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Abstract

The main goal of this work is to get rid of the commutativity hypothesis in the study of an equiv-
ariant projective completion of a connected algebraic group initiated by J.-P. Serre in [29] and
continued by other autors, such as J. Knop and H. Lange (see [14]) andsEhalz (see [37]).

In the first chapter, we start by describing Chevalley’s Theorem on the structure of an algebraic
groupG as a principal fibre bundle over an abelian variétyThis is the starting point of our
work. Successively, we show how Serre’s equivariant completion (which consists in completing
the fibres ofG over A) can be extended to the noncommutative groups. In chapter 2, we show
how to construct a very ample invertible sheaf on the compleBpand so thaG is in fact a
projective variety. In the third chapter, we finally do some computations: in particular we show
that, once the results of the first two chapters are at place, many properties which were up to
now proved for the commutative groups hold also in the general case. The most important for
us are a Vanishing Theorem and a Riemann-Roch Theorem for the cohomology of invertible
sheaves (for the commutative version, see [37]). Both this results are seen to follow from the
corresponding properties of abelian varieties, and the rest of the third chapter is based upon
them. In the last chapter, we switch to a purely affine setting, and we show how the results on
linearalgebraic groups contained in V.L. Popov’s work [24] mirror some of the results in the
third chapter of this work.
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Riassunto

L'obiettivo principale di questo lavore di sbarazzarsi dell'ipotesi della commutagwvitello

studio di un completamento equivariante e proiettivo di un gruppo algebrico connesso, studio
iniziato da J.-P. Serre in [29] e proseguito da altri autori, quali ad esempio J. Knop e H. Lange
(si veda [14]) e G. Wistholz (si veda [37]). Nel primo capitolo iniziamo con la presentazione
del Teorema di Chevalley sulla struttura di un gruppo algel&@mme fibrazione principale su

di una varie&' abelianaA. Questo Teorema il punto di partenza del nostro lavoro. Successiva-
mente, dimostriamo come il completamento equivariante di Serre (che consiste nel completare
le fibre di G sopraA) puo essere esteso ai gruppi non commutativi. Nel secondo capitolo
mostriamo come costruire un fascio invertibile molto ampio sul completan@nebe risulta

qguindi essere una vargeproiettiva. Nel terzo capitolo, eseguiamo finalmente qualche calcolo.

In particolare dimostriamo che, non appena i risultati dei primi due capitoli sono disponibili,
molte propriea che fino ad ora erano state dimostrate solo nel caso commutativo possono es-
sere estese al caso generale: leipiportanti per noi sono un teorema di annullamento e un
teorema di Riemann-Roch per la coomologia dei fasci (per il caso commutativo, si veda [37]).
Tali risultati seguono entrambi dalle propaetorrispondenti delle varigtabeliane, ed il resto

del terzo capitola basato su di essi. Nell’'ultimo capitolo passiamo a uno scenario puramente
affine, e mostriamo come i risultati sui gruppi algebtigearicontenuti nel lavoro [24] di V.L.
Popov rispecchiano alcuni dei risultati contenuti nel terzo capitolo di questo lavoro.
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Introduction

In 1950, in a talk at the C.N.R.&olloque d’ Algebre et Tieorie des Nombrdsee [34]), Ande’

Weil made an interesting remark on the algebraic groups which are obtained by extending an
abelian variety with a product of additive and multiplicative groups, i.e., on those gBups
which appear in a short exact sequence

0 — G x Gfm G A—0

wherel, resp.£ny, are positive constants arflis an abelian variety. He noticed that, sir@@es
a fibering over the complete variefy, one can get a completidd of G by embedding the fibre

ga X anm ina product(IP’l)gaJrlZm of projective spaces and glueing the completed fibers again
over A. As we shall see in the following, the groufis andG, act onP!, and this induces an
action of G on G, so that in fact one obtains an equivariant completio® of
The idea of considering the algebraic groups as fibre bundles was already present in F. Severi’'s
book [30], from which Weil took inspiration.
In the course of the same talk, Weil conjectured that an exact sequence as above exists for any
commutative algebraic group, and so that one can complete any commutative algebraic group
this way. Shortly after, this conjecture was proved to be right: first, by C. Chevalley, who
proved it for commutative algebraic groups and then by M. Rosenlicht and I. Barsotti, who
independently proved that for any connected algebraic group there exist an abelian Aariety
and a short exact sequence

T

0 L G A o ,

whereL is the largest connectéiearalgebraic subgroup d@&. This fact has the consequence
that Weil’s recipe for the construction of a completi@nof an algebraic grougs is valid for
anyconnected group, as we shall see later.

But let us step back to the commutative groups. These objects have become a central tool in
modern transcendental number theory, in particular due to the behaviour of their exponential
functions. In transcendence proofs involving algebraic groups, one usually needs some data
on the geometry, such as the dimension of a projective embedding or the degree of the transla-
tion operators, and it was probably J.-P. Serre who remarked how well-suited Weil's idea is in

9
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this context: it is not by chance th@welques propries des groupes abriques commutatifs

([29]) was published as an appendix in a book on transcendental number theory. In this note,
Serre showed th& admits a very ample divisor, and so that is in fact an equivariant projective
completion (orequivariant compactificatimf G, i.e., a projective variety with an action &f

which extends the translation on the group. Furthermore he showed that the expliciteness of the
construction makes it possible to collect concrete data on the group.

After Serre, many other authors followed this idea for the completion of a group: in partic-
ular it played an important role in the multiplicity estimates of Gustholz (see [35]), and
successively in the proof of his Analytic Subgroup Theorem (see [36]), a very deep result on
the exponential function of the commutative algebraic groups which has many applications in
transcendental number theory.

Another important contribution in this context was given by G. Faltings and Gstiélz in

[5], where the language of sheaves replaced Serre’s use of the divisors. Their idea for the con-
struction of a very ample invertible sheaf on the completion will be of great interest to us, since

it admits an immediate application also in our setting. We shall also be inspired by F. Knop
and H. Lange’s paper [14], where the sheaves on the completion are constructed as quotients of
geometric vector bundles.

