows a token-flow semantics. Initially, each initial node in the process receives a token
and passes it on via its target edge to a ConnectableNode. If this node is a FinalNode, the
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ActivityEdge

Pin

ConnectableNode

ObjectPinControlPinInitialNode

ControlNode

InputControlPin InputObjectPinTerminationNode

FinalNode

OutputControlPin OutputObjectPinFlowFinalNode

Action

ControlFlow ObjectFlow

0..1

+ incoming

1

+ target

1

+ source

0..1

+ outgoing

* ** *

Figure 8.14: Process model: connectable nodes.

ControlAction

Decision

Action

ForkMerge Join

Figure 8.15: Process model: control actions.

start : InitialNode

receive Order : Action

stop : FlowFinalNode

edge1 : ControlFlow

edge2 : ControlFlow

in1 : InputControlPinout1 : OutputControlPin

+ incoming + target

+ action+ outputControlPin

+ action + inputControlPin

+ source + outgoing

+ source

+ outgoing

+ incoming

+ target

Figure 8.16: Example process model.
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token is consumed and if it is a Pin, the action owning the pin is executed, which eventually
passes the token on to all outgoing pins of the action. In Figure 8.16, this semantics causes
Receive Order to be executed exactly once.

There are several exceptions to this simple kind of token flow. On the one hand,
tokens can carry objects, which can be passed on using ObjectFlow edges and object pins.
Furthermore, token flow can be split using control actions (Figure 8.15). Decision nodes
can be used to split control flow into alternative branches, whereas Merge nodes merge
previously split alternative branches. Parallel branches can be modeled analogously by
using Fork and Join actions. Besides this explicit split of the token flow, the token flow can
be split and joined implicitly by attaching more than one output pin and input pin to an
action. This adds an implicit fork and join to the action. Implicit decisions and merges can
be modeled similarly by using pin sets, which are however not relevant for this case study
and are therefore omitted.

8.3.2 Constraints for the Process Model.

In this section, we present the constraints that process models need to satisfy such that
they can be correctly processed by the process-merging prototype. We specify each both in
OCL and using our library of constraint patterns. For each constraint, if we do not consider
the pattern representation to be intuitive, we provide further information that justifies our
choice of constraint patterns.

Constraint 8.3.1 (connected models). Only connected models are supported, i.e., every
element is reachable from the start node and an end node is reachable from every element.

context StructuredActivityNode inv connected models:
self .getPredecessors()−>exists(n | n.oclIsTypeOf(InitialNode)) and
self .getSuccessors()−>exists(n | n.oclIsTypeOf(FinalNode))

context Action
def: getPredecessors() : Set(Action) =

self . inputControlPin.incoming.source.action−>
union(self . inputControlPin.incoming.source.action.getPredecessors())

def: getSuccessors() : Set(Action) =
self .outputControlPin.outgoing.target.action−>
union(self .outputControlPin.outgoing.target.action.getSuccessors())

We can express the constraint connected models using the Type Relation pattern and involv-
ing the closure pattern as follows.

context StructuredActivityNode
inv connected models 1:

TypeRelation(StructuredActivityNode,
closure(inputControlPin.incoming.source.action),
{ InitialNode})

inv connected models 2:
TypeRelation(StructuredActivityNode,

closure(outputControlPin.outgoing.target.action ),
{FinalNode})

Constraint 8.3.2 (no object flow). Models with object flow are not supported.
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context Action inv no objectflow:
self . inputObjectPin−>isEmpty() and
self .outputObjectPin−>isEmpty()

Clearly, this constraint restricts the multiplicity of two properties to zero. Thus, we can
express is using two instances of the Multiplicity Restriction pattern as follows.

context Action
inv no objectflow 1:

MultiplicityRestriction (Action,inputObjectPin,=,0)

inv no objectflow 2:
MultiplicityRestriction (Action,outputObjectPin,=,0)

Constraint 8.3.3 (no termination). Process models with TerminationNodes are not sup-
ported. Use FlowFinalNodes instead.

context ProcessModel inv no termination:
TerminationNode::allInstances()−>isEmpty()

Using the pattern No Instances that we defined in the previous case study, we can express
this constraint as follows.

context ProcessModel inv no termination:
NoInstances(TerminationNode)

Constraint 8.3.4 (explicit control flow). Models with implicit forks/joins/decision-
s/merges are not supported.

context StructuredActivityNode inv explicit control flow :
self . inputControlPin−>size() <= 1 and
self .outputControlPin−>size() <= 1 and
self . inputObjectPin−>size() <= 1 and
self .outputObjectPin−>size() <= 1

Each statement in above conjunction can be expressed using the Multiplicity Restriction
pattern, which results in the following expression.

context StructuredActivityNode
inv explicit control flow 1 :

MultiplicityRestriction (StructuredActivityNode,inputControlPin, <=, 1)

inv explicit control flow 2 :
MultiplicityRestriction (StructuredActivityNode,outputControlPin, <=, 1)

inv explicit control flow 3 :
MultiplicityRestriction (StructuredActivityNode,inputObjectPin, <=, 1)

inv explicit control flow 4 :
MultiplicityRestriction (StructuredActivityNode,outputObjectPin, <=, 1)

Constraint 8.3.5 (no loops). Loop nodes are not processed properly and cannot be merged.
Therefore, loop nodes are not supported.
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context ProcessModel inv no loops:
LoopNode::allInstances()−>isEmpty()

Again, we can express this constraint using the No Instances pattern as follows.

context ProcessModel inv no loops:
NoInstances(LoopNode)

8.3.3 Quantitative Evaluation.

In this subsection, we perform a quantitative evaluation of the patterns approach for the
process meta-model. We use the following criteria as defined in Section 8.1: specification
coverage, conciseness, performance, and elicitation coverage.

Specification Coverage.

100% of the constraints for the model-merging prototype can be expressed using our
library of constraint patterns. Such a high coverage is caused by the nature of the process-
model constraints, which restrict structural properties of the model state and do not re-
strict attribute values.

It requires 10 pattern instances to specify the five constraints because several con-
straints comprise several conjuncts, which we each model as distinct pattern instance. In
Table 8.3, we summarize which patterns we have used and how often they occur.

Occurrences Pattern
6 Multiplicity Restriction
2 Type Relation
2 No Instances

Table 8.3: Pattern instances used for the process-merging constraints.

Conciseness.

At first glance, using constraint patterns for expressing the five constraints does not im-
prove conciseness because the lines of code required are comparable in the patterns ap-
proach and in plain OCL. However, some improvements are hidden in the details of several
constraints.

For example, Constraint 8.3.1 requires the model developer to define two operations
that compute transitive closures. By using constraint patterns, he can re-use the closure
pattern that we initially defined for the No Cyclic Dependency pattern. Thus, the model de-
veloper substantially saves time and decreases the effort required when the model changes
and the constraints need to be adapted.

Constraint 8.3.3 requires knowledge about two OCL operators, of which the first,
allInstances(), requires specific knowledge of UML/OCL. In contrast, this constraint can
be defined by a single instance of the No Instances pattern and setting one parameter
value.
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Analysis Performance.

Invoking consistency analysis on the constraints for process merging runs for about two
seconds. It results in six warnings. Two warnings stem from the two constraints that use
the No Instances pattern because each instance of this pattern makes a model inconsistent
by definition (cf. Section 5.1.1).

The four other warnings are caused by two constraints, no object flow and explicit
control flow, which each constrain the properties inputObjectPin and outputObjectPin. These
constraints are not inconsistent, but partly redundant because two conjuncts of explicit
control flow are implied by no object flow. Thus, we can remove them and simplify explicit
control flow as follows.

context StructuredActivityNode inv explicit control flow :
self . inputControlPin−>size() <= 1 and
self .outputControlPin−>size() <= 1

Elicitation Coverage.

Unlike the case study in Section 8.2, the subject of this case study is not a large set of
constraints from a specification document, but a small set of constraints for a very specific
problem. Thus, constraint elicitation does not play an important role in this case study.

Nevertheless, we want to briefly present the results of the constraint elicitation com-
ponent. For the full, unconstrained process meta-model, constraint elicitation issues 405
warnings, which is around 50% more warnings than for the previous case study on the
monitor model. The number of warnings does not directly correlate with the number of
classes and associations in the models because the process model only has around 33%
more classes than the monitor model. In Table 8.4, we summarize the constraint elicitation
statistics for both models.

Model Classes Associations Warnings
Process Model 33 43 405
Monitor Model 25 49 272

Table 8.4: Dependency of model size and constraint elicitation warnings.

After adding the five constraints from the process-merging prototype, 7 warnings are
eliminated. Thus, some of the constraints can be considered useful for the process model
beyond the scope of the prototype. Whereas the constraints that use the No Instances
pattern are clearly not useful because they render the model inconsistent, we consider
constraint Constraint 8.3.1, which requires that every element in a process is reachable
from a start and an end node, a candidate for being added to the general constraint
specification for process models.
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8.4 Case Study 3: Royal & Loyal

In this section, we present a case study on the “Royal & Loyal” model. The Royal
& Loyal model is used in [Kleppe and Warmer, 2003] for introducing OCL by exam-
ple. Since then, it has been used in various publications, e. g., [Tedjasukmana, 2006,
Dzidek et al., 2005], and it is shipped with several tools as an example model,
e. g., [Dresden Technical University, 2007]. Various constraints of different types are de-
fined for the Royal & Loyal model, which makes it a good benchmark for MDE approaches
such as ours.

This section is structured as follows. In Section 8.4.1, we present the Royal & Loyal
model as introduced in [Kleppe and Warmer, 2003] and formalize its constraints in Sec-
tion 8.4.2 using our pattern approach. In Section 8.4.3, we provide a quantitative evalua-
tion of the results.

8.4.1 The Royal & Loyal Model.

Figure 8.17 illustrates the Royal & Loyal model, which represents a company that han-
dles loyalty programs, i. e., various kinds of bonuses, for third party companies. Its cen-
tral class is LoyaltyProgram, which connects objects of class Customer to objects of class
ProgramPartner. The membership of customers in loyalty programs is modeled using a
UML association class Membership. Association classes specialize both associations and
classes and thus combine their properties.

Customers have a CustomerCard for each membership in a loyalty program. Using this
card, customers can perform Transactions. There are two types of transactions, Burning,
which reduces the number of points in the customer’s account, and Earning, which in-
creases the number of points.

Program partners offer Services at predefined ServiceLevels. Each membership is as-
sociated with exactly one service level. The model further comprises two enumerations,
Date and Color, which are used as types for several attributes in the model.

8.4.2 Constraints for the Royal & Loyal Model.

In this subsection, we present the constraints specified in [Kleppe and Warmer, 2003] for
the Royal & Loyal model. The constraints are originally specified both in English and in
OCL. We use the approach developed in this thesis to further express the constraints using
pattern instances.

Customer.

Constraint 8.4.1 (legal age). Every customer who enters a loyalty program must be of legal
age.

context Customer
inv legalAge: age >= 18

context Customer
inv legalAge: AttributeValueRestriction (Customer,age,>=,18)

Constraint 8.4.2 (sizes agree). The number of valid cards for every customer must be equal
to the number of programs in which the customer participates.
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LoyaltyProgram

- name : String
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Figure 8.17: The Royal & Loyal model.

context Customer
inv sizesAgree:

programs−>size() = cards−>select(valid=true)−>size()

This constraint cannot be expressed using our patterns because there is no pattern in our
library for comparing the cardinality of sets.

Constraint 8.4.3 (male title). Male customers must be approached using the title ’Mr.’.

context Customer
inv maleTitle: isMale implies title = ’Mr.’

context Customer
inv maleTitle: IfThenElse({AttributeValueRestriction(Customer,isMale,=,true)},

AttributeValueRestriction (Customer,title ,=, ’Mr.’ ),
)

We show the pattern instances for customers, legal age and male title in Figure 8.18.
Note that male title is a composite constraint composed of the constraints customer is male
and title is Mr, indicated by the rectangle.
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legal age

AttributeValueRestriction

property [1..*] : age 

operator [1] : ">=" 

value [1] : "18" 

context [1] : Customer 

male title

IfThenElse

if [1..*] : customer is male 

then [1] : title is Mr 

else [1] :

customer is male

AttributeValueRestriction

property [1..*] : isMale 

operator [1] : "=" 

value [1] : "true" 

context [1] : Customer 

title is Mr

AttributeValueRestriction

property [1..*] : title 

operator [1] : "=" 

value [1] : "Mr." 

context [1] : Customer 

Figure 8.18: Pattern instances for customers.

CustomerCard.

Constraint 8.4.4 (check dates). The validFrom date of customer cards should be earlier
than goodThru.

context CustomerCard
inv checkDates: validFrom.isBefore(goodThru)

This constraint cannot be expressed using our constraint patterns because there is no
pattern that allows developers to use parametrized function calls.

Constraint 8.4.5 (birth date). The birth date of the owner of a customer card must not be
in the future.

context CustomerCard
inv birthDate: self .owner.dateOfBirth.isBefore(Date::now)

This constraint cannot be expressed using our constraint patterns because there is no
pattern that allows developers to use parametrized function calls.

Constraint 8.4.6 (program participation). The owner of a customer card must participate
in at least one loyalty program.

context CustomerCard
inv programParticipation: self .owner.programs−>size() > 0

context CustomerCard
inv programParticipation: MultiplicityRestriction (CustomerCard,owner.programs,>,0)
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Constraint 8.4.7 (transaction points). There must be at least one transaction for a cus-
tomer card with at least 100 points.

context CustomerCard
inv transactionPoints: self . transactions−>select(points>100)−>notEmpty()

context CustomerCard
inv transactionPoints: Exists(transactions,

{AttributeValueRestriction (CustomerCard,points,>,100)})

In Figure 8.19, we summarize the pattern instances for customer cards.

program Participation

MultiplicityRestriction

navigation [1..*] : owner programs 

operator [1] : ">" 

value [1] : "0" 

context [1] : CustomerCard 

points > 100

AttributeValueRestriction

property [1..*] : points 

operator [1] : "<=" 

value [1] : "100" 

context [1] : Transaction 

Exists

Exists

property [1..*] : transactions 

constraints [1..*] : points > 100 

context [1] : CustomerCard 

Figure 8.19: Pattern instances for customer cards.