In [37], among other things, WWstholz computed the cohomology and the Euler characteristic

of a very ample line bundle oB. This made it possible to give explicit bounds for the projec-

tive embedding. Another work to which we shall refer is Lange’s [17], where it is shown that
translation on the completio® can be defined locally by quadratic forms.

The goal of this work will be to get rid of the commutativity hypothesis in the aforementioned
completion (which we shall call "Serre’s completion” from now on, although it has many fa-
thers), in order to extend some of its applications to the noncommutative case. Let us briefly
outline how we shall proceed.

In the first chapter, we see how Serre’s equivariant completion can be extended to the general
case of a connected algebraic group. We begin by introducing the theorem on the fibre bundle
structure of a group (which is known today as Chevalley’s Theorem, although Chevalley did
not publish his proof). This result is so important for us that it seemed appropriate to devote
a whole section to it. In the second section, after an excursus on quotients, we study the fibre
bundle structure of an algebraic group from a local point of view. An algebraic gigp
always a principal fibre bundle over a quoti€&)tH by an algebraic subgroup and so, as shown

by Chevalley’s Theorem, over an abelian variéty But, unlike the commutative groups, the
noncommutative algebraic groups cannot be assumed to be locally triviaholerckily, they

still possess some local structure of this kind. Indeed we shall see, following [27], that they sat-
isfy local isotriviality, a weakening of local triviality which will be sufficient for our purposes.

An immediate application of this fact will be a proof of the quasiprojectivity of the algebraic
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groups.
Finally, in the last section of the first chapter, we construct the equivariant completion of a con-
nected algebraic group. That is, we show how to embe@ in a completeG-variety G in a

way which is compatible with the left translation @fon itself. This is obtained by means of an
associated bundle. Hence, we spend some words on associated bundles, in a slightly more gen-
eral fashion than what we shall need. Namely, we show how to constfaetaiety Gy (X)

over G/H with fibre X out of a varietyX which admits an action of an algebraic subgradtip

of G. If X is an equivariant completioh of the "linear part’L in Chevalley’s fibering, its
associated bundié = G (L) will be an equivariant completion @&.

Since in our main existence proof we make use of Galois coverings, we include also some re-
sults on the action of &nite group on a variety. In particular we shall see how such an action

can be characterized by means of Galois cohomology.

The aim of the second chapter is to prove the projectivity of the completion constructed in
Chapter 1 (and, more in general, of a vari@y(X) constructed out of a projectivie-variety

X, wherelL is as above). For this purpose, in Section 2 we show how to construct a sheaf
GL(F) on GL(X) out of anL-linearized sheaf on X (and, as a special case, how a linear
representation ok gives rise to a vector bundle on the abelian vari&jy This construction,

which generalizes both the taking of a quotient of a geometric vector bundle in [14] and the
glueing procedure for sheaves adopted in [5], can be formalized in an elegant way by means of
descent theory. The first section of this chapter is therefore devoted to a brief summary on the
theory of faithfully flat descent of coherent modules. In particular, we shall see how a lineariza-
tion of a sheaf on a principal fibre bundle gives rise to a descent datum (and vice versa).

In the third and final section of Chapter 2 we show how to obtain ample and very ample in-
vertible sheaves 06 (X). As we prove at the beginning of the section, this leads to consider
sheaves of the forrs | (L) ® p*Ly, WhereL is anlL-linearized sheaf on the-variety X, p

is the projectiorG(X) — AandLg is a (very) ample invertible sheaf ok It is quite easy

to prove theexistenceof an ample line bundle of this kind 0@ (X), but in order to be able

to control the dimension of the projective embedding some new ideas are needed. These are
provided by G. Faltings and G. Wgtholz in [5], where they show th& (X) can be embedded

in the projective space bundi p, G| (L)), which they show to be a projective variety. The
latter result is obtained by means of a filtration of the vector bupgd@ (L) on the abelian
variety A. In [5], the filtration is constructed explicitely. But, as remarked by Knop and Lange

in [14], this is not necessary: from a result of S. Mukai (see [20]) follows that a homogeneous
vector bundle on an abelian variety always admits such a filtration. Hence, the proof of the
projectivity of G (X) can be reduced to the verification thatG, (L£) is homogeneous. We

shall adopt this approach, since it also work&ifs not commutative.

In the third chapter, we obtain some more results on the structure of the V&ii€ty) con-
structed in Chapter 2 out of a (projectiviejvariety X, and so in particular on the equivariant
projective completiorG = G (L). We start, in Section 1, by computing the cohomology of
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a line bundle of the typ& | (£) ® p*Lpo (See above). The main result here is a vanishing
theorem for the cohomology of such a sheaf, which extendstidéiz’s result from [37] to the
noncommutative case. In its proof, we shall project the sheaf on the abelian Varet$ /L,

and successively apply the corresponding result for abelian varieties (which can be found in
[21]). Here, an important role is again played by the filtratiorpp& | (L£) from Chapter 2. An
analoguous method will allow us to compute the Euler characteris@g 6f£) ® p*Lg, and so

to give bounds for the dimension of a projective embeddinG ofX).

In Section 2, we illustrate two more applications of the vanishing theorem: combining it with
some ideas of Mumford (see [22]), we find conditions under which a line busdie®) ® p*Lo

defines a projectively normal embedding of the vari@iy(X), resp. a projective embedding
where the homogeneous ideal®f (X) is generated by polynomials of degree 2 (in this case,
one says tha® (X) is cut out by quadrigs

In Section 3, we repeat some work of Lange, slightly adapted to our noncommutative setting, in
order to show that on a connected algebraic group translation can be defined locally by quadratic
forms. Also in this case, the proof makes use of the corresponding result on an abelian variety
(taken from Lange and Ruppert’s [18]).

Finally, in the last section, we resume some of the results obtained up to this point, and we relate
them to some explicit compactifications of the linear padf G.