Membership.

Constraint 8.4.8 (known service level). The service level of each membership must be a
service level known to the loyalty program.

context Membership
inv knownServiceLevel: programs.levels−>includes(currentLevel)

context Membership
inv knownServiceLevel: ObjectInCollection(Membership,

programs.levels,
currentLevel)

Constraint 8.4.9 (correct card). The participants of a membership must have the correct
card belonging to this membership.

context Membership
inv correctCard: participants .cards−>includes(self.card)
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context Membership
inv correctCard: ObjectInCollection(Membership,

participants .cards,
card)

Constraint 8.4.10 (level and color). The color of a membership’s card must match the ser-
vice level of the membership.

context Membership
inv levelAndColor:

currentLevel.name = ’Silver ’ implies card.color = Color:: silver
and
currentLevel.name = ’Gold’ implies card.color = Color::gold

As before, we split the conjunction into two separate invariants.

context Membership
inv levelAndColor1:

IfThenElse({AttributeValueRestriction(Membership,currentLevel.name,=,’Silver’)},
AttributeValueRestriction (Membership,card.color,=,Color::silver ),

)

inv levelAndColor2:
IfThenElse({AttributeValueRestriction(Membership,currentLevel.name,=,’Gold’)},

AttributeValueRestriction (Membership,card.color,=,Color::gold),
)

Constraint 8.4.11 (no account). Memberships must not have associated accounts.

context Membership
inv noAccount: account−>isEmpty()

context Membership
inv noAccount: MultiplicityRestriction (Membership,account,=,0)

In Figure 8.20, we summarize the pattern instances for memberships.
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known service level

ObjectInCollection

set [1..*] : programs levels 

element [*] : currentLevel 

context [1] : Membership 

correct card

ObjectInCollection

set [1..*] : participants cards 

element [*] : card 

context [1] : Membership 

level and color 1

IfThenElse

if [1..*] : currentLevel.name = 'Silver' 

then [1] : card.color = silver 

else [1] :

currentLevel.name = 'Silver'

AttributeValueRestriction

property [1..*] : currentLevel name 

operator [1] : "=" 

value [1] : "Silver" 

context [1] : Membership 

card.color = silver

AttributeValueRestriction

property [1..*] : card color 

operator [1] : "=" 

value [1] : "Color::silver" 

context [1] : Membership 

level and color 2

IfThenElse

if [1..*] : currentLevel.name = 'Gold' 

then [1] : card.color = gold 

else [1] :

currentLevel.name = 'Gold'

AttributeValueRestriction

property [1..*] : name 

operator [1] : "=" 

value [1] : "Gold" 

context [1] : Membership 

card.color = gold

AttributeValueRestriction

property [1..*] : card color 

operator [1] : "=" 

value [1] : "Color ::gold" 

context [1] : Membership 

Figure 8.20: Pattern instances for memberships.

LoyaltyProgram.

Constraint 8.4.12 (min services). Loyalty programs must offer at least one service to their
customers.

context LoyaltyProgram
inv minServices: partners.deliveredServices−>size() >= 1

context LoyaltyProgram
inv minServices: MultiplicityRestriction (LoyaltyProgram,partners.deliveredServices,>=,1)

Constraint 8.4.13 (no accounts). If none of the services offered in a loyalty program credits
or debits the loyalty accounts, then these instances are useless and should not be present.

context LoyaltyProgram
inv noAccounts: partners.deliveredServices−>forAll(

pointsEarned = 0 and pointsBurned = 0 )
implies Membership.account−>isEmpty()

This constraint cannot be expressed using our patterns because they do not yet support
navigation via association classes as required in this constraint by Membership.

Constraint 8.4.14 (first level). The name of the first level must be Silver.

context LoyaltyProgram
inv firstLevel : levels−>first (). name = ’Silver ’

This constraint cannot be expressed using our patterns because there is no pattern for
assertions on ordered sets.
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Constraint 8.4.15 (basic level). There must exist at least one service level with the name
basic.

context LoyaltyProgram
inv basicLevel: self . levels−>exists(name = ’basic’)

context LoyaltyProgram
inv basicLevel: Exists( levels ,{ AttributeValueRestriction (LoyaltyProgram,name,=,’basic’)})

Constraint 8.4.16 (max participants). The number of participants in a loyalty program
must be less than 10,000.

context LoyaltyProgram
inv maxParticipants: self . participants−>size() < 10,000

context LoyaltyProgram
inv maxParticipants: MultiplicityRestriction (LoyaltyProgram,participants,<,10000)

Constraint 8.4.17 (unique account). The number of the loyalty account must be unique
within a loyalty program.

context LoyaltyProgram
inv uniqueAccount: self.Membership.account−>isUnique(acc | acc.number)

This constraint cannot be expressed using our patterns because there is no pattern for
expressing that an attribute must be unique for a subset of all objects of a class. In contrast,
Unique Identifier requires uniqueness for all objects of the given class. Thus, the Unique
Identifier pattern could be used to express a stronger constraint.

Constraint 8.4.18 (unique names). The names of all customers of a loyalty program must
be different.

context LoyaltyProgram
inv uniqueNames: self.participants−>forAll(c1,c2 | c1<>c2 implies c1.name <> c2.name)

As for Constraint 8.4.17, this constraint cannot be expressed using our patterns because
there is no pattern for expressing that an attribute must be unique for a subset of all
objects of a class.

Constraint 8.4.19 (max age). The maximum age of participants in loyalty programs is 70.

context LoyaltyProgram
inv maxAge: participants−>forAll(age() <= 70)

context LoyaltyProgram
inv maxAge: ForAll(participants,{AttributeValueRestriction (LoyaltyProgram,age,<=,70)})

Constraint 8.4.20 (one account). There may be only one loyalty account that has a num-
ber lower than 10,000.

context LoyaltyProgram
inv oneAccount: self.Membership.account−>one(number < 10,000)

This constraint cannot be expressed using our patterns because there does not exist a
matching pattern that can be used to express the one() operator.

In Figure 8.21, we summarize the pattern instances for loyalty programs.
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min services

MultiplicityRestriction

navigation [1..*] : partners delivered Services 

operator [1] : ">=" 

value [1] : "1" 

context [1] : LoyaltyProgram 

max participants

MultiplicityRestriction

navigation [1..*] : participants 

operator [1] : "<" 

value [1] : "10000" 

context [1] : LoyaltyProgram 

max age

ForAll

property [1..*] : participants 

constraints [1..*] : age <= 70 

context [1] : LoyaltyProgram 

age <= 70

AttributeValueRestriction

property [1..*] : age 

operator [1] : "<=" 

value [1] : "70" 

context [1] : Customer 

basic level

Exists

property [1..*] : levels 

constraints [1..*] : name = 'basic' 

context [1] : LoyaltyProgram 

name = 'basic'

AttributeValueRestriction

property [1..*] : name 

operator [1] : "=" 

value [1] : "basic" 

context [1] : ServiceLevel 

Figure 8.21: Pattern instances for loyalty programs.

ProgramPartner.

Constraint 8.4.21 (nr of participants). The attribute numberOfCustomers of class
ProgramPartner must be equal to the number of customers who participate in one or more
loyalty programs offered by this program partner.

context ProgramPartner
inv nrOfParticipants:

numberOfCustomers = programs.participants−>asSet()−>size()

context ProgramPartner
inv nrOfParticipants:

MultiplicityRestriction (ProgramPartner,programs.participants,=,numberOfCustomers)

Constraint 8.4.22 (total points). A maximum of 10,000 points may be earned using ser-
vices of one partner.

context ProgramPartner
inv totalPoints :

deliveredServices.transactions−>select(oclIsTypeOf(Earning)).points−>sum() < 10,000

There is no pattern in our library to express this constraint because of the subexpres-
sion select(oclIsTypeOf(Earning)). This expression filters the set of objects accessed through
deliveredServices.transactions and there is no pattern that corresponds to such filtering ex-
pressions.

In Figure 8.22, we show the only constraint for program partners expressible by our
patterns, nr of participants.
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nr of participants

MultiplicityRestriction

navigation [1..*] : programs participants 

operator [1] : "=" 

value [1] : "numberOfCustomers" 

context [1] : ProgramPartner 

Figure 8.22: Pattern instances for program partners.

LoyaltyAccount.

Constraint 8.4.23 (one owner). All cards that generate transactions on the loyalty account
must have the same owner.

context LoyaltyAccount
inv oneOwner: transactions.card.owner−>asSet()−>size() = 1

context LoyaltyAccount
inv oneOwner: MultiplicityRestriction (LoyaltyAccount,transactions.card.owner,=,1)

Constraint 8.4.24 (positive points). If the points earned in a loyalty account is greater
than zero, there exists a transaction with more than zero points.

context LoyaltyAccount
inv positivePoints : points > 0 implies transactions−>exists(t | t .points > 0)

context LoyaltyAccount
inv positivePoints :

IfThenElse({AttributeValueRestriction(points,>,0)},
Exists(transactions,{ AttributeValueRestriction (LoyaltyAccount,points,>,0)}),

)

Constraint 8.4.25 (500 points). There must be one transaction with exactly 500 points.

context LoyaltyAccount
inv 500points: transaction .points−>exists(p : Integer | p = 500)

context LoyaltyAccount
inv 500points: Exists(LoyaltyAccount,transaction.points,{ LiteralOcl (−,”self = 500”)})

ServiceLevel.

Constraint 8.4.26 (service partner). The available services for a service level must be of-
fered by a partner of the loyalty program to which the service level belongs.

context ServiceLevel
inv servicePartner: program.partners−>includesAll(self.availableServices.partner)

Since there is no constraint pattern in our pattern library that comprises the includesAll
operation, we change the context class of this constraint and express it as follows.
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one owner

MultiplicityRestriction

navigation [1..*] : transactions card owner 

operator [1] : "=" 

value [1] : "1" 

context [1] : LoyaltyAccount 

positive points

IfThenElse

if [1..*] : account points > 0 

then [1] : transactions->exist(points>0) 

else [1] :

account points > 0

AttributeValueRestriction

property [1..*] : points 

operator [1] : ">" 

value [1] : "0" 

context [1] : LoyaltyAccount 

transactions->exist(points>0)

Exists

property [1..*] : transactions 

constraints [1..*] : transaction points > 0 

context [1] : LoyaltyAccount 

transaction points > 0

AttributeValueRestriction

property [1..*] : points 

operator [1] : ">" 

value [1] : "0" 

context [1] : Transaction 

500 points

Exists

property [1..*] : transactions points 

constraints [1..*] :

context [1] : LoyaltyAccount 

p = 500

LiteralOcl

expression [1] : "self = 500" 

context [1] :

Figure 8.23: Pattern instances for loyalty accounts.

context ProgramPartner
inv servicePartner: ObjectInCollection(ProgramPartner,

delivered Services.level .program.partners,
Sequence{})

service partner

ObjectInCollection

set [1..*] : delivered Services level program partners 

element [*] :

context [1] : ProgramPartner 

Figure 8.24: Pattern instances for service levels.

8.4.3 Quantitative Evaluation.

In this subsection, we perform a quantitative evaluation of the patterns approach for the
Royal & Loyal model. We use the following criteria as defined in Section 8.1: specification
coverage, conciseness, performance, and elicitation coverage.

Specification Coverage.

From the 26 constraints for the Royal & Loyal model, we can express 18 using our exist-
ing constraint patterns, which corresponds to a ratio of about 70%. It requires 31 pattern
instances to express these 18 constraints because many constraints require the use of com-
posite patterns such as If -Then-Else or Exists. In Table 8.5, we summarize which patterns
we have used and how often they occur.

This case study motivates one new constraint pattern because there are two constraints
with similar structure for which there is currently no pattern. Constraints 8.4.17 and
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Occurrences Pattern
12 Attribute Value Restriction
6 Multiplicity Restriction
4 If -Then-Else
4 Exists
3 Object In Collection
1 ForAll
1 Literal OCL

Table 8.5: Pattern instances used for Royal & Loyal.

8.4.18 require unique attribute values for a given set of objects. Thus, we introduce a new
pattern Unique Set Identifier and define it as follows.

pattern UniqueSetIdentifier (set :Sequence(Property), property:Tuple(Property)) =
self .set−>isUnique(property)

Using this pattern, constraints 8.4.17 and 8.4.18 can be expressed as follows.

context LoyaltyProgram
inv uniqueAccount: UniqueSetIdentifier(LoyaltyProgram,Membership.account,number)
inv uniqueNames: UniqueSetIdentifier(LoyaltyProgram,participants,name)

By introducing one new pattern, we have increased the coverage from 18/26 to 20/26,
which is about 77%.

Another constraint that could not be expressed using our patterns is constraints Con-
straint 8.4.20. However, we can introduce a new composite pattern Exists One that re-
quires the existence of exactly one object in a given set S with given properties P . We
define it in HOL-OCL as follows.

constdefs
ExistsOne :: ” ((’ τ , ’a ::bot)VAL⇒ ’τ Boolean)list ⇒ (’ τ , ’a ::bot)Set⇒ ’τ Boolean”
”ExistsOne P S == S−>one(y | (oclAND P y))”

Using this new pattern, Constraint 8.4.20 can be expressed as follows.

context LoyaltyProgram
inv oneAccount: ExistsOne(AttributeValueRestriction(LoyaltyAccount,number,<,10000),

self .Membership.account)

Still, a few constraints cannot be expressed using our constraint patterns. In Table 8.6,
we present a list of constraints that we cannot express using constraint patterns and briefly
explain why this is the case.

Conciseness.

For the constraints of the Royal & Loyal model, constraint patterns do not offer a solution
that is substantially more concise than the corresponding OCL statements. This is caused
by the fact that none of the constraints requires complex recursive queries such as transi-
tive closure operators. Nevertheless, the constraint pattern offer an abstraction from the
concrete OCL syntax, which may be considered an advantage by model developers with
no OCL background.
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Constraint(s) Description
8.4.2 This constraint contains an expression in which the cardi-

nalities of sets are compared.
8.4.4 This constraint (and also 8.4.5) comprises function calls,

which is not supported by our approach.
8.4.13 This constraint uses association classes for navigation,

which is currently not supported by our constraint patterns.
8.4.14 This constraint comprises statements about ordered sets.
8.4.22 This constraint comprises filtering of sets using the OCL se-

lect() operation.