The fourth chapter of this work is based on [24], a recent work by V.L. Popov (still a work

in progress, according to the Author, who plans to extend his results to the groups which are
defined over a field of positive characteristic). It can be read independently of the other three,
since the methods here are completely different.

In [24], a conjecture of D. E. Flath and J. Towber (see [6]) on the structure of the affine coordi-
nate ring of areductivealgebraic group is proved for treemisimpleggroups. As a consequence,
Popov is able to give an explicit way for constructing a presentation of the affine coordinate ring
of a semisimple algebraic group by generators and relations out of the monoid of its dominant
weights, and so a new affine embedding of the group. The interesting fact for us is that the ideal
corresponding to the group in this embedding is generated by (inhomogeneous) polynomials of
degree 2, and so Popov’s result mirrors what we showed for a projective embedding of a (com-
pleted) algebraic group in Chapter 3, Section 2. Hence, the material collected here provides an
affine counterpart to the first three chapters of this work.

We begin, in Section 1, by giving a summary of Popov’s results. The methods here come from
the theory of thdinearalgebraic groups. In Section 2, we show by means of an example how
Popov’s methods can be put to use: by applying them to the special linear grquu&le-

cover the presentation given in [33].

Of particular interest will be the third section, where we show how Popov’s results imply the
existence of upper bounds for the affine embedding of simple groups which depend only on the
type of the group, where the group is cut out by quadrics in the affine space.



Chapter 1

The equivariant completion

In the first chapter, we show how to construct an equivariant completion of a connected algebraic
group. The starting point is Chevalley’s Theorem, which describes an algebraic group as a
fibering over an abelian variety. The completion is then constructed as an associated bundle out
of this fibering.

Most of the results of this chapter are taken from [26] and [27].

1.1 The Theorem of Chevalley

Our main object of study in this Thesis are thkgebraic groupgshort for algebraic group
varietie3. These are the "group objects” in the category of algebraic varieties, i.e. algebraic va-
rieties endowed with a group structure such that the product and inverse morphisms are defined
in the category of varieties.

Let us briefly recall what aabstractlgebraic variety is: @revarietyis a reduced scheme of
finite type over an algebraically closed fiddor, in an equivalent way, a finite union of affine
varieties), and aarietyis a separated prevariétyln particular, an abstract variety is not sup-
posed a priori to be quasiprojective. In the course of this work we shall always assume that the
algebraically closed field over which our objects are defined has characteristic zero.

In this short introductive section we describe an important result on the structure of a connected
algebraic group (an algebraic group is said tocbenectedf it is irreducible as an algebraic
variety; one avoids the word "irreducible” here since it has already a meaning in the context of
group representations).

1This definition, taken from Borel’s book [2], differs slightly from the one given in Hartshorne’s [12], pg. 105,
where "reduced” is replaced by "integral” (i.e. reduced and irreducible, see [12], Prop. 3.1, pg. 82). Indeed, we
allow a non-irreducible scheme to be a variety: this has the advantage that an algebraic group can be defined as a
variety (and not as a union of varieties, as Hartshorne’s definition would require).

13



14 CHAPTER 1. THE EQUIVARIANT COMPLETION

Two kinds of algebraic groups arise naturally as the most remarkable: those which are "purely”
affine and the projective ones.

Example 1.1.1.A closed subgroup of thgeneral linear groufL,(K) is called alinear alge-

braic group It is affine, since Gk(k) itself can be embedded as an open subvariety‘é(k).

On the other side, one can show that to an affine algebraic group always belongs a faithful al-
gebraic representation, and so that it is isomorphic to a subgroup gk (see for instance

[13], pg. 63). Hence, the linear algebraic groups are exactly the affine ones. Good references
for the theory of linear algebraic groups are for example the books of A. Borel ([2]) and J. E.
Humphreys ([13]).

Example 1.1.2.A complete algebraic group (i.e. one that is proper over the groundijesd
automatically commutative (see [21], Cor. 1, pg. 44). Therefore, it is calletbatian variety

Such an algebraic group is always a projective variety (see [21], pg. 163). The theory of abelian
varieties is rich and interesting; the standard reference is D. Mumford’s book [21].

Abelian varieties and subgroups of gare not the only examples of algebraic groups, butin a
certain sense the whole theory is built upon them. A connected algebraic group can always be
realised as the extension of an abelian variety by a linear algebraic group:

Theorem 1.1.1 (Chevalley, Rosenlicht, Barsotti)Let G be a connected algebraic group.
Then, there exists a linear and connected normal algebraic subgroup L of G such that the
qguotient G/L is an abelian variety. L is unique and contains all other linear and connected
algebraic subgroups of G.

Proof: See [26], Thm. 16, pg. 439 or [1], Thm. 6.4, pg. 1B6.

By this theorem, one gets an exact sequence

b

0—L—>G-5A—0 (1.1)

where A = G/L: G is an extension oA by L. The fact thatA is complete has an interesting
consequence, namely th@tis commutative if and only iL is (one implication is trivial, the
other one follows from [26], Cor. 2, pg. 433). This means that in order to extend the existing
results to noncommutative groups one has to take into account noncommutative

1.2 Quotients and principal fibre bundles

A convenient structure which one can introduce in order to study the fibration of an algebraic
group by an algebraic subgroup is the structure pfiacipal bundle This is a fibering over

a variety whose fibres are homeomorphic to some fixed algebraic group. In order to be able
to work with such an object, one needs some further conditions on the local structure of the
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bundle. An assumption which appears to be quite natural, and which is actually sufficient in
the analytic context, is the so-calléatal triviality. This amounts to the fact that the bundle
looks like a direct product over some open cover. But this turns out to be too restrictive for us:
a homogeneous spaG H, the quotient of an algebraic group by an algebraic subgroup, is not
locally trivial in general, even iH is normal inG. Therefore, one needs to find some condition
which is less restrictive. In [27], Serre introduces the notiofooél isotriviality, a weakening

of local triviality that is satisfied by algebraic homogeneous spaces (this amounts to the local
triviality with respect to a different topology, thegaletopology).

The aim of this section is the description of some of Serre’s results, which will be useful in the
following.

Since a principal bundle is obtained by taking the quotient of an algebraic variety by the action
of an algebraic group, we include here a brief excurs on the theory of quotients. The material
collected here will be again useful in the next section.

We begin with a very general notion of quotient: &be a category, an@ a group which acts
on an objecX of €. A pair (Y, ), whereY is an object in® andz : X — Y is a morphism in
¢ is said to be aategorical quotierfor the action ofG on X in the category if the following
universal property holds: for arg-invariant morphisnmy : X — Z in € there exists a unique
morphisma’ : Y — Z in € such thatr = o’ o 7:

X327

|

Y

Because if its universal nature, this property characteNzep to isomorphism.
We now restrict ourselves to the categoryriaiged spacests objects are paireX, Ox) where
X is a topological space ard@ is a sheaf of rings oX, and a morphism between two objects
(X, Ox) and (X', Ox) is a pair(f, f¥) wheref : X — X’ is a continuous map ané® :
Ox — f.0x is a morphism of sheaves of rings (see [12], pg. 72). An action of a ggoap
a ringed spaceéX, Ox) is given by an automorphisittg, rg) of ringed spaces for eaghe G
satisfying the axioms

(r1. 7)) = (Idx, ldoy)

where 1le G denotes the neutral element, and
(tghs Tp) = ( "o tf)
Tgh, ‘L'gh = ‘L'g o Th, Tg*fh o) ‘L'g

for all g,h € G. If such an action is given, we define a new ringed sp@CeG, Ox,c),
and a map(r, %) : (X, 0x) — (X/G, Ox/c) as follows: X/G is the set of theG-orbits,
together with the natural projection: X — X/G and the quotient topology (i.e. the weakest
topology for whichz is continuous), and we le@x,c := n*(DQ, the direct image of the
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sheaf of invariant sections aX. On an open seéf C X/G it is explicitely given by the rule
Ox;c(V) = Ox (n_l(V))G, the ring ofG-invariant sections on the counterimage/ofwhich

is an openG-invariant subset oK). It follows that the mape? : Ox,g = 7.0% — 7.0Ox is
the map defined by the natural incIusi@er(n_l(V)) — Ox(w~1(V)) for each open subset
V of X/G.

Lemma 1.2.1.The pair((X/G, Ox,6), (7, nﬁ)) is a categorical quotient for the action of G
on X in the category of ringed spaces.

Proof: (X/G, Ox,c) is a ringed space. This follows from the preceding discussion. Let
(f, £% : (X, Ox) — (Y, Oy) be aG-invariant morphism of ringed spaces. This means that

forg=f: X—Y

and
(forg)f = furfo ff = ff: 0y — f,0x

for all g € G. We want to construct the map
(F.T) - (X/G. Ox/6) — (Y. Oy)

satisfying the universal property. It is immediately clear thatX — Y defines a unique map
f : X/G — Y such thatf or = f. This map is continuous, since the counterimafe (V)
of an open seV C Y is equal tar (f‘l(V)), which is open in the quotient topology.

In order to construct the maT)tI consider, for an open subsétC Y, the ring homomorphism
FEV) 1 Oy (V) — £.0x(V) = Ox(fH(V))
Since f# is G-invariant by hypothesis it follows that, for a sectis@ Oy (V),
(% (F72) o F20) (9 =74 (F71V)) (F V) = T2
for all g € G. This means that
Im(f5(V)) € Ox(f~H(V)®
Now, sincef = f o,
_ G _
Ox(171V)® = 0x (771 ((H7W))) " = 0x6 (H7HV))
and since this is equal tT)*(Qx/G(V), it follows that f# induces a well-defined morphism

Tﬂ 1Oy — T*(DX/G
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of sheaves oiX/G. B

Let us now turn our attention to the category of algebraic varieties. This category can be consid-
ered in a natural way as a subcategory of the category of ringed spaces: a Xgretgesses a
topology, the Zariski topology, and a sheaf of rings, the structure sheaf
A left morphical actior{or, if there’s no danger of confusion, jusleft actior) of an algebraic
groupG on a varietyX is given by a morphism
7T:GxX — X
(9,X) > 1(g,X) =: gX

of varieties satisfying the usual axioms for a group action.
Remarkl.2.1 If we consider the restrictiong := 7|(g)xx Of T to {g} x X, and we identify

canonically{g} x X with X, and furthermore we notice that hezr&: Ox — 19,0x is given
by the rule

(W) 00 =s(zgx)
forU € X open,s € Ox(U) andx € U, we get for eacly € G a morphism(zg, rg) of ringed

spaces as above. This shows that a morphical action of an algebraic group is a special case for
an action of a group on a ringed space.

In an analoguous way, one defingght morphical actions of an algebraic group on a variety.
We shall denote byctionboth left and right actions.

For an action of an algebraic gro@ on a varietyX, we define a new kind of quotient, the
geometric quotientt is a pair(Y, ) consisting of a variet)y and a morphismr : X — Y of
varieties satisfying:

(GQ1) = is surjective.

(GQ2) = isopen.

(GQ3) The fibres otr are exactly the orbits d&.

(GQ4) For every open subskt C Y, the ring homomorphism

Oy(U) — Ox (n_l(U)>G

Y > @om
is an isomorphism.

The conditiongGQ2) and(GQ4) are often the most difficult to verify. Fortunately, in a lot of
cases it is not necessary to do it, as shown by the next theorem. We recall that axasistyd

to benormalif all its local rings are integrally closed: an important class of normal varieties is
given by the nonsingular ones, since a regular local ring is always integrally closed.
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Theorem 1.2.2.Let X be an irreducible variety with an action of an algebraic group G and let
Y be a normal variety. Then, i : X — Y is a morphism which satisfi€&Q1) and (GQ3),
the pair(Y, m) is a geometric quotient for the action of G on X.