Table 8.6: Constraints from the Royal & Loyal model not expressible using our patterns.

Analysis Performance.

Our consistency analysis for the Royal & Loyal model runs for about one second and results
in 15 warnings. After a manual check, all warnings turn out to be false positives. Despite
this fact, one of these warnings provides interesting insight and motivates a change in the
model: The analysis issues a warning for the constraint no account, which restricts the
multiplicity of account to zero. The warning reports that the multiplicity of account should
be ∗ in the model. This would allow an arbitrary number of elements to participate in
the relation, and thus, no instance of Multiplicity Restriction could potentially violate this
multiplicity. However, the multiplicity range of account in the model is [0..1] . Although
this is not a contradiction with no account, we suggest to remove the association end
account in the model to make it more concise.

Elicitation Coverage.

Before adding the constraints to the model, constraint elicitation reports 26 warnings for
the Royal & Loyal model. After adding the constraints, the same 26 warnings are still
reported, which means that none of the added constraints removes any anti-pattern. Due
to this relatively high number of warnings, we further investigated the warnings.

From all 26 warnings, 22 warnings address unconstrained reflexive associ-
ations, which are not restricted by any of the 26 constraints for the Royal
& Loyal model. In fact, cycles are desired in this model: A navigation
programs.partners.deliveredServices.transactions.card.owner starting at Customer should re-
sult in a set that contains the respective customer. Therefore, it is unlikely that any kinds
of cycles should be excluded from the model.

Three of the remaining four warnings suggest using Type Restriction constraints for
associations between classes and superclasses, e. g., Service and Transaction. For these
warnings, the model developer must assess whether the possible types of the respective
association ends should be restricted. Whereas customer cards should be associable to
any kind of transaction, it may make sense to limit certain services such that they can be
related to either “burning” or “earning” transactions.

The remaining warning suggests restricting the unbounded multiplicity of the associa-
tion end cards of class Customer.



150 8.5. QUALITATIVE EVALUATION AND SUMMARY

8.5 Qualitative Evaluation and Summary

We have performed three case studies and evaluated them according to quantitative mea-
sures. In this section, we apply the qualitative evaluation criteria defined in Section 8.1
and summarize the validation of our approach.

8.5.1 Analysis Quality.

Analyzing the constraints for the monitor model, the process-merging prototype, and the
Royal & Loyal model resulted in warnings that turned out to be false positives. This
means that in general, the assumptions used in the consistency theorems are too strong.
In Section 9.2, we discuss how these assumptions can be weakened in order to reduce the
number of false positives.

We have seen that consistency analysis results in 30 warnings for the constrained mon-
itor model. As seen in Section 8.2.4, there is no automatic tool at the moment that can
be used to perform a secondary consistency analysis. Thus, we needed to manually go
through the list of warnings and decide for each warning whether it is an actual inconsis-
tency or a false positive. As before, we (informally) created a model state that satisfies all
pattern instances affected by the respective warning and thus provided a witness.

Although this is a time-consuming endeavor, we consider our pattern-based analysis
successful. After all, 86 pattern instances can be shown consistent by our analysis and
thus, we do not have to analyze them further. This is an improvement to the current state-
of-the-art, because there are no consistency analysis methods for UML/OCL models that
can handle models of this size and intricacy. As a consequence, all 71 constraints from the
constraint specification must be analyzed manually in state-of-the-art MDE.

In the second case study, consistency analysis correctly identifies the Constraint 8.3.3
and Constraint 8.3.5 as inconsistent because they do not allow certain classes to be instan-
tiated. As shown, the remaining warnings are false positives. However, these warnings
helped identify redundancies in the constraint specification. We subsequently eliminated
the redundancies, which made the constraint specification more concise.

For the Royal & Loyal model, consistency analysis reported 15 warnings, which all
turned out to be false positives in a manual consistency analysis. However, the results
from consistency analysis provided insights into the model and helped us to make the
model more concise.

However, our analysis cannot make statements about arbitrary OCL constraints. This
is one of the limitations of our approach, which we discuss in the following subsection.

8.5.2 General Insights.

In general, the case studies showed that a majority of constraints can be expressed using
our library of composable constraint patterns. Around 75% of the constraints from the
monitor model and the Royal & Loyal model can be expressed using constraint patterns
and from the process-merging prototype case study, even 100% of the constraints can be
“patternized”. In this subsection, we highlight general insights that we gained from the
respective case study.

In the case study about the monitor model, the majority of constraints could be ex-
pressed using constraint patterns. Furthermore, the patterns approach provides a more
concise view on the constraints, which promises to be easier to maintain for a majority
of constraints. Using constraint patterns is an improvement for constraint maintenance.
Upon model change, it is often sufficient to adapt the parameter values of the constraint
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pattern instances; in our prototype implementation in RSA (Chapter 7), renaming of model
elements is automatically reflected in the constraint pattern instances. Another advantage
of the patterns approach is that redundancy can be avoided. Using patterns, it is less
likely to develop constraints that are syntactically different but semantically imply each
other because we have noticed that such similarities become more obvious to the user in
a pattern approach. An example for such similar constraints are constraints C.10.1 and
C.10.5 from Appendix C.

In the case study on formalizing constraints on the input models of a process-merging
prototype, all constraints for the models can be formalized using our library of constraint
patterns. Although this case study is rather small, it provides insight into special kinds
of constraints, i. e., restrictions on models that are caused by the temporary immaturity
of model-processing software. In this case study, we have come across two types of con-
straints. First, certain kinds of classes are not allowed to be instantiated, i. e., no objects
of this class may exist. Such constraints are typically used when certain classes in the
meta-model denote special cases in the model’s domain and the software that processes
the models is not yet able to consume these special cases. In this study, input models
must not contain objects of the classes TerminationNode and LoopNode. Second, certain
associations in the meta-model may not be supported by the software prototype to their
full extent and thus need to be further restricted. In this study, models are not allowed to
have implicit control flow, which means that each StructuredActivityNode object may have
at most one link to an OutputControlPin object although the meta-model is more liberal
(cf. Figure 8.14). Besides the cardinality, the possible types of association ends may be
restricted. In Table 8.7, we summarize typical use cases for constraints in early phases of
development.

Use Case Pattern(s)

A certain class in the model denotes a
special case that is typically not
implemented in the beginning of the
development process.

No Instances

Links between objects are restricted
either in their number or in the types of
objects to be connected.

Multiplicity Restriction
Type Restriction

Table 8.7: Typical constraint patterns in early development phases.

The third case study on the Royal & Loyal model confirmed the insights made in the
previous case studies. In particular, we used the constraints for the Royal & Loyal model to
elicit one new elementary constraint pattern, Unique Set Identifier, and one new composite
constraint pattern, Exists One. This case study also comprised several constraints that
cannot be expressed using our library. In the following list, we summarize constraint
types that currently defy being expressed using our patterns.

• Cardinalities of sets can currently not be compared.

• Function calls are generally not supported in constraint expressions.
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• Association classes cannot be used for navigation.

• Ordered sets cannot be constrained using our patterns.

• Filtering of sets according to their type is not supported.

• Binding of variables in quantified expressions is not flexible enough.

Whereas patterns may be introduced for expressing constraints on cardinalities, asso-
ciation classes, and ordered sets, it is an open question how filtering expressions and a
flexible variable binding in quantified expressions can be supported using patterns. Func-
tions calls are generally not supported by our approach. We discuss these limitations in
the following subsection.

8.5.3 Limitations.

Our approach to developing constraint specifications using patterns has a few limitations
that have become obvious during this evaluation. In particular, we have identified the
following three limitations.

Arbitrary OCL Constraints.

There will always be constraints that state certain facts that are so specific to a certain
domain that it is not feasible to capture them as patterns. As a result, these constraints
remain as literal OCL constraints in the model. This has a severe impact on consistency
analysis because our analysis cannot make statements about arbitrary OCL constraints.

We have shown a solution to this problem that requires significant user interaction:
The model developer must manually create witnesses that satisfy all constraints in the
model, including those pattern instances for which warnings are issued and all literal
OCL constraints. In future extensions to our approach, the developer can be supported
in providing witnesses by technologies such as those illustrated in Section 6.1.1.2. When
such technologies have been developed, it is an open question whether such witness cre-
ation approaches complement our analysis approach or whether our analysis approach can
be completely replaced by an automatic witness creation approach that uses knowledge
about the constraint patterns for a more targeted witness generation. We further discuss
this question in Section 9.2.

User-Defined Functions.

In the course of constraint development, it is often required to define recursive functions,
which must be hand-written in OCL. Basically, there are two types of these functions:
transitive closure operations and domain-specific parsing of recursive expressions. This
problem could partly be overcome by providing patterns that represent recurring expres-
sions, as we did for example with the transitive closure operation, which can be combined
to define complex recursive functions. In particular, we have noticed that it is often neces-
sary to define functions that aggregate specific metrics of a model. In fact, almost 66% of
the constraints that cannot be expressed using patterns require user-defined functions. In
future work, new means of defining such functions in a more concise and pattern-oriented
way should be explored and ways of using such functions in MDE tools should be explored.
For instance, the patterns framework in RSA is currently not flexible enough to define such
user-defined functions in a useful way because in RSA, patterns do not have types. For
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example, this makes it impossible to replace a parameter value of type integer by a pat-
tern instance that evaluates to integer. Thus, a more fine-grained approach is desirable in
which patterns can represented any kind of (OCL) sub-expression.

Fixed Variable Binding.

The third limitation is that composite constraint patterns can be used in a limited way
only since they do not support complex variable binding. This is especially a problem with
the ForAll and Exists patterns. For instance, an expression self.x−>forAll(k:K | k.y = z) can be
expressed using the patterns ForAll and Attribute Value Restriction pattern where x denotes
an attribute of type K belonging to the context object, y denotes an attribute of objects
k of class K, and z denotes an arbitrary term. However, since the structure of the ForAll
pattern is static, it is not possible to reference the object self in the term z. For the case
that the association between self and x is one-to-one, this can be overcome by a navigation
expression that navigates from the quantified object k to self.

We illustrate this limitation in terms of the following constraints for the company
model in Section 2.2.1.

context Manager
inv salary: self .employs−>forAll(e | e.salary = 3000)
inv office : self .employs−>forAll(e | e.worksIn = self.worksIn)

Whereas the first constraint salary can be expressed using our constraint patterns, the sec-
ond constraint office cannot. This becomes clear when we formalize salary using constraint
patterns.

context Manager
inv salary: ForAll (Manager,employs,AttributeValueRestriction(Employee,salary,=,3000))

The problem with expressing the second constraint using patterns is that the quantified
statement refers to the context object self. Consider the following formalization.

context Manager
inv office : ForAll (Manager,employs,AttributeValueRestriction(Employee,worksIn,=,

worksFor.worksIn))

Although this pattern may look correct at first glance, it is not: The expression
worksFor.worksIn evaluates to the set of the offices of all managers of some employee.
However, if the association between Employee and Manager was one-to-one, the constraint
could be expressed as shown above.

8.5.4 Summary.

The case studies have shown that the approach developed in this thesis can effectively
be applied in real-world development projects. We were able to formalize a majority of
constraints using our patterns and it has turned out that our consistency analysis makes
reasonable statements about a subset of the constraints.

However, it has also turned out that around 25% of constraints cannot be expressed
using our patterns, and consistency analysis produces numerous false positives, i. e., it
warns that consistent constraints may be inconsistent. Despite these limitations, we think
that our approach is a step towards the development of concise and consistent constraint
specifications and furthermore, it can be extended to offer a higher expressiveness and a
lower rate of false positives.
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Chapter 9
Conclusion

In this thesis, we have presented an MDE process that provides a method and tools for
the development of concise and consistent constraint specifications. The focus of this
process is practicability, which we obtain by capturing knowledge as patterns and use this
knowledge for automating several tasks.

In this chapter, we summarize the contributions made in this thesis in Section 9.1, give
an outlook on future work in Section 9.2, and report on lessons learned in Section 9.3.

9.1 Contribution Summary

In this section, we summarize the contributions made in this thesis and explain why we
consider each contribution important.

Constraint Elicitation and Specification.

We identified a set of anti-patterns that occur in unconstrained class models and illustrated
typical problems caused by these anti-patterns. Consequently, we explained how these
anti-patterns can be remedied by enriching class models with textual constraints.

To the best of our knowledge, this is the first approach to automatically
eliciting constraints for class models that complements classical domain analysis.
Current literature covers the elicitation and specification of constraints by exam-
ple [Kleppe and Warmer, 2003] only and does not provide a guided way of eliciting and
specifying constraints. Not using a guided approach increases the probability of specifying
models insufficiently, which can cause undesirable effects in the generated code. Fur-
thermore, eliciting certain constraints, e. g., on reflexive associations, requires a thorough
understanding of the intricacies of object-oriented modeling. Since model developers are
typically domain experts without fundamental knowledge in formal languages, they can
be significantly supported by an automatic search for occurrences of anti-patterns.

Specifying Constraints Using Patterns.

We presented an approach to creating concise constraint specifications for class models
using composable constraint patterns, which represent a considerable improvement in
expressiveness compared to previous constraint-pattern approaches. We showed how the
semantics of constraint patterns can be precisely defined in terms of functions in higher-
order logics. Consequently, we introduced an extensible library of constraint patterns that

155
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cover typical specification tasks, in particular remedying the previously identified anti-
patterns.

Although MDE is already successfully used in industry projects and OCL has been
around for several years, refinements are typically not applied during the design phase
of the development process, but only in the code that has been generated from the class
model. The reason for this is that developing constraints in OCL is typically not performed
by some model developer, who is an expert in the domain of the model, but by some con-
straint developer, who is an expert in formal specification languages. However, the role of
constraint developer is typically not occupied in industry projects, which is why model de-
velopers are often responsible for creating formal constraint specifications. Our approach
of composable constraint patterns allows model developers to develop constraints without
requiring knowledge in formal languages. Formalizing the constraint patterns in HOL-OCL
allowed us to increase the degree of automation in consistency proofs in the subsequent
chapter.

Consistency of Constraint Specifications.

We assembled several consistency notions for object-oriented specifications from the liter-
ature and discussed their practical relevance for constrained class models. We presented
how proof obligations for interactive theorem proving can be generated for the different
consistency notions and how these obligations can be proven. We further showed how
constraint patterns can be used to increase the degree of automation in interactive consis-
tency proofs.

There are numerous publications about consistency of models, and various MDE tools
comprise consistency analyses. However, it is often unclear in state-of-the-art tools and
publications what the exact semantics is for consistency in the respective context. There-
fore, we consider Chapter 5 an important contribution to clarify these notions and suggest
practically relevant ones. We also presented that constraint patterns can be useful in in-
teractive consistency analysis. In the subsequent chapter, we showed how they can also
be useful in automatic consistency analysis.

Consistent Model Refinement Using Patterns.

We introduced a heuristic approach for analyzing the consistency of pattern-based con-
straint specifications with polynomial complexity. This approach integrates seamlessly
into the MDE process and can be complemented by existing analysis approaches.

There are several approaches and tools for analyzing the consistency of UML/OCL mod-
els. However, they have turned out not be useful for large real-word models because they
either support only a subset of UML/OCL or choke on the size of the model to be analyzed.
Therefore, we consider our approach an important contribution because it can efficiently
analyze even large models, make consistency statements for a majority of constraints, and
runs completely automatically.

Tool Support and Validation.

We developed a set of plug-ins that allow model developers to effectively use the approach
introduced in this thesis in a commercial development tool. Furthermore, we validated
our approach and implicitly assessed the usability of the plug-ins by performing several
case studies on nontrivial models.
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Since the unique selling proposition of MDE is the automation of various time-
consuming tasks, proper tool support is crucial for the success of MDE. The plug-ins that
we have developed support model developers in eliciting constraints through an automatic
analysis, specify constraints in a concise way using constraint patterns, analyze pattern-
based constraint specifications for consistency, and generate OCL code from such specifica-
tions. In our validation, we could show that a majority of practically relevant constraints
can be expressed with our approach and that our consistency analysis is the only analysis
available for UML/OCL that is feasible for analyzing large and complex industry models.

9.2 Future Work

We have identified the anti-patterns discussed in Section 3.1 as the most important ones
for increasing the maturity level of class models. Future work can extend our findings by
investigating further specification problems that frequently occur in the MDE process, both
independent of the application domain and specific to certain domains.

We have introduced the concept of composable constraint patterns and presented an
extensible library of patterns. Future work can extend this library by adding constraint
patterns that have been shown useful in practice. For example, we have elicited the No
Instances pattern in the case study in Section 8.2.

We have defined several distinct notions of consistency for constrained class models.
We see two directions for future work on this topic. First, a formal notion of composition-
ality can be defined based on our consistency definitions. For example, for showing class
consistency of a class-consistent model extended by a new specialized class, it is sufficient
to show weak consistency for the new class and subtype consistency for its specialization
relation. Second, we have seen in the case study in Section 8.3 that for early development
phases, weak consistency may be an appropriate notion of consistency. Future work can
investigate details about different notions of consistency for different phases of the devel-
opment process. Furthermore, future work comprises communicating inconsistencies to
the model developer in an efficient way. It must be pointed out what the exact cause of
an inconsistency is and a link must be given to the appropriate place in the model or in
the constraint specification. Furthermore, it needs to be investigated how the user can be
given hints on how to remedy inconsistencies.

We have discussed only briefly how our approach integrates into an MDE process.
There are several directions for future work here. First, it can be investigated how our
approach can be used in distributed work environments where several model developers
collaborate on writing constraint specifications. Second, it can be researched how the
constraints can be integrated into the generated program code and evaluated at runtime.
For example, the pattern instances may be transformed into Java code, which motivates
efficiency considerations on the generated code. Third, it can be worked out in further
detail what relevant consistency notions are in different (in particular, early) phases of
development. Since our case studies cover “mature” models only, one may gain insights by
performing further case studies in which models are incrementally created and constraints
incrementally added.

The heuristic analysis based on patterns as introduced in this chapter can be improved
in three ways. First, the assumptions in the consistency theorems should be weakened in
a sensible way in order to reduce the fraction of cases in which the consistency analysis
returns “Don’t know.” For example, inequality reasoning can be used for patterns in which
numeric values of attributes or the multiplicities of association ends are important. For
instance, assumption (iv) in Theorem 16 can be improved by analyzing the parameters of
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two instances of the Multiplicity Restriction pattern that restrict the same association end.
The fraction of cases in which the consistency analysis returns “Don’t know” can further
be reduced by establishing a second theorem for each constraint pattern. Whereas the
theorems stated in Section 6.3 describe the assumptions under which a pattern instance
preserves the consistency of a model, theorems can be stated about the assumptions under
which a pattern instance is certain to violate the consistency of a model. Using such
theorems, each pattern instance can be checked for whether its consistency assumptions
hold, its inconsistency assumptions hold, or if neither assumptions hold. This adds one
more possible result to our analysis: besides “consistent” and “don’t know”, the analysis
can also return “inconsistent” for a given constraint specification.

Second, our approach can be complemented by interactive witness generation as de-
scribed in Section 6.1.1.2. Whenever a pattern instance cannot be shown consistent ac-
cording to the consistency assumptions, the user is asked to provide a state in which the
classes constrained by the pattern instance are represented and that satisfies the constraint
specified by the pattern instance. Such an approach replaces secondary consistency anal-
ysis by approaches such as SAT-based analysis or interactive theorem proving, who have
shown not yet to be suitable for real-world models.

Third, future work should define a process for adapting the consistency theorems
for the constraint patterns when the library of constraint patterns is extended. In Sec-
tion 6.5.2, we have already stated that on the one hand, such a process comprises stat-
ing a new consistency theorem for each pattern that is added to the library and on the
other hand, the consistency theorems for the existing constraint patterns must be checked
whether they still hold and adapted if needed.

However, even with these improvements, our analysis approach has one major disad-
vantage: it cannot make statements about arbitrary OCL constraints, i. e., constraints that
cannot be expressed by constraint patterns. We have also seen that current approaches
to automatic witness creation have a problem with scaling to large models and constraint
specifications. Thus, future work could enhance witness creation approaches by aug-
menting them with pattern information: Similar to the consistency theorems that capture
generic relationships between patterns, knowledge about patterns can be explored that
provide a heuristic for avoiding exponential growth in witness creation.

Future work can also comprise enhancing the tool support in several ways. First,
pattern-mining techniques could be used to map existing OCL constraints to our patterns
and thus incorporate existing constraints in the analysis. Second, more model transforma-
tions can be added to COPACABANA to support further target languages, e. g., Java, Eiffel,
SQL, or XQuery. Third, experts in GUI design can improve the user interface. In particular,
pattern instances could be hidden from the user and replaced by other elements in the
model that can be used more intuitively by the model developer, e. g., stereotypes.

Besides consistency, an interesting property of constraint specifications is redundancy.
Redundancy in constraint specifications causes two problems. First, when the model is
changed during maintenance, redundant constraints can lead to inconsistencies if not all
redundant constraints are changed accordingly. Second, redundant constraints compro-
mises the performance of evaluating a given model state against a constraint specification
because identical calculations are carried out more than once. Analyzing pattern-based
constraint specifications for redundancy can be performed in a similar way than analyz-
ing them for consistency: Instead of specifying theorems that state relationships between
patterns with respect to consistency, new theorems can be established that state relation-
ships between patterns with respect to redundancy. Thus, redundancies between pattern
instances can be detected efficiently.
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9.3 Final Remarks

The contributions made in this thesis are in the area of Model-Driven Engineering (MDE),
a promising new approach to software engineering. In this section, we report on several
lessons learned about MDE in the course of writing this thesis.

Whereas MDE is generally considered to reduce the complexity in software develop-
ment, we object to this view. MDE does not reduce the complexity inherent to most systems,
but we are convinced that MDE provides effective means for dealing with this complexity
by allowing model developers to represent different aspects of the system with different
model types. Thus, the model developer can choose the most suitable languages for rep-
resenting the respective aspects of the system.

We have noticed that modeling languages are often too complex, and as a result, model
developers are likely to make similar mistakes as with general-purpose programming lan-
guages. It is important to follow the concept of separation of concerns and not mix dif-
ferent aspects of a system in the same modeling language. In contrast, distinct modeling
languages, often called domain-specific languages (DSL) together with model transforma-
tions that can integrate the different aspects promise to increase the acceptance of MDE.
We consider the development of modeling languages and related model transformations
an important research avenue, and this is confirmed by a growing interest in DSLs both
from research and industry.

Although design patterns are well-established and have become common sense in soft-
ware engineering, the full potential of pattern-based approaches has not yet been un-
leashed. Patterns provide predefined solutions with user-friendly interfaces for applying
best practices to various problems. Constraint patterns as we have used them in this the-
sis are one example for applying the pattern approach to a very specific domain. We are
convinced that patterns will play an even more important role in the future of MDE for
modeling various aspects of systems.

We were surprised to find very little about MDE methodology, and existing literature
is often vague. For example, the terms analysis model and design model are often distin-
guished in the literature, but it is unclear which levels of abstraction are appropriate for
each model exactly. In our opinion, numerous methodological aspects of MDE are unclear,
which hinders a broad acceptance of MDE in software engineering development processes.
Thus, we consider both theoretical and practical research on MDE methodology an impor-
tant necessity.

As mentioned before, tool support is crucial for the success of MDE. However, we have
experienced numerous deficiencies when working with available MDE tools, which leaves
room for improvement for researchers and tool developers. In the following, we enumer-
ate several of these deficiencies: Tools often support only certain subsets of languages,
as we experienced with tools for consistency analysis. This qualifies these tools as play-
grounds for toy models, but disqualifies them for real-world models such as those in our
case studies. In additions, existing tools often do a bad job in hiding the complexity of the
modeled system from the user and as mentioned before, modeling languages can be com-
plex. A laudable exception is for example IBM WebSphere Business Modeler (WBM), which
offers different views (basic, medium, advanced) on a business process, which helps users
focus on either business aspects or technical aspects of process models. In contrast, tools
hide important information regarding the semantics of the model that would be important
to the model developer. For example, we have come across tools for consistency analysis
that do not contain any hint about what notion of consistency they actually evaluate.
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Appendix A
Additional Theorems and Proofs

A.1 Some Simple Equivalences

In this appendix, we show formalizations in Isabelle of some equivalences that we used in
Section 8.2.3. Isabelle can prove all statements using simplification.

We used the following equivalence in Section 8.2.3 for defining constraint history range
context.

lemma ”(x ∈
⋃

A) = (∃a ∈A. x ∈ a)”
apply simp
done

We used the following equivalence in Section 8.2.3 for defining constraint counter context.

lemma ”(∀ s ∈
⋃

A. P s) = (∀a ∈A. (∀ s ∈a. P s)) ”
apply simp
done

We used the following equivalence in Section 8.2.3 for defining constraint correlation
value.

lemma ”x ∈S = (∃ y ∈S. x = y)”
apply simp
done

A.2 Diamond Configurations and the Unique Path Pattern

In this section, we show that the Unique Path pattern excludes diamond configurations in
object states. Furthermore, we show that it only excludes diamond configurations.

Theorem 22. Let φ be an instance of the Unique Path pattern with class C as context and a
navigation path P = p1. . . . .pn. If τ |= φ, then τ does not contain diamond configurations
between objects of class C and objects of class type(pn).

Proof. We proof this theorem by contradiction. Assume a state τ , τ |= φ, o1, o4 ∈ τ
and a diamond configuration between o1 and o4, i. e., there exist two distinct objects
o2, o3 ∈ τ and links (o1, o2), (o1, o3), (o2, . . . , o4), (o3, . . . , o4) ∈ τ (cf. Definition 14). Thus,
the intersection of objects reachable from o2 and o3 via P is not empty. Therefore, o2 = o3
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because τ |= φ. This is a contradiction because we assumed o2 and o3 to be distinct
objects.

Theorem 23. Let Φ be a constraint specification and τ be a state such that τ |= Φ. If there
does not exist a diamond configuration between objects of class C and objects of class type(pn)
in τ , then τ |= ψ where ψ is an instance of the Unique Path pattern with class C as context
and a navigation path P = p1. . . . .pn.

Proof. Since there are no diamond configurations in τ between objects of class C and
objects of class type(pn) in τ , it holds for all objects o2, o3 for which there exist links
(o1, o2) and (o1, o3), there is no object o4 that can be reached via path P from o2 and
o3. Thus, the assumption of the implication in ψ is false, which makes ψ true and thus,
τ |= ψ.



Appendix B
Implementation Details of
COPACABANA

In this appendix, we elaborate on important implementation details of COPACABANA for
two reasons. First, we want to give insights into the API that helps programmers to extend
COPACABANA in the future. Second, understanding the details helps to develop solutions
for similar problems in a model-driven way.

B.1 Constraint Elicitation

This component comprises four basic classes. The class AnalyzeModelAction adds an item
to the context menu of a model in RSA from which the constraint elicitation can be in-
voked. The actual elicitation is performed by ClassModelAnalysis, which analyzes the
model on which it has been invoked for the problems described in Section 3.1. Each
result of the elicitation is represented as an object of class AnalysisResult, which stores
properties such as the context and the description of the result. The results are displayed
in ClassModelAnalysisView, a specialization of the ViewPart class, which is provided by
Eclipse. Figure B.1 shows details of these classes as class diagram.