Proof: See [25], Thm. 4.2, pg. 18

Consider an action of &nite groupI" on anaffine variety X = SpecR; the affine variety

X/T = SpecR", whereR denotes thé-subalgebra of th&-invariants, together with the
morphismr : X — X/ T induced by the natural injectioRl’ — R, is a geometric quotient of

X by TI'. The following result relies on the fact that, under some mild hypotheses, this procedure
can be applied locally on a variety:

Proposition 1.2.3. The quotient of an algebraic variety with respect to the action of a finite
groupI" is a geometric quotient if and only if any orbit bfis contained in an affine open
subset, and in this case the quotient morphism is finite.

Proof: See for instance [25], Thm. 4.4, pg. 1W.

If the action ofI" on X is free, thenX is said to be aalois coveringpf Y = X/T'. T is the
Galois groupof the covering, denoted Ga{/Y).

We conclude this excursus with a proposition which relates the two notions of quotient which
have been introduced so far:

Proposition 1.2.4.Let X be a variety with an action of an algebraic group G, and suppose that
(Y, ) is a geometric quotient of X by G. TheiY, ) is a categorical quotient of X by G in
the category of algebraic varieties.

Proof: See [23], Prop. 0.1, pg. &

Proposition 1.2.4 shows, in particular, that the axiq@®1)-(GQ4) characterize a geometric
guotient up to isomorphism, and so that there is no danger of confusion by denoting a geometric
guotient as above b}/ G.

Remarkl.2.2 By definition, a variety is a ringed space. As such we can construct, for an action
of an algebraic grougs, a quotientX/G in the category of ringed spaces. X/ G together

with the shealdx, ¢ is an algebraic variety, theicQ1)-(GQ4) hold automatically; thux/G

is a geometric quotient so that that by Prop. 1.2.4 it is a categorical quotient in the category of
algebraic varieties.

We proceed now to the theory of the principal bundles.

Letz : Y — X be a morphism of varietiesr is said to be amtale coveringf it is finite and
étale. We recall thatétale” means smooth of relative dimension zero (see [12], ex. 10.3, pg.
275).
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Remarkl.2.3 This definition ofétale covering corresponds to what J.-P. Serre calls, in [27], a
revétement non ram#i’Indeed, arevétemen([27], Def. (E), pg. 1-02) is a finite morphism
(see [12], pg. 84) and furthermore Serre’s definitiomoh ramifg, namely the fact that for all
X € X the morphism

TA[ . On(x) —> (9x

induced on the completions of the local rings is an isomorphism is equivalent to the faet that
is étale if one works, as in our case, with nonsingular varieties over an algebraically closed field
k (see [12], Ex. 10.4, pg. 275).

Etale and Galois coverings are closely related, as shown by the
Proposition 1.2.5.
1. A Galois covering of algebraic varietiesésale.

2. Let X be an irreducible variety, and : Y — X anétale covering. Then, there exists
a Galois coveringr’ : Z — Y such that the compositioho 7’ : Z — X is a Galois
covering.

Proof:
1. See [27], pp. 1-05 and ff.

2. See [27],pg. 1-0/M

A G-bundle(G, P, X) with base spac& is given by an algebraic group acting on a variety
P and a geometric quotierX for this action. This implies that there exists a surjective mor-
phismnz : P — X of varieties compatible with the action, i.e. such thapg) = = (p) for
allg e Gand allp € P. G is thestructure groumf the bundle.G-bundles with fixed base
space are objects in a category whose morphisms aré tbguivariant morphismp’ — P
over X, that is morphisms which commute with the group action. By varying the Kasee
obtain a fibered category, with a well-defined notionimferse image* P with respect to a
morphism¢ : X’ — X (a base change A G-bundle (G, P, X) is said to betrivial, if it
is isomorphic to(G, X x G, X) with the action(x, g)g = (X, g'g) and the projection mor-
phismz = pr; : X x G — X, andisotrivial, if it becomes trivial over a finite anetéle base
change, i.e. if there is agtale coveringp : X’ — X such thatG, ¢*P, X’) is isomorphic to
(G, X' x G, X').

In the following, we shall need local versions of the definitions above: consider, for a cover
U = {Uq}qel Of X by Zariski-open sets, the restricted bundi€ 7~ (U,) , U, ) fora € 1.
(G, P, X) is said to bdocally isotrivial(resp.locally trivial), if the cover can be chosen in such
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a way that all restricted bundles are isotrivial (resp. trivial): for each |, there is aretale
coveringe, : U, — U, and a cartesian diagram

Uy x G ——>m"1(U,)

prli ln

U(; ¢(¥ Ua

(resp. ¢, = Idy, andz 1 (U,) = U, x G, in the locally trivial case). In particular, such a
bundle is locally trivial in thestale topology. We shall stick to the older terminology of "locally
isotrivial” in order to avoid confusion, since we work exclusively with the Zariski topology.

A bundle(G, P, X) as above is called@ight) principal fibre bundl¢or just aprincipal bund|g,
if the following conditions are satisfied:

(PB1) The map

V:PxG — PxxP
(p,9 +— (P, P9

is an isomorphism between the direct prodBck G and the diagonaP x x P of
P x P.

(PB2) 7 : P — Xis a flat morphism.

Here, we consider a right action &, if G acts on the left, the definition is analoguous.