«Java Class»

ClassModelAnalysisView

- viewer : TableViewer

- action1 : Action

- action2 : Action

- doubleClickAction : Action

- results : AnalysisResult

+ getTable ( )

+ ClassModelAnalysisView ( )

+ createPartControl ( )

- hookContextMenu ( )

- contributeToActionBars ( )

- fillLocalPullDown ( )

- fillContextMenu ( )

- fillLocalToolBar ( )

- makeActions ( )

- hookDoubleClickAction ( )

- showMessage ( )

- showPatternRecommendation ( )

+ setFocus ( )

+ setAnalysisResults ( )

«Java Class»

AnalyzeModelAction

- selection : IStructuredSelection

+ AnalyzeModelAction ( )

+ setActivePart ( )

+ run ( )

+ selectionChanged ( )

«Java Class»

ClassModelAnalysis

+ analyze ( )

«Java Class»

AnalysisResult

- description : String

- context : Class

- patternId : String

- patternName : String

- patternParameters : PatternParameterValues

+ AnalysisResult ( )

+ AnalysisResult ( )

+ getContext ( )

+ getDescription ( )

+ getPatternId ( )

+ getPatternParameters ( )

+ toString ( )

- prettyPrintArray ( )

- «SuppressWarnings» prettyPrintArray ( )

+ getPatternName ( )

«Java Class»

ViewPart

«use»

«use»

«use»

«use»

«use»

Figure B.1: Class diagram of the constraint elicitation component.
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The following listing shows an excerpt of the analyze() method in class
ClassModelAnalysis, which is invoked by the constraint elicitation component for each class
in a given model. In this code snippet, constraint elicitation checks whether the Missing
Unique Identification pattern holds, and if it does, it adds a new warning to the list of
results.

public static List<AnalysisResult> analyze(Object object) {
List<AnalysisResult> result = new ArrayList<AnalysisResult>();

if (object instanceof Class) {
Class klass = (Class) object ;

/∗ hasUniqueProperty determines whether a class has at least one property that is unique.
∗ initially , we set it to false , and we will set it to true once we find a unique
∗ property
∗/

boolean hasUniqueProperty = false;

/∗
∗ analyzing the properties of a class
∗/

for ( Iterator iterator = klass. getAllAttributes ()
. iterator (); iterator .hasNext();) {

Property property = (Property) iterator .next ();
if (UML2Helper.propertyIsUnique(property, pkg))

hasUniqueProperty = true;
}

if (! hasUniqueProperty) {
PatternParameterValues vals =

new PatternParameterValues(UniqueIdentifier.getPATTERN ID());
vals .addValue(”context”, klass );
result .add(new AnalysisResult(”Class ”+klass.getName()+

” does not have a unique key.”,
klass,
UniqueIdentifier .getPATTERN ID(),
” UniqueIdentifier ” ,
vals ));

}

...

}

The instant fix mechanism described in Section 7.2 is provided by action2 of class
ClassModelAnalysisView. Upon invocation, this action looks up the currently highlighted
item in the constraint elicitation view and instantiates the constraint patterns that are as-
sociated with the item. The following listing shows an excerpt of the makeActions() method
in ClassModelAnalysisView.
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private void makeActions() {
action2 = new Action() {

public void run() {
// ask the table viewer which row is selected
ClassModelAnalysisView view = (ClassModelAnalysisView) ViewActivationUtil.showView

(”com.ibm.bpia.rsa.modelanalysis.view.views.ClassModelAnalysisView”);
int index = view.getTable ().getSelectionIndex();
if ( results !=null) {

if (index<results.size ()) {
AnalysisResult res = results .get(index);
Class contextClass = res.getContext();

// instantiate patterns
String [] patterns = res.getPatternId ();
if (patterns!=null && patterns.length>0) {

final Package pkg = contextClass.getPackage();

try {
for ( int i = 0; i < patterns.length; i++) {

String id = patterns[ i ];
final AbstractPatternInstance instance =

PatternHelper.createPatternInstance(id, pkg, res.getPatternParameters());

if (instance!=null) {
// add instance to model and diagram
final TransactionalEditingDomain editDomain =

TransactionUtil .getEditingDomain(pkg);
final List<Diagram> diagrams = RSAHelper.getDiagramsForPackage(pkg);
editDomain.getCommandStack().execute(

new RecordingCommand(editDomain){
protected void doExecute() {

for ( Iterator iter = diagrams.iterator (); iter .hasNext();) {
Diagram diagram = (Diagram) iter.next();
Node node = new UMLDiagramHelper(editDomain).createNode(diagram,

(Element) instance.getBoundElement());
diagram.insertChild(node);
}
}
});
editDomain.getCommandStack().flush();
}
}
} catch (RuntimeException e) { e.printStackTrace(); }
}
}
}
else showMessage(”Action two executed on index ”+index);
}
};
action2.setText( ” Instant fix ” );
action2.setToolTipText(” Instantiates appropriate constraint pattern(s)” );
...
}
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B.2 Constraint Specification

As explained, we implement our constraint pattern on top of RSA’s pattern framework.
In this pattern framework, each pattern is a subclass of AbstractPatternDefinition. We have
extended this class by a general class ConstraintPattern, which itself has two subclasses,
ElementaryPattern and CompositePattern. Subclasses of class ConstraintPattern must imple-
ment the following two abstract methods, on which we elaborate in the following two
sections.

protected abstract Constraint transformToOCL(Collaboration collab);

public abstract IStatus isConsistent(Collaboration collab , IValidationContext ctx );

The class diagram in Figure B.2 gives an overview of our constraint pattern implementa-
tion.

«Java Interface»

PatternTransformation

+ OCL : int

+ JAVA : int

+ transform ( )

«Java Class»

ConstraintPattern

# ConstraintPattern ( )

+ transform ( )

# transformToOCL ( )

+ isConsistent ( )

«Java Class»

CompositeConstraintPattern

# CompositeConstraintPattern ( )

+ isConsistent ( )

«Java Class»

ElementaryConstraintPattern

# ElementaryConstraintPattern ( )

«Java Class»

AbstractPatternDefinition

«use»

Figure B.2: Class diagram of constraint pattern API.

B.3 Consistency Analysis

As explained before, our consistency analysis builds on the validation framework in
RSA. The validation framework distinguishes several validation outcomes: a model el-
ement can be successfully validated, or an informative message, a warning message,
or an error message can be displayed. Since our analysis is a semi-decision approach,
PatternInstanceConstraint returns a warning on unsuccessful validation.

Our analysis provides a new subclass of PatternInstanceConstraint that extends the class
AbstractModelConstraint provided by the validation framework. The validate () method is
invoked for each pattern instance in a given model and calls the isConsistent() method
of the respective constraint pattern. Thus, the actual validation code, i. e., the checking
of the consistency assumptions, is stored within each constraint pattern definition in the
isConsistent() method. Figure B.3 shows a class diagram of this component.

The isConsistent() method analyzes pattern instances in a given validation context.
The validation context, represented by an object of class IValidationContext, and the return
type, IStatus, are defined in the validation framework of RSA. In the following, we provide
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«Java Class»

PatternInstanceConstraint

+ validate ( )

- printHashtable ( )

«Java Class»

AbstractModelConstraint

+ AbstractModelConstraint ( )

+ validate ( )

Figure B.3: Class diagram of the consistency analysis API.

an example implementation of the isConsistent() for the Object In Collection pattern that
shows how to implement the method for a given constraint pattern.

public IStatus isConsistent(Collaboration collab , IValidationContext ctx) {
List<org.eclipse.uml2.uml.Property> set =

PatternHelper.getOneToManyProperties(collab, ”set” );
Package pkg = collab.getNearestPackage();

// checking consistency assumptions (i) + ( iii )
for (org.eclipse.uml2.uml.Property p : set) {

if (PatternHelper.propertyHasNoCycleRestriction(p, pkg))
return ctx .createFailureStatus(new Object[]{collab.getName(),

PatternHelper.msgNoCycles(p)});
else
if (PatternHelper. propertyHasMultiplicityRestriction (p, pkg))

return ctx .createFailureStatus(new Object[]{collab.getName(),
PatternHelper.msgMultRes(p)});

}

// checking consistency assumption (ii)
org.eclipse.uml2.uml.Property pm = set.get(set.size()−1);
if (!( pm.getUpper()>=1 || pm.getUpper()==−1))

return ctx .createFailureStatus(new Object[]{collab.getName(),
”The upper multiplicity bound of association end ”+
pm.getName()+” is smaller than 1.”});

// consistency assumptions hold
return ctx .createSuccessStatus();
}

B.4 Code Generation

Based on the transformation framework of RSA, COPACABANA defines a transformation
that transforms pattern instances to OCL constraints. We integrate the transformation com-
ponent of COPACABANA into the transformation framework by providing a new transfor-
mation rule CollaborationTransformation because in RSA, pattern instances are represented
as UML collaborations. Figure B.4 shows a class diagram of the transformation component.

Similar to the consistency analysis component, the transformation rule invokes a spe-
cial transformation method transformToOCL() that must be defined for each constraint pat-
tern. This method transforms pattern instances. In particular, the return type of this
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PatternInstancesToOCL

+ PatternInstancesToOCL ( )

- setupInitialize ( )

- setupFinalize ( )

- addUMLRules ( )

TransformationProvider1

+ createTransformation ( )

+ validateContext ( )

CollaborationTransformation

+ CollaborationTransformation ( )

+ CollaborationTransformation ( )

+ createTarget ( )

AbstractRule

«use»

«use»

Figure B.4: Class diagram of COPACABANA’s transformation component.

method is the UML class Constraint. The OCL expression is embedded in the body of the
constraint. The following listing shows the implementation of this method for the Object
In Collection pattern.

public Constraint transformToOCL(Collaboration collab) {
List<org.eclipse.uml2.uml.Property> navigationList =

PatternHelper.getOneToManyProperties(collab,”set”);
String navigation = UML2Helper.toOCLNavigation(navigationList);
List<org.eclipse.uml2.uml.Property> elementList =

PatternHelper.getOneToManyProperties(collab,”element”);
Class ownerClass = (Class) PatternHelper.getPatternInstanceParameter(collab, ”context”);

if (navigation == null || ownerClass == null)
return null ;

String element = ”” ;
if (elementList==null || elementList.size()==0)

element = ”self ” ;
else

element = ”self . ”+UML2Helper.toOCLNavigation(elementList);

String body = ”self . ” + navigation + ”−>includes(”+element+”)”;
return UML2Helper.createOCLConstraint(

”Context object must be in ” + navigation, body, ownerClass);
}

For instances of elementary patterns, the transformation consists of replacing formal by
actual parameters in an OCL template as shown above. For instances of composite patterns,
the transformation is recursively invoked on the composite pattern instances and their
results are combined in another expression. The following listing shows how to transform
composite constraint patterns by the example of the Or constraint pattern.
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protected Constraint transformToOCL(Collaboration collab) {
String body = ”” ;
List<Collaboration> operands =

PatternHelper.getOneToManyCollaborations(collab, ”operands”);

// iterate over the operands of this pattern instance and create body string
Element context = null;
for ( Iterator iter = operands.iterator (); iter .hasNext();) {

Collaboration operand = (Collaboration) iter .next ();

ConstraintPattern cpattern =
(ConstraintPattern) PatternHelper.getPatternDefinitionFor(operand);
Constraint op = cpattern.transform(operand,PatternTransformation.OCL);

if (context == null)
context = (Element) op.getConstrainedElements().get(0);

String opBody = UML2Helper.getConstraintBody(op);
body += opBody;
if ( iter .hasNext())

body+=” or \n ”;
}

Constraint constraint = UML2Helper.createOCLConstraint(”Or”,
body,
context );

return constraint ;
}
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Appendix C
Additional Constraints for the Monitor
Model

In this appendix, we present additional constraints from our case study on the monitor
model (Section 8.2). In particular, this appendix comprises constraints for situations,
monitoring contexts, types, metrics, output slots, conditions, evaluation strategies, moni-
tored entities, and cyclic dependencies. Furthermore, this section contains a special type
of constraints: unsupported model elements.

C.1 Situations.

Constraint C.1.1 (triggered events 1). Outgoing events triggered by situations can be pop-
ulated by only one map.

context SituationDefinition inv triggered events 1:
self .situationTriggeredEvent.mapDefinition−>size() <= 1

context SituationDefinition inv triggered events 1:
MultiplicityRestriction ( SituationDefinition ,

situationTriggeredEvent.mapDefinition,
<=,
1)

Constraint C.1.2 (triggered events 2). Situation can trigger outgoing events in their own
contexts only.

context SituationDefinition inv triggered events 2:
self .situationTriggeredEvent−>forAll(e |

e.monitoringContextDefinition = self .monitoringContextDefinition)

context SituationDefinition inv triggered events 2:
AttributeRelation ( SituationDefinition ,

monitoringContextDefinition,
=
situationTriggeredEvent,
monitoringContextDefinition)

179



180 C.2. MONITORING CONTEXTS.

Constraint C.1.3 (complex intervals). The TimeIntervals for the on time based situation
is restricted to reference a RecurringTimeIntervals that own a RecurrencePeriod only. That is
the RecurringTimeIntervals does not own an AnchorPoint or TimeInterval.

context SituationDefinition inv complex intervals:
self .evaluatedWhen.ownedEvaluationTime.recurringTimeIntervals
−>forAll(i | i .anchorPoint.oclIsUndefined() and

( i . interval .oclIsUndefined() or
i . interval−>size()>0))

context SituationDefinition inv complex intervals:
ForAll ( SituationDefinition ,

evaluatedWhen.ownedEvaluationTime.recurringTimeIntervals,
{LiteralOCL(RecurringTimeIntervals,”self.anchorPoint.oclIsUndefined()”),
Or(LiteralOCL(RecurringTimeIntervals,”self. interval .oclIsUndefined ()”),

MultiplicityRestriction (RecurringTimeIntervals,interval ,>,0))})

Figure C.1 summarizes the pattern instances on situations as represented in RSA. All three
constraints in this section can be expressed using patterns.

«Pattern Instance»

triggered events 1

MultiplicityRestriction

navigation [1..*] : situationTriggeredEvent mapDefinition 

operator [1] : "<=" 

value [1] : "1" 

context [1] : SituationDefinition 

«Pattern Instance»

triggered events 2

AttributeRelation

navigation [*] : situationTriggeredEvent 

remoteAttribute [1..*] : monitoringContextDefinition 

operator [1] : "=" 

contextAttribute [1..*] : monitoringContextDefinition 

context [1] : SituationDefinition 

«Pattern Instance»

complex intervals

ForAll

property [1..*] : evaluatedWhen ownedEvaluationTime recurringTimeIntervals 

constraints [1..*] : Anchor point is undefined composite constraint on intervals 

context [1] : SituationDefinition 

«Pattern Instance»

evaluation triggers

Or

operands [1..*] : onEvent defined onValueChange defined onSituation defined evaluationTime defined 

Figure C.1: Pattern instances for situations.

C.2 Monitoring Contexts.

Constraint C.2.1 (context relations). Two monitoring contexts can be related by at most
one relation.
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context ParentContextRelationship inv context relations:
not ParentContextRelationship.allInstances()

−>exists(x, y | x<>y and x.childContextDefinition=y.childContextDefinition and
x.parentContextDefinition=y.parentContextDefinition)

context ParentContextRelationship inv context relations:
UniquePath(MonitoringContextDefinition,childContextRelationship.childContextDefinition)

Constraint C.2.2 (context cycles). The directed graph of monitoring context that are con-
nected via context relations is acyclic.

context MonitoringContextDefinition
def getChildren() = self .childContextRelationship.childContextDefinition−>union(

self .childContextRelationship.childContextDefinition .allChildContexts ())
def getAncestors() = self .parentContextRelationship.parentContextDefinition−>union(

self .parentContextRelationship.parentContextDefinition.getAncestors())
def getRelatedContexts() = getChildren()−>union(getAncestors())

inv context cycles: self .getChildren()−>excludes(self)

context MonitoringContextDefinition inv context cycles:
NoCyclicDependency(MonitoringContextDefinition,

childContextRelationship.childContextDefinition )

Constraint C.2.3 (member identification). All counters, timers, and keys in the context
should have unique names.

context MonitoringContextDefinition inv member identification:
self . counterDefinition−>union(self.timerDefinition−>union(self.keyDefinition))
−>isUnique(name)

This constraint cannot be expressed using any of our patterns. Although the Unique Iden-
tifier pattern appears to fit, it is defined for uniqueness of a set of properties of the same
class. Constraint member identification requires the uniqueness of one property shared
by several classes. This constraint may be a candidate for a new constraint pattern. In
Section 8.2.4, we discuss the elicitation of new constraint patterns from constraints that
cannot (yet) be expressed using our pattern library.

Constraint C.2.4 (terminating situations). A terminating situation trigger of a monitor-
ing context must be defined in the same context.

context MonitoringContextDefinition inv terminating situations :
self . terminatedBy−>forAll(s | s.monitoringContextDefinition = self)

context MonitoringContextDefinition inv terminating situations :
AttributeRelation (MonitoringContextDefinition,terminatedBy,=,monitoringContextDefinition)

Constraint C.2.5 (context reference). Elements in a context should only refer to elements
in another context if they exist within the same relationship path. It is not supported for any
monitor-model element to refer to another monitoring context that is not one of its ancestors,
a direct descendant.
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This constraint ensures that the parameters for map calculations stay within valid bounds
of monitoring context definitions.

context MonitoringContextDefinition inv context reference:
self . slotDefinitions .mapDefinition−>

forAll (map | map.checkForAggregateFunction())

context MapDefinition
def: checkForAggregateFunction() : Boolean =

self .outputValue.value−>forAll(value |
if (value.oclIsTypeOf(StructuredOpaqueExpression))
then let exp = value.oclAsType(StructuredOpaqueExpression).expression in
expressionAccessesOnlyAncestorOrSame(exp, map.monitoringContextDefinition) and
(expressionAccessesOnlyChild(exp, map.monitoringContextDefinition) implies
checkMPEisUnderAggregate(exp))

else true
endif)

def: expressionAccessesOnlyAncestorOrSame(exp: Expression exp,
mcd:MonitoringContextDefinition) : Boolean =

if (exp.oclIsTypeOf(UnaryOperatorExpression))
then expressionAccessOnlyAncestorOrSame(exp.expression, mcd)
else

if (exp.oclIsTypeOf(BinaryOperatorExpression))
then expressionAccessOnlyAncestorOrSame(exp.firstOperand, mcd) and

expressionAccessOnlyAncestorOrSame(exp.secondOperand, mcd)
else

if (exp.oclIsTypeOf(FunctionExpression))
then exp.oclAsType(FunctionExpression).arguments.argumentValue−>

forAll (exp | expressionAccessesOnlyAncestorOrSame(exp,mcd))
else

if (exp.oclIsTypeOf(ModelPathExpression))
then exp.oclAsType(ModelPathExpression).steps−>select(s |

s.oclIsTypeOf(ReferenceStep)).referencedObject−>forAll(o |
o.monitoringContextDefinition.getAncestors()−>includes(mcd))

else true
endif

endif
endif

endif

def: expressionAccessesOnlyChild(exp: Expression exp,
mcd:MonitoringContextDefinition) : Boolean =

if (exp.oclIsTypeOf(UnaryOperatorExpression))
then expressionAccessOnlyChild(exp.expression, mcd)
else

if (exp.oclIsTypeOf(BinaryOperatorExpression))
then expressionAccessOnlyChild(exp.firstOperand, mcd) and

expressionAccessOnlyChild(exp.secondOperand, mcd)
else

if (exp.oclIsTypeOf(FunctionExpression))
then exp.oclAsType(FunctionExpression).arguments.argumentValue−>

forAll (exp | expressionAccessesOnlyChild(exp,mcd))
else

if (exp.oclIsTypeOf(ModelPathExpression))
then exp.oclAsType(ModelPathExpression).steps−>select(s |
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s.oclIsTypeOf(ReferenceStep)).referencedObject−>forAll(o |
o.monitoringContextDefinition.getChildren()−>includes(mcd))

else true
endif

endif
endif

endif

def: checkMPEisUnderAggregate(exp: Expression exp) : Boolean =
if (exp.oclIsTypeOf(UnaryOperatorExpression))
then checkMPEisUnderAggregate(exp.expression, mcd)
else

if (exp.oclIsTypeOf(BinaryOperatorExpression))
then checkMPEisUnderAggregate(exp.firstOperand, mcd) and

checkMPEisUnderAggregate(exp.secondOperand, mcd)
else

if (exp.oclIsTypeOf(FunctionExpression))
then exp.oclAsType(FunctionExpression).arguments.argumentValue−>

forAll (exp2 |
if (exp2.oclIsTypeOf(ModelPathExpression))
then exp.oclAsType(FunctionExpression).isAggregate()
else checkMPEisUnderAggregate(exp2))
endif

else true
endif

endif
endif

context FunctionDefinition
def: isAggregate() : Boolean =

Set{’Sum’, ’Avg’, ’StdDev’, ’SumProd’, ’Count’,
’MaxV’, ’MinV’, ’Every’, ’ Exist ’}−>includes(self.definition .functionName)

Since such complex, domain-specific constraints comprise numerous method definitions,
they cannot be covered by our patterns.

Constraint C.2.6 (key maps). All ParentContextRelationships should reference all parent
monitoring contexts KeyDefinitions through parent Key Maps.

context MonitoringContextDefinition inv key maps:
self . keyDefinition−>forAll(x | self .childContextRelationShip.parentKey.outputSlot−>

forAll (y | x = y))

Unfortunately, the ForAll pattern does not match this constraint. Therefore, it cannot be
expressed using our pattern library.

Constraint C.2.7 (context auto creation). If the auto creation of parent monitoring con-
texts is done more than one level up in the relation hierarchy, we assume that starting from
the second level up, the parent key maps will refer to previous key definitions only, because
these are the only metrics that will contain values in this case. On the other hand the first
level parent could access the child key definitions metrics as well as any child metrics deducible
from the event entry fields.

context MonitoringContextDefinition
def: keyReference(r:ParentContextRelationship):Boolean =
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r .parentContextDefinition.parentContextRelationship−>forAll(pr | keyReference(pr)) and
r .parentKey.input−>forAll(i |

if i .oclIsTypeOf(MetricDefinition )
then r . childContextDefinition .inboundEventDefinition−>exists(m |

isDeducible(i .oclAsType(MetricDefinition),
m.oclAsType(MetricDefinition)))

else i .oclIsTypeOf(KeyDefinition)
endif )

def: isDeducible(m1:MetricDefinition,m2:MetricDefinition) =
if (not m1.oclIsTypeOf(ReadWriteMetricDefinition))
then false
else m1.mapDefinition−>exists(map |

(map.input−>size() = 1 and map.input.any() = m2) or
(map.input−>size() > 1 and map.input−>forAll(m3 | isDeducible(m3,m2))))

inv context auto creation:
self .parentContextRelationship−>forAll(r1 | r1.parentContextAutoCreated implies

r .parentContextRelationship−>forAll( r2 | keyReference(r2)))

This constraint defines two complex functions, keyReference() and isDeducible. Thus, we
cannot express it using our pattern library.

Constraint C.2.8 (no parent map). A parent metric can have its map in the child however
the opposite can not occur.

context MapDefinition
inv no parent map:

self . input−>forAll( i | self .getContext() = i .getContext() or
self .getContext().getAncestors()−>includes(i.getContext()))

Since this constraint employs numerous user-defined functions, we cannot express it using
our predefined constraint patterns.

Constraint C.2.9 (context id). All monitoring contexts in the monitor model should have
unique names.

context MonitoringContextDefinition inv context id :
MonitoringContextDefinition:allInstances()−>isUnique(name)

context MonitoringContextDefinition inv context id :
UniqueIdentifier (MonitoringContextDefinition, name)

Constraint C.2.10 (relation id). All Relations and their maps should have unique names.

context ParentContextRelationship inv relation id:
ParentContextRelationship::allInstances()−>isUnique(name) and
ParentContextRelationship::allInstances (). parentKey−>isUnique(name)

When representing this constraint using patterns, we split it into two constraints. This
is possible because in UML, all constraints of the same element are implicitly con-
junct [Object Management Group (OMG), 2006c].
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context ParentContextRelationship inv relation id 1:
UniqueIdentifier (ParentContextRelationship,name)

context ParentContextRelationship inv relation id 1:
UniqueIdentifier (ParentContextRelationship,parentKey.name)

Constraint C.2.11 (key ownership). The foreignKeyDefinition of a ParentContextRelation-
ship must be owned by the childContextDefinition; the parentKeyDefinition must be owned by
the parentContextDefinition.

context ParentContextRelationship inv key ownership:
parentKey−>forAll( m |

m.input−>size() = 1 and
m.outputSlot−>size() = 1 and
self . childContextDefinition . slotDefinition −>includes( m.input−>at(1) ) and
self .parentContextDefinition. slotDefinition −>includes( m.outputSlot ) )

context ParentContextRelationship inv key ownership:
ForAll (ParentContextRelationship,

parentKey,
{ MultiplicityRestriction (MapDefinition,outputSlot ,=,1),
LiteralOCL(MapDefinition,”parentContextRelationship.childContextDefinition

−>includes(self.input−>at(1))”),
LiteralOCL(MapDefinition,”parentContextRelationship.slotDefinition

−>includes(self.outputSlot ))”),
MultiplicityRestriction (MapDefinition,input,=,1)}

)

Constraint C.2.12 (parent keys). Each KeyDefinition of the parentContextDefinition must
be a parentKeyDefinition of a ParentContextRelationship.

context ParentContextRelationship inv parent keys:
parentContextDefinition. keyDefinition−>forAll( k | parentKey.outputSlot−>includes( k ) )

context ParentContextRelationship inv parent keys:
ForAll (ParentContextRelationship,

parentContextDefinition,
{LiteralOCL(KeyDefinition,”monitoringContextDefinition.parentKey.outputSlot

−>includes(self)”)}
)

Constraint C.2.13 (foreign key dependency). A foreignKeyDefinition of a ParentContex-
tRelationship may only depend on input slots in its own monitoring context.

context ParentContextRelationship inv foreign key dependency:
parentKey−>forAll( m |

if m.input−>at(1).oclIsKindOf( OutputSlotDefinition )
then m.input.upstreamSlotDefinitions()−>forAll( s |

self . childContextDefinition . slotDefinition −>includes( s ))
endif )
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context OutputSlotDefinition
def: upstreamSlotDefinitions() : Set( InputSlotDefinition ) =

let parents = self .mapDefinition.input in
parents−>union(parents−>select(i |

i .oclIsTypeOf(OutputslotDefinition )). upstreamSlotDefinitions())

This constraint cannot be represented using our constraint patterns because it involves the
definition of a complex function.

Constraint C.2.14 (context ancestors). The contexts of the metrics connected by a Relat-
edMetric need to have a closest common ancestor context, or no common ancestor context at
all.

context RelatedMetric inv context ancestors:
let mcd1 = self.KPIDefinition.monitoringContextDefinition in
let mcd2 = self.metric.monitoringContextDefinition in

mcd1.hasClosestCommonAncestorWith(mcd2) ||
m1.getAncestors()−>intersect(mcd2.getAncestors())−>size() = 0

context MonitoringContextDefinition
def: hasClosestCommonAncestorWith(b2: MonitoringContextDefinition): Boolean =

self .getAncestors()−>intersect(b2.getAncestors())−>
select( ancestor | isStraightAncestorOf(self ,ancestor) and

isStraightAncestorOf(b2,ancestor))−>
forAll (c | self .getAncestors()−>intersect(b2.getAncestors())−>
forAll (e | isAncestorOf(c, e )))

def: isAncestorOf(mcd: MonitoringContextDefinition) : Boolean =
if (self=mcd)
then false
else mcd.getAncestors()−>includes(self)
endif

def: isStraightAncestorOf(mcd: MonitoringContextDefinition) : Boolean =
if (self=mcd)
then true
else mcd.getAncestors()−>count(mcd) = 1
endif

This constraint cannot be represented using our constraint patterns because it involves the
definition of complex functions.

In Figure C.2, we show the pattern instances on monitoring contexts as represented in
RSA. Out of 14 constraints in this section, 7 can be expressed using patterns.
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«Pattern Instance»

context id

UniqueIdentifier

property [1..*] : name 

context [1] : MonitoringContextDefinition 

«Pattern Instance»

context relations

UniquePath

property [1..*] : childContextRelationship childContextDefinition 

context [1] : MonitoringContextDefinition 

«Pattern Instance»

context cycles

NoCyclicDependency

property [1..*] : childContextRelationship childContextDefinition 

context [1] : MonitoringContextDefinition 

«Pattern Instance»

terminating situations

AttributeRelation

navigation [*] : terminatedBy 

remoteAttribute [1..*] : monitoringContextDefinition 

operator [1] : "=" 

contextAttribute [1..*] :

context [1] : MonitoringContextDefinition 

«Pattern Instance»

relation id 1

UniqueIdentifier

property [1..*] : name 

context [1] : ParentContextRelationship 

«Pattern Instance»

relation id 2

UniqueIdentifier

property [1..*] : parentKey name 

context [1] : ParentContextRelationship 

«Pattern Instance»

key ownership

ForAll

property [1..*] : parentKey 

constraints [1..*] : has one output input is in child context's slots output is in parent's slots map has exactly one input 

context [1] : ParentContextRelationship 

«Pattern Instance»

parent keys

ForAll

property [1..*] : parentContextDefinition 

constraints [1..*] : included in parent key 

context [1] : ParentContextRelationship 

Figure C.2: Pattern instances for monitoring contexts and their relations.