Remarkl.2.4 A schemeS over a fixed schem& (and so in particular a variety, which is a
scheme ovell = Speck)) can be regarded as a contravariant funétor~ S(X) from the
category of schemes ovérto the category of set$( - ) associates with a schenxeoverT the
setS(X) of all morphismsX — SoverT , the X-valued pointof S (see [9], Vol. |, pg. 242).
Under this functorial interpretation, the morphigimdefined just above has to be regarded as a
natural transformation, and it induces a bijection

W (X) : (P xspeek) G) (X) = P(X) x G(X) —> (P xx P)(X)

(p,9) +— (P, PY

LetI"(X, P) € P(X) be the set obectionsX — P, i.e.
'X,P)={se P(X)|r os=Idx} ,

and lets; ands, be two elements of (X, P). Then, sincer o 1 = ldx = 7 0o S, it follows
from the universal property of fibered products that

(5,99): X — PxP
X > (s1(X), $2(X))
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defines an element 0P x x P) (X). Hence(s;, $) liesinthe image o (X), and sas;, ) =
(s1, s19): there exists a uniquely determined elemggt g(s;, Sp) of G(X) such thas, = s10.
This shows that the sét(X, P) of the sections of a principal fibre bundl&, P, X) is aprin-
cipal homogeneous(X)-space

In the following, we shall only work with bundles which are locally isotrivial. The next propo-
sition shows that this condition is quite strong, since it already implies that a bundle is principal:
Proposition 1.2.6.Let (G, P, X) be alocally isotrivial G-bundle. Then it is principal.

Proof: We prove that, under the assumption of local isotriviality, B¥undle(G, P, X) with
the projectionr satisfie{PB1)and(PB2).

We prove the first axiom locally, on an open covenobver whichP becomes isotrivial. Let
U be an open set in such a coverXf

U x G—>z-1U); (1.2)

prll ln

u’ U

overU,themapd : P x G — P xx P liftsto
U:rlU)yxG — 77HU) xy n7LU)
(P.9) +— (P, P9
its inverse image over : U’ — U is
P*U: (U xG)xG — (U xG)xy (U xG)
(p,9:9) — (p.9;p.09) ,
which is an isomorphism (compatible with the actiongfsince(G, U’ x G,U’) is the trivial
principal G-bundle ovet)’. Taking the quotiestit follows that W is an isomorphism.
The axiom(PB2) holds for the following reason: consider again the cartesian square (1.2);
sinceU’ x G — U’ is flat, it follows from [9], IV, Seconde partie, Prop. (2.5.1), pg. 22 that

7~1(U) — U is flat and so, since flatness is a local property by definition ([12], pg. 254) that
P— Xisflat. B

The proposition shows that the new axiom

(PB) (G, P, X) is locally isotrivial

2This is a result from the theory of Galois-descent (see for instance [3], Example B, pg. 139); since we only
make use of this theory once, it did not seem appropriate to include more material on this subject. In the next
chapter we shall meet another aspect of descent theory.
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is enough in order to characterize locally isotrivial, princi@abundles; this is exactly Serre’s
older definition of principal fibre bundles given in [27], pg. 1-08.

The next lemma shows that locally isotrivial principal bundles behave well with respect to base
change; this means in particular that the family of all locally isotri@abundles for a fixed>
gives rise to a fibered subcategory of the fibered category &-alindles:

Lemmal.2.7.Let f : X’ — X be amorphism of varieties. L&B, P, X) be a locally isotrivial
G-bundle over X. ThenG, f*P, X’) is a locally isotrivial principal G-bundle over X

Proof: See [27], pg. 1-141

As we already mentioned, our motivation for the introduction of the principal bundles is the
study of the fibration of an algebraic group by an algebraic subgroup. The following proposition
will be decisive in the next section:

Proposition 1.2.8.Let G be an algebraic group, and H an algebraic subgroup of G. Let H
operate on G by right translation. Then, the H-bundle, G, G/H) is a locally isotrivial
principal fibre bundle.

Proof: See [27], Prop. 3, pg. 1-11

Let G be a connected algebraic group. By what we saw in the first section, there is an exact
sequence

0—L—>G5A—0

wherel is the largest connected linear subgroupgzoédnd A is an abelian variety. As a con-
sequence of Proposition 1.2.8, we see that there is an open tovefU; }'_, of A by open
subsets such that the restriction1(U;) — U; of the bundle is isotrivial for ali: there is an
étale coverind); — U; such that the fibering becomes trivial ougf. As we saw in Prop.
1.2.5, we can assume that this covering is Galois: this meansrthat);) is isomorphic to
a quotientJ; x L /T for the action of some finite grouf;. This fact has many interesting
consequences, as we shall see later on. The first one is the

Proposition 1.2.9. A connected algebraic group is quasiprojective.

Proof: Let, as abovel. be the largest linear and connected algebraic subgroup of a connected
algebraic groufis, and A the abelian varietys/L. A is projective and so quasiprojective; this
means that the structure morphigmg : A — Sped is a quasiprojective morphism ([9], I,

Déf. 5.3.1, pg. 99). Furthermore, the morphism G — A is affine: if we choose the open
coverU in such a way thab; is affine for alli, we have that ~1(U;) = U/ x L/ T is affine (J/

is affine since the morphistd/ — U is finite, L is linear hence affine and the quotient of an
affine variety by a finite group is affine). From [9], II, Cor. (5.3.4)(i), pg. 99 it follows thas
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a quasiprojective morphism, and with part (ii) of the same Corollaryghatr : G — Spedk
IS quasiprojective, i.e. th&® is a quasiprojective varietill

Remarkl.2.5 If one restricts oneself to the case of commutative groups, one has to deal only
with locally trivial fibre bundles (i.e. such that’ = U; andz1(Uj) = U; x L). This is for
instance the case in [5], [29] or [37]. Groups characterized by the fact that their actions give
rise to locally trivial fibrations are callespeciakn [27]. Their family does not contain only the
commutative algebraic groups, but for instance all solvable groups and even the general linear
group GL,. Some results on the theory of special groups, such as the fact that they are all linear,
can be found in [27]. We shall meet again the special groups in the third chapter of this work,
where we shall be more precise in their description.

1.3 Galois coverings and associated fibre bundles

In the previous section, we showed that a connected algebraic Gr@ap always be realized

as a locally isotrivial fibration over an abelian variety, with a linear algebraic gtoag fibre.

The aim of this section will be the construction of a new fibre bundle on the abelian variety
whose fibre will be a given spacé on whichL operates. This associated bundle will be very
useful, since it will allow us to exhibit a quite explicit completi@nof the groupG, and later

on a projective embedding of the proper vari€ty

We begin by constructing the associated bundle as a ringed space. Then, we shall show that it
admits the structure of a variety.

Let G be an algebraic group, artdl an algebraic subgroup @&. Let X be a variety, on which
H acts on the left. Define an action bf on G x X as follows:

h(g, x) := (gh™, hx) ,

and denote by (X) the categorical quotiehin the category of ringed spaces, as introduced
in the previous section. The fact thato pr; is invariant under the action dfi implies the
existence of a commutative diagram

G x X—=GH(X) (1.3)
prll/ lp
G T -~ G/H

3This space is denoted iy x " X in [27] and byG ﬁ X in [25]; we have chosen the notati@ (X) in order
to emphasize on the functorial natureG@f (- ).
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which allows us to define a natural projectipn Gy (X) — G/H (in the category of ringed
spaces). The fibres of the projectipnare isomorphic toX. Furthermore, arH-equivariant
morphismg : X — Y betweenH-varieties (i.e. a morphism which is compatible with the
action ofH on X andY) gives rise in a natural way to a morphigdy (¢) : GH(X) = GRH(Y)

of ringed spaces.

Our next aim is to show th& y (X) carries the structure of an algebraic variety, i.e. Bgi X)

is a geometric quotient for the action f on G x X. For this, we shall need some notions
introduced in the course of the previous section. In particular, we shall reduce the problem to
a question of existence for bundles which are trivialized over a Galois covering. Therefore, we
need to investigate the action of the Galois group on an isotrivial principal bundle more in detail.

Let (G, P, X) be a principal bundle with the projection: P — X, and letp : X’ — X be a
Galois covering. LeP’ := X’ xx P be the fibered product:

pr—Yp

b

X/ i) X

As a set, it can be explicitely defined by the rule
P'={(X, p) e X' x P |p(X) =n(p)}

The actions of” = Gal(X’/X) on X’ and of G on P induce commuting actions oX’ x P,
given respectively by
(X/’ p) 0= (X/ $ 0, p)
and
', pg= (X, py ,
with x" € X', pe P,g € G ando € I', and so a (right) action df x G on X’ x P.
Let po be some point irP. Its fibre undek’ : P’ — P is given by

@) X(po) = {(X, po) € X' x P’ | p(X) = m(po)} ;

if we setxg := 7 (po), we see that

@) (po) = ¢ 1 (x0) x {po}

and so thate’)~1(po) is an orbit for the action of on P’, sincep~1(xo) is an orbit for the
action of I on X. Therefore, the paitP, ¢') satisfies the axiom@gcQ1) and (GQ3); if we
assumeP to be normal (as will be the case in our applications, where we deal with nonsingular
varieties), Theorem 1.2.2 implies th@, ¢’) is a geometric quotient for the action Bfon P’.
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Assume now that the principal fibre bundle is trivialized over the Galois covefing> X.
This can be expressed with a diagram as follows:

X'xG—p>P —=P

|

X' —X

The isomorphisnd : X’ x G — P’ over X’ (which is atrivializationof P’) induces the trivial
right action ofG on X’ x G:

X'xGxG — X' xG
(x,9,9) — (x,99) ,

and a right action of" on X’ x G which commutes with the projectionpr X’ x G — X', i.e.
aTl-linearizationof the trivial principalG-bundle(G, X’ x G, X’). This discussion shows that
P is isomorphic to the quotient of a trivi&-bundle by an action dof' and so that, in order to
get informations on the isotrivial principal bundl&, P, X) a good starting point is the study
of the linearizations of a trivial principal bundle. This is what we are now going to do.

The I'-linearizations of a trivial principaG-bundle (G, X x G, X) (we drop the ”” in the
notation) are objects in a category whose morphisms aré-gnguivariant morphismg x G —

X x G over X. The following proposition gives an explicit description of the linearizations,
which leads to a classification of their isomorphy classes in terms of Galois cohomology:

Proposition 1.3.1. Let (G, X x G, X) be a trivial principal G-bundle, and lel' be a finite
group which operates on X.

1. Letg, € ZX(I", G(X)) be a cocycle with coefficients in(&); then the rule
XxGxI' — XxG
(X,0,0) — (X,0)-0 = (X0, (¢;)HX)Q)
defines d"-linearization of the bundle.

2. All T-linearizations of(G, X x G, X) are isomorphic to a linearization of this kind, and
two linearizations are isomorphic if and only if the corresponding cocycles are cohomo-
loguous.

The proof of the proposition requires the following, easy

Lemma 1.3.2. All automorphisms of the trivial principal G-bund(&, X x G, X) are of the
form

P: XxG — XxG
X,9) = (X, 9(X)9)
with ¢ € G(X).
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Proof: The requirement that pe ®((x, g)) = pri((x, 9)) = X implies that there exists a mor-
phismé : X x G — G such thatd ((x, 9)) = (X, ¢(x 0)); furthermore, by the invariance of
@ under the action 06 one has(x, ¢(x, g)) = (X, ¢(X, 1g))g = (X, $(X, 1g)g). If we set
#(X) := ¢(X, 1g), the lemma is proved

Proof of Proposition 1.3.1:

1. Let(x,g) € X x G ando, t € I'. Then we have

(%901 = (X0 0g) 7= (x0T (90X 0) () L (0g) =
= (x ‘0T, ((w?)_l (%)‘1) (X)g)

and from the cocycle relatiap, ; = ¢, ¢ we get(py,) 1 = (go;’)_l (9s) "%, and so

(.9 0) 7= (x0T (g1 (09) = (X, @) 0T,

where forf € G(X) we denote byf? € G(X) the image off under right translation

of functions, given byf ? (x) = f(x - o). This shows that the rule given above defines a
right action ofl" on G x X, and it is furthermore clear that this action commutes with the
projection, i.e. that it is a linearization.