188 C.3. TYPED ELEMENTS / TYPES.

C.3 Typed Elements / Types.

Constraint C.3.1 (typed elements). All typed elements in the model should have types, ex-
cept for timers and counters.

context TypedElement inv typed elements:
(not (self .oclIsKindOf(TimerDefinition) or

self .oclIsKindOf(CounterDefinition)))
implies not self . type.oclIsUndefined()

context TypedElement inv typed elements:
IfThenElse(LiteralOCL(TypedElement,”not (self.oclIsKindOf(TimerDefinition) or

self .oclIsKindOf(CounterDefinition )”)),
MultiplicityRestriction (TypedElement,type,=,1),

)

Constraint C.3.2 (primitive types). Primitive types should map to one of the supported
types. The set of supported types is { Integer, Boolean, String, UnlimitedNatural, Duration,
Time, Real }.

context TypedElement inv primitive types:
self . type.oclIsKindOf(PrimitiveType) implies
(self . type.oclIsTypeOf(Integer) or
self . type.oclIsTypeOf(Boolean) or
self . type.oclIsTypeOf(String) or
self . type.oclIsTypeOf(UnlimitedNatural) or
self . type.oclIsTypeOf(Duration) or
self . type.oclIsTypeOf(Time) or
self . type.oclIsTypeOf(Real)

)

context TypedElement inv primitive types:
IfThenElse(TypeRelation(TypedElement,type,PrimitiveType),

TypeRestriction(TypedElement,type,{Integer,
Boolean,
String ,
UnlimitedNatural,
Duration,
Time,
Real}),

)

Constraint C.3.3 (metric types). Metric types and structured metric fields cannot be ab-
stract.

context DataType inv metric types:
DataType.allInstances()−>

union(EventType.allInstances)−>forAll( x |
not x.ownedAttribute.type.oclAsType(Classifier). isAbstract )

context DataType inv metric types:
AttributeValueRestriction (DataType,ownedAttribute.type.isAbstract,=,false)
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Constraint C.3.4 (event superclassifier). EventType must have at most one superClassi-
fier, which must be another EventType.

context EventType inv event superclassifier:
self . superClassifier−>size() = 1 and
self . superClassifier−>forAll( c | c.oclIsTypeOf(EventType) )

context EventType inv event superclassifier 1:
MultiplicityRestriction (EventType,superClassifier,=,1)

context EventType inv event superclassifier 2:
TypeRestriction(EventType,superClassifier,{EventType})

Constraint C.3.5 (composite aggregation). The aggregation of event properties must be
composite for EventType.

context EventType inv composite aggregation:
self .ownedAttribute−>forAll( p | p.aggregation = AggregationKind::composite )

context EventType inv composite aggregation:
ForAll (EventType,

ownedAttribute,
{AttributeValueRestriction (Property,aggregation,=,AggregationKind::composite)})

Constraint C.3.6 (dynamic properties). Event properties must not be static for EventType.

context EventType inv dynamic properties:
self .ownedAttribute−>forAll( p | not p. isStatic )

context EventType inv dynamic properties:
ForAll (EventType,

ownedAttribute,
{AttributeValueRestriction (Property, isStatic ,=, false )})

Constraint C.3.7 (defaultvalue type). The type of the defaultValues of a metric must con-
form to its type.

context MetricDefinition inv defaultvalue type:
defaultValue.type−>union(defaultValue.type.oclAsType(Classifier).allSuperClassifiers ())
−>includes(type)

context Classifier
def: allSuperClassifiers () : Set( Classifier ) =

self . superClassifier−>union(self.superClassifier.allSuperClassifiers ())

This constraint cannot be represented using our constraint patterns because it involves
calling a user-defined operation.

Constraint C.3.8 (history type). The type of the target MetricDefinition of a historyRange
association must be Duration or UnlimitedNatural of a metric.
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context MetricDefinition inv history type :
keepHistoryFor.type = Duration or
keepHistoryFor.type = UnlimitedNatural

context MetricDefinition inv history type :
TypeRestriction( MetricDefinition ,

keepHistoryFor,
{Duration, UnlimitedNatural})

Constraint C.3.9 (timer type). The type of a TimerDefinition must be Duration.

context TimerDefinition inv timer type:
self . type.oclIsKindOf(Duration)

context TimerDefinition inv timer type:
TypeRestriction(CounterDefinition,type,{Duration})

Constraint C.3.10 (counter type). The type of a CounterDefinition must be an integer type.

context CounterDefinition inv counter type:
self . type.oclIsKindOf(Integer) or
self . type.oclIsKindOf(UnlimitedNatural)

context CounterDefinition inv counter type:
TypeRestriction(CounterDefinition,type,{Integer,UnlimitedNatural})

Constraint C.3.11 (slot type). SlotDefinitions must reference a Type.

context SlotDefinition inv slot type :
self . type−>notEmpty()

context SlotDefinition inv slot type :
MultiplicityRestriction ( SlotDefinition ,type,>,0)

In Figure C.3, we show the pattern instances on typed elements as represented in RSA.
Out of 11 constraints in this section, 10 can be expressed using patterns.
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«Pattern Instance»

typed elements

IfThenElse

if [1..*] : typed element is not timer or counter 

then [1] : has a type 

else [1] :

«Pattern Instance»

primitive types

IfThenElse

if [1..*] : type is primitive 

then [1] : type is supported 

else [1] :

«Pattern Instance»

metric types

AttributeValueRestriction

property [1..*] : ownedAttribute type isAbstract 

operator [1] : "=" 

value [1] : "false" 

context [1] : DataType 

«Pattern Instance»

event superclassifier 1

MultiplicityRestriction

navigation [1..*] : superClassifier 

operator [1] : "=" 

value [1] : "1" 

context [1] : EventType 

«Pattern Instance»

event superclassifier 2

TypeRestriction

property [1] : superClassifier 

allowedClasses [*] : EventType 

context [1] : EventType 

«Pattern Instance»

composite aggregation

ForAll

property [1..*] : ownedAttribute 

constraints [1..*] : aggregation is composite 

context [1] : EventType 

«Pattern Instance»

dynamic properties

ForAll

property [1..*] : ownedAttribute 

constraints [1..*] : property is not static 

context [1] : EventType 

«Pattern Instance»

history type

TypeRestriction

property [1] : keepHistoryFor 

allowedClasses [*] : Duration UnlimitedNatural 

context [1] : MetricDefinition 

«Pattern Instance»

timer type

TypeRestriction

property [1] : type 

allowedClasses [*] : Duration 

context [1] : CounterDefinition 

«Pattern Instance»

counter type

TypeRestriction

property [1] : type 

allowedClasses [*] : UnlimitedNatural Integer 

context [1] : CounterDefinition 

«Pattern Instance»

slot type

MultiplicityRestriction

navigation [1..*] : type 

operator [1] : ">" 

value [1] : "0" 

context [1] : SlotDefinition 

Figure C.3: Pattern instances for typed elements.

C.4 Metrics, Counters, Timers.

Constraint C.4.1 (max default values). The number of defaultValues must not exceed the
upper multiplicity bound of a metric.

context MetricDefinition inv max default values:
defaultValue−>size() <= upperBound.value

context MetricDefinition inv max default values:
MultiplicityRestriction ( MetricDefinition ,defaultValue,<=,upperBound.value)

Constraint C.4.2 (history size). For each metric, the upper multiplicity bound of the target
MetricDefinition of a keepHistoryFor association must be one.
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context MetricDefinition inv history size :
keepHistoryFor.upperBound.value = 1

context MetricDefinition inv history size :
AttributeValueRestriction ( MetricDefinition ,keepHistoryFor.upperBound.value,=,1)

Constraint C.4.3 (history range context). The target MetricDefinition of a historyRange
association must be owned by the same or a parent MonitoringContextDefinition of that of a
metric.

context MetricDefinition inv history range context:
Set{monitoringContextDefinition}−>

union(monitoringContextDefinition.parentContextRelationship.
parentContextDefinition−>asSet())

−>includes(keepHistoryFor.monitoringContextDefinition)

In the pattern representation, we replace the original set operation by an instance of the
Or pattern. This is possible because of the equivalence x ∈

⋃
iAi ≡

∨
i x ∈ Ai.

context MetricDefinition inv history range context:
Or(ObjectInCollection( MetricDefinition ,

keepHistoryFor.monitoringContextDefinition,
monitoringContextDefinition),

ObjectInCollection( MetricDefinition ,
keepHistoryFor.monitoringContextDefinition,
monitoringContextDefinition.parentContextRelationship.parentContextDefinition))

Since such conversion requires significant user sophistication, it should be considered to
introduce a new constraint pattern that helps to express constraint history range context in
a more concise way.

Constraint C.4.4 (output size). The number of values in metrics must not exceed the mul-
tiplicity of the output value.

context ReadWriteMetricDefinition inv output size:
mapDefinition.outputValue−>size()<= upperBound.value

context ReadWriteMetricDefinition inv output size:
MultiplicityRestriction (ReadWriteMetricDefinition,mapDefinition.outputValue,

<=,upperBound.value)

Constraint C.4.5 (counter context). The incrementedWhen, decrementedWhen, and set-
ToZeroWhen SituationDefinitions must be owned by the same MonitoringContextDefinition
that owns the CounterDefinition.

context CounterDefinition inv counter context:
let situations = self .decrementedWhen−>

union(self .setToZeroWhen−>union(self.incrementedWhen)) in
situations−>forall(s | s.monitoringContextDefinition = self .monitoringContextDefinition)

We split this constraint into three parts in order to represent it with constraint patterns.
This is possible because of the equivalence

(
∀s ∈

⋃
iAi
)
.P (s) ≡

∧
i

(
∀s ∈ Ai).P (s).
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context CounterDefinition inv counter context 1:
AttributeRelation (CounterDefinition,

monitoringContextDefinition,
=,
decrementedWhen,
monitoringContextDefinition)

context CounterDefinition inv counter context 2:
AttributeRelation (CounterDefinition,

monitoringContextDefinition,
=,
incrementedWhen,
monitoringContextDefinition)

context CounterDefinition inv counter context 3:
AttributeRelation (CounterDefinition,

monitoringContextDefinition,
=,
setToZeroWhen,
monitoringContextDefinition)

Constraint C.4.6 (timer context). The startedWhen, stoppedWhen, and resetWhen Situ-
ationDefinitions must be owned by the same MonitoringContextDefinition that owns the
TimerDefinition, or by one with which it has a MonitoringContextRelationship.

context TimerDefinition inv timer context :
let situations = self .startedWhen−>union(self.stoppedWhen)−>union(self.resetWhen) in
situations−>forAll( s | s.monitoringContextDefinition = self .monitoringContextDefinition )

We split this constraint into three parts in order to represent it with constraint patterns.

context TimerDefinition inv timer context 1 :
AttributeRelation (TimerDefinition,

monitoringContextDefinition,
=,
startedWhen,
monitoringContextDefinition)

context TimerDefinition inv timer context 2 :
AttributeRelation (TimerDefinition,

monitoringContextDefinition,
=,
stoppedWhen,
monitoringContextDefinition)

context TimerDefinition inv timer context 3 :
AttributeRelation (TimerDefinition,

monitoringContextDefinition,
=,
resetWhen,
monitoringContextDefinition)

In Figure C.4, we show the pattern instances on metrics as represented in RSA. All 6
constraints in this section can be expressed using patterns.
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«Pattern Instance»

max default values

MultiplicityRestriction

navigation [1..*] : defaultValue 

operator [1] : "<=" 

value [1] : "upperBound.value" 

context [1] : MetricDefinition 

«Pattern Instance»

history size

AttributeValueRestriction

property [1..*] : keepHistoryFor upperBound value 

operator [1] : "=" 

value [1] : "1" 

context [1] : MetricDefinition 

«Pattern Instance»

counter context 1

AttributeRelation

navigation [*] : decrementedWhen 

remoteAttribute [1..*] : monitoringContextDefinition 

operator [1] : "=" 

contextAttribute [1..*] : monitoringContextDefinition 

context [1] : CounterDefinition 

«Pattern Instance»

counter context 2

AttributeRelation

navigation [*] : incrementedWhen 

remoteAttribute [1..*] : monitoringContextDefinition 

operator [1] : "=" 

contextAttribute [1..*] : monitoringContextDefinition 

context [1] : CounterDefinition 

«Pattern Instance»

counter context 3

AttributeRelation

navigation [*] : setToZeroWhen 

remoteAttribute [1..*] : monitoringContextDefinition 

operator [1] : "=" 

contextAttribute [1..*] : monitoringContextDefinition 

context [1] : CounterDefinition 

«Pattern Instance»

timer context 1

AttributeRelation

navigation [*] : startedWhen 

remoteAttribute [1..*] : monitoringContextDefinition 

operator [1] : "=" 

contextAttribute [1..*] : monitoringContextDefinition 

context [1] : TimerDefinition 

«Pattern Instance»

timer context 2

AttributeRelation

navigation [*] : stoppedWhen 

remoteAttribute [1..*] : monitoringContextDefinition 

operator [1] : "=" 

contextAttribute [1..*] : monitoringContextDefinition 

context [1] : TimerDefinition 

«Pattern Instance»

timer context 3

AttributeRelation

navigation [*] : resetWhen 

remoteAttribute [1..*] : monitoringContextDefinition 

operator [1] : "=" 

contextAttribute [1..*] : monitoringContextDefinition 

context [1] : TimerDefinition 

«Pattern Instance»

history range context

Or

operands [1..*] : history context ok 1 history context ok 2 

output size

MultiplicityRestriction

navigation [1..*] : mapDefinition outputValue 

operator [1] : "<=" 

value [1] : "upperBound.value" 

context [1] : ReadWriteMetricDefinition 

Figure C.4: Pattern instances for metrics, counters, and timers.

C.5 Output Slots.

Constraint C.5.1 (value structure). It is assumed that the hierarchical structure of the Val-
ueSpecification owned by the map coincides with the structure of the output slot of this map.

context OutputSlotDefinition
def validateSlotStructure (vSpecList: Set(ValueSpecification), dataType:Type) : Boolean =

vSpecList−>forAll(vSpec |
if (vspec.oclIsTypeOf(InstanceValue))
then vspec.oclAsType(InstanceValue).ownedInstance.slot−>forAll(slot |

if ( slot .definingFeature.oclIsUndefined())
then false
else if ( slot .definingFeature.type.oclIsKindOf(DataType))

then slot .definingFeature.type.oclAsType(DataType).ownedAttribute−>
exists (pty | pty.type = slot .definingFeature.type and

validateSlotStructure ( slot .value, slot .definingFeature.type))
else if ( slot .definingFeature.type.oclIsKindOf(PrimitiveType))

then dataType.oclAsType(DataType).ownedAttribute−>
exists (pty | pty.getType = slot .definingFeature.type)
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else true
endif

endif
endif )

else true
endif)

inv value structure :
if self . type.oclIsTypeOf(EventType)
then false
else validateSlotStructure (self .mapDefinition.outputValue,self.type)
endif

Since this constraint employs a user-defined function, we cannot express it using our
predefined constraint patterns.

Constraint C.5.2 (targetslot type). The type of an OutputSlotValueSpecification must con-
form to the type of the targetSlotDefinition.

context OutputSlotValueSpecification inv targetslot type :
self .value−>forAll( v | v.type−>union( v.type.allSuperClassifiers )−>

includes( targetOutputSlotDefinition .type))

This constraint cannot be represented using our patterns because it uses set operators
nested in a quantifier.

C.6 Conditions.

Constraint C.6.1 (condition parameter). Only the inputs of a condition may parameterize
its expression.

context Condition inv condition parameter:
self . input .value.getInputs()−>forAll( i | self . input−>includes(i))

context OpaqueExpression
def: getInputs() : Set( InputSlotDefinition ) =

self .contents−>select(o | o.oclIsTypeOf(ReferenceStep)).referencedObject−>
select(o | o.oclIsTypeOf( InputSlotDefinition ))

Since this constraint employs a user-defined function, we cannot express it using our
constraint patterns.

Constraint C.6.2. Each parameter of a condition must be owned by a MonitoringContextDef-
inition that is related to the one hosting the ParameterizedExpression.

context Condition inv:
parameter.monitoringContextDefinition−>forAll( m |

m.getRelatedContexts().slotDefinition−>select(
oclIsTypeOf( InboundEventDefinition ) )−>collect(correlationPredicate)−>union(
m.getRelatedContexts().slotDefinition−>select(
oclIsTypeOf( InboundEventDefinition ) )−>collect( filter ) )−>union(
m.getRelatedContexts().slotDefinition−>select(
oclIsTypeOf( OutboundEventDefinition ) )−>collect( filter ) )−>union(
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m.getRelatedContexts().situationDefinition−>collect(
gatingCondition ) )−>union(
m.getRelatedContexts().slotDefinition−>select(
oclIsKindOf( OutputSlotDefinition ) )−>collect(
mapDefinition.outputValueSpecification ) )−>includes( self ) )

Since this constraint uses complicated filtering on sets, we cannot express it using our
constraint patterns.

C.7 Evaluation Strategy.

Constraint C.7.1 (evaluation triggers). Evaluation strategies must specify at least one
evaluation trigger.

context EvaluationStrategy inv evaluation triggers :
onEvent−>size() + onValueChange−>size() +

evaluationTime−>size() + onSituation−>size() > 0

Since we cannot use arithmetic operators, we split this constraint into a disjunction of four
elementary constraints.

context EvaluationStrategy inv evaluation triggers :
Or( MultiplicityRestriction (EvaluationStrategy,onEvent,>,0),

MultiplicityRestriction (EvaluationStrategy,onValueChange,>,0),
MultiplicityRestriction (EvaluationStrategy,evaluationTime,>,0),
MultiplicityRestriction (EvaluationStrategy,onSituation,>,0))

Constraint C.7.2 (cyclic evaluation). Evaluation strategies must not, directly or indirectly,
trigger their own evaluation.

context EvaluationStrategy
def relatedSituations () =

self .onSituation−>union(self.onSituation.relatedSituations())

inv cyclic evaluation :
self . relatedSituations()−>excludes(self. situationDefinition )

context EvaluationStrategy inv cyclic evaluation :
NoCyclicDependency(EvaluationStrategy, onSituation.evaluatedWhen)

Constraint C.7.3 (trigger eval). The evaluation of a situation trigger can only be caused
by incoming events, metric updates, or situation occurrences in a related monitoring context.

context SituationDefinition inv trigger eval :
evaluatedWhen.onEvent.monitoringContextDefinition−>forAll(
getRelatedContexts(). situationDefinition−>includes( self ) ) and

evaluatedWhen.onValueChange.monitoringContextDefinition−>forAll(
getRelatedContexts(). situationDefinition−>includes( self ) ) and

evaluatedWhen.onSituation.monitoringContextDefinition−>forAll(
getRelatedContexts(). situationDefinition−>includes( self ) )
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This constraint cannot be expressed using our constraint patterns because the structure of
the ForAll pattern does not match the constraint.

Figure C.5 shows the RSA representation of the pattern instances. Out of 3 constraints
in this section, 2 can be expressed using patterns.

evaluation triggers

Or

operands [1..*] : onEvent defined onValueChange defined onSituation defined evaluationTime defined 

cyclic triggers

NoCyclicDependency

property [1..*] : evaluatedWhen onSituation 

context [1] : SituationDefinition 

Figure C.5: Pattern instances for evaluation strategies.

C.8 Monitored Entities.

Constraint C.8.1 (slot values). For each MonitoredEntity, a slotValue’s targetSlotDefini-
tions must be owned by the monitoringContextDefinition of the MonitoredEntity.

context MonitoredEntity inv slot values:
outputSlotValue.targetOutputSlotDefinition−>forAll( s |

monitoringContextDefinition. slotDefinition −>includes( s ) )

context MonitoredEntity inv slot values:
UniqueIdentifier (MonitoredEntity, outputSlotValue,targetOutputSlotDefinition )

Constraint C.8.2 (slot targets). Different slotValues of MonitoredEntities must have differ-
ent targetSlotDefinitions.

context MonitoredEntity inv slot targets :
self .outputSlotValue−>forAll( v1,v2: OutputSlotValueSpecification |

v1. targetOutputSlotDefinition = v2. targetOutputSlotDefinition implies v1 = v2 )

context MonitoredEntity inv slot targets :
UniqueIdentifier (MonitoredEntity,outputSlotValue.targetOutputSlotDefinition )

Constraint C.8.3 (slot coverage). The slotValues must cover all KeyDefinitions of the mon-
itoringContextDefinition of a MonitoredEntity.

context MonitoredEntity inv slot coverage:
self .monitoringContextDefinition.keyDefinition−>forAll( k |

outputSlotValue.targetOutputSlotDefinition−>includes( k ) )

Since this constraint refers to the context element within the quantified statement, it can-
not be expressed using our patterns; the ForAll pattern does not match this expression.
Figure C.6 shows how the constraints from this subsection are represented in RSA. Out of
three constraints in this section, two can be expressed using patterns.
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«Pattern Instance»

slot values

UniqueIdentifier

property [1..*] : outputSlotValue targetOutputSlotDefinition 

context [1] : MonitoredEntity 

slot targets

UniqueIdentifier

property [1..*] : outputSlotValue targetOutputSlotDefinition 

context [1] : MonitoredEntity 

Figure C.6: Pattern instances for monitored entities.

C.9 Cyclic Dependencies.

Constraint C.9.1 (map cycles). The directed graph defined by metrics and maps is acyclic.

context MapDefinition
def allInputMaps(): self . input .mapDefinition−>union(self.input.mapDefinition.allInputMaps())
inv map cycles: self.allInputMaps()−>excludes(self)

context MapDefinition inv map cycles:
NoCyclicDependency(MapDefinition, input.MapDefinition)

Constraint C.9.2 (context cycles 2). The directed graph of monitoring context that are
connected via context relations is acyclic.

context MonitoringContextDefinition
def allChildContexts () = self .childContextRelationship.childContextDefinition−>union(

self .childContextRelationship.childContextDefinition .allChildContexts ())
inv context cycles: self .allChildContexts()−>excludes(self)

context MonitoringContextDefinition inv context cycles:
NoCyclicDependency(MonitoringContextDefinition,

childContextRelationship.childContextDefinition )

Constraint C.9.3 (cyclic triggers). The evaluation strategy of a situation may not depend
on the situation itself.

A violation of this constraint causes deadlocks.

context SituationDefinition
def relatedSituations () =

self .evaluatedWhen.onSituation−>union(self.evaluatedWhen.onSituation.relatedSituations())
inv cyclic triggers :

self . relatedSituations()−>excludes(self)

context SituationDefinition inv cyclic triggers :
NoCyclicDependency(SituationDefinition, evaluatedWhen.onSituation)

Figure C.7 shows how the patterns from this subsection are represented in RSA. All three
constraints in this section can be expressed using constraint patterns.



APPENDIX C. ADDITIONAL CONSTRAINTS FOR THE MONITOR MODEL 199

«Pattern Instance»

map cycles

NoCyclicDependency

property [1..*] : input mapDefinition 

context [1] : MapDefinition 

«Pattern Instance»

context cycles 2

NoCyclicDependency

property [1..*] : childContextRelationship childContextDefinition 

context [1] : MonitoringContextDefinition 

«Pattern Instance»

cyclic triggers

NoCyclicDependency

property [1..*] : evaluatedWhen onSituation 

context [1] : SituationDefinition 

Figure C.7: Pattern instances for cyclic dependencies.

C.10 Unsupported Elements.

Constraint C.10.1 (no multi-valued metrics). Multi-valued metrics are not supported.

context MetricDefinition inv no multi−valued metrics:
if self .upperBound.oclIsTypeOf(Integer)
then self .upperBound.value=1
else true
endif

context MetricDefinition inv no multi−valued metrics:
IfThenElse(TypeRelation(MetricDefinition,upperBound,{Integer}),

AttributeValueRestriction ( MetricDefinition ,upperBound,=,1),
)

Constraint C.10.2 (no history). The keepHistoryFor relation in metrics is not supported.

context MetricDefinition inv no history :
self .keepHistoryFor−>size() = 0

context MetricDefinition inv no history :
MultiplicityRestriction ( MetricDefinition ,keepHistoryFor,=,0)

Constraint C.10.3 (no external values). External Value Specifications are not supported.

context ExternalMetricDefinition inv no external values:
ExternalMetricDefinition :: allInstances()−>isEmpty()

This constraint cannot be expressed using our constraint patterns.

Constraint C.10.4 (no data entries). Data Entry Fields are not supported.



200 C.10. UNSUPPORTED ELEMENTS.

context DataEntryFieldDefinition inv no data entries:
DataEntryFieldDefinition :: allInstances()−>isEmpty()

This constraint cannot be expressed using our constraint patterns. Since this constraint
shares a similar structure with Constraint C.10.3, we create a new constraint pattern in
Section 8.2.4 to express these types of constraints.

Constraint C.10.5 (simple metrics). There is no support for structured or multi-valued
metrics.

context MetricDefinition inv simple metrics:
not (self . type.oclIsTypeOf(DataType) or

if self .upperBound.oclIsTypeOf(Integer) then (self.upperBound.value>1) else false endif)

context MetricDefinition inv simple metrics:
Negation(Or(TypeRelation(MetricDefinition,type,{DataType}),

IfThenElse(TypeRelation(MetricDefinition,upperBound,{Integer}),
AttributeValueRestriction ( MetricDefinition ,upperBound,=,1),
)

)
)

Constraint C.10.6 (no constraints). The ownedConstraint association, inherited from
NamedElement, should not be used in a SlotDefinition.

context SlotDefinition inv no constraints:
self .oclAsType(NamedElement).ownedConstraint−>isEmpty()

context SlotDefinition inv no constraints:
MultiplicityRestriction ( SlotDefinition ,ownedConstraints,=,0)

Figure C.8 shows how the constraints from this subsection are represented in RSA. Out of
six constraints in this section, four can be expressed using patterns. The figure also shows
two more extracts from the monitor model’s meta-model that we have left our earlier for
conciseness reasons.
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«Pattern Instance»

no multi-valued metrics

IfThenElse

if [1..*] : upper bound is integer 

then [1] : upper bound is 1 

else [1] :

«Pattern Instance»

no history

MultiplicityRestriction

navigation [1..*] : keepHistoryFor 

operator [1] : "=" 

value [1] : "0" 

context [1] : MetricDefinition 

«Pattern Instance»

simple metrics

Negation

patternInstance [1] : datatype or multi-valued 

«Pattern Instance»

no constraints

MultiplicityRestriction

navigation [1..*] : ownedConstraint 

operator [1] : "=" 

value [1] : "0" 

context [1] : SlotDefinition 

MultiplicityElement

NamedElement Constraint

SlotDefinition

MetricDefinition

ValueSpecification

Namespace

1 0..1

+ upperBound

1 *

+ ownedConstraint

1 0..1

+ keepHistoryFor

Figure C.8: Pattern instances against unsupported elements.
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Appendix D
Acronyms

Acronyms

API Application Programming Interface

CASE Computer Aided Software Engineering

CPU central processing unit

DSL domain-specific language

EMF Eclipse Modeling Framework

EMOF Essential MOF

FOL first-order logic

GOF Gang of Four

GUI Graphical User Interface

HOL higher-order logic

IT information technology

JML Java Modeling Language

KPI key performance indicator

MDA Model-Driven Architecture

MDD Model-driven development

MDE Model-Driven Engineering

MDT Eclipse Model Development Tools

MOF Meta Object Facility

MSFOL many-sorted FOL

OCL Object Constraint Language
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RAS Reusable Asset Specification

RSA IBM Rational Software Architect

SAT Boolean satisfiability problem

UML Unified Modeling Language

VDM Vienna Development Method

WBM IBM WebSphere Business Modeler

MON IBM WebSphere Business Monitor
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