2. We proceed as follows: first, we show how to recover a coclyglé,r out of al'-
linearization; then, we check that to isomorphic linearizations belong cohomologuous
cocycles, and finally we show that the cocycle corresponding to the action given in 1.
really is¢, .

Let(x,g,0) — (X, g)-o be al'-linearization; denote bl (X, X x G) the set of sections
of the trivial principal bundle and define a map

I'xT'(X,XxG) — I'(X,XxG)

(0,8) —> o0 %S

by the rule(o * s)(X) := s(x - o) - o~ 1; it really maps to sections, since for a section
seI'(X, X x G) we have

prio (o %S) = prys(x-o)-o 1) =pr(s(x-o0)) o 1 =prx)

by theI"-equivariance of gr, and furthermore it defines a left actionlobnI" (X, X x G)
since

(0% (T*8)X)=(T*S)(X-0)-0 T=8X-07) T Yo 1= (6T %S)(X)
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Let nows; € I'(X, X x G) be the 1-section, defined by

$1: X — XxG
X — (X, 1)

(where we denote by 1 the neutral element of the gr@jp Sincel'(X, X x G) is a
principal homogeneou& (X)-space (see Remark 1.2.4), for eache T' there exists
exactly one elemeng, in G(X) such that

oO*xS =S1¢; ,

l.e. (o x51)(X) = s1(X) @, (X) for all x € X. This way, we associate with the linearization
a collection{g, }ocr € G(X). We now claim that this is a 1-cocycle. Namely, consider
again the relation
(ct)*S =0 % (T*xS)
its left-hand side becomes ¢, ., while for the right-hand side we get
ocx(TxS)(X) = (t4S)(X-0) -0 t=s5(X-0)p;(X-0)-0 L=
(0 % 51) (X) (91)7 (X) = S1(X) @6 (X) (91)7 (X)

and so the relation, ; = ¢, (¢;)°, which shows thatg, }ycr € Z1(T, G(X)).
Assume now thaK x G admits two isomorphic linearizations

XxGxI' — XxG

denoted respectively by
(X,9,0) — (X,0) -0

and
X,9,0)— (X,9) OO0

This means that there exist&aautomorphismb of X x G with
@((X,9)-0) =P((X,9) OO0

forall (x, g) e XxGandallo € I'. Denote by %" resp. ™" the actions ol (X, X x G)
obtained out of ™" resp. "©™:

1 resp. (cxS)(X)=s(X-0)0o L |

(0 xS)(X) =s(X-0) -0~
and by{gs }oer resp.{¢. }scr the cocycles associated to the linearizations:

O*S1 =S¢, reSp. o xS =S¢,
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From the equivariance of the automorphignwe get the relation
ocx(Pos) =DPo(oc%xS) . (1.4)

Let us look at the left-hand side of (1.4): writinp((X, g)) = (X, ¢(X)g) as in Lemma
1.3.2, we get

ox(Pos) = (X-0,0(X-0) Q0o =X 0,1¢°(X) 00 =
= (-0, D0 0™)¢7(0 = (@ * P (X) = LK) (08" ()

(recall that the actions @b andI” are supposed to commute). The right-hand side of (1.4)
becomes

Po(ox5)(X) = P(S1(X)95 (X)) = (P o 51(X)) @5 (X) =
(X, ¢ (X))¢s (X) = s1(X) #(X) @5 (X)

By the effectivity of the action, we gef. ¢° = ¢ ¢,, i.e.
0o =0 ¢, ¢°

to isomorphic bundles correspond cohomologuous cocycles.

On the other side, ifyy}ser and{y. }scr are conomologuous cocycles, the morphism
¢ € G(X) allows one to "reconstruct” the isomorphigsbnas in Lemma 1.3.2. This shows
that there is a one-to-one correspondence between the isomorphic clasdesafized,
trivial principal G-bundles and the pointed st (I, G(X)).

Let now{gs}ser € ZH(T, G(X)) be arepresentant for a classH(I", G(X)) associated

to somel -linearization, and consider the new linearization given by means of the rule
(X, 0) -0 := (X0, (¢s) " 1(x)g). We compute the cocycle associated to it

(0xs1)(X) = s1(X-0) ol = X-0,1)- o t= <X -0 - 0_1, ((pg_l)_l (x- 0)) =
= (% (024)7100) = 0 96 00) = (%, Do () =
= s1(X)gs(X)
since from the cocycle relation it follows thé@;‘,l)_ = ¢,. The cocycle obtained out

of this action is agailfg, },<r: this shows that the new linearization is isomorphic to the
original one and so, since this holds for dmylinearizations, that all'-linearizations are
isomorphic to a linearization as in &

Recall from Proposition 1.2.5 that atale covering can always be extended to a Galois one; this
implies that an isotrivial principab-bundle(G, P, X) can always be supposed to be trivialized
over a Galois covering’ — X. Together with Proposition 1.3.1 and the preceding discussion
this implies the
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Corollary 1.3.3. Let (G, P, X) be an isotrivial principal fibre bundle. Then there is a Galois
covering X — X with Galois groupl” over which the bundle becomes trivial, and a cocycle
(0o }ser € Z1(T, G(X')) such that P is the geometric quotient of X G for the action of”
given by

X, 9) 0= 0 ()N .

with (x’, g) € X’ x G ando € T.

Note that "our”(¢,) Y’ take the place of Serreig,’s in [27], Prop. 1, pg. 1-09.

In order to prove thaGy (X) is an algebraic variety, we shall look at coveringgfH over

which the bundles become trivial; in particular, we shall work with Galois coverings. This
implies that we must be able to take quotients with respect to actions of finite groups. Since
the conditions of Proposition 1.2.3 of the orbits being affine is too troublesome in general, we
replace it by the following, stronger condition, sufficient for our purposes:

(F) Any finite subset is contained in an affine open subset.

This condition is not "too” strong: it is satisfied for instance by quasiprojective varieties, since
one can always find some hyperplane which does not intersect a finite set of points, or by alge-
braic groups, since here it is possible to move hyperplanes away from finite sets (see also [28],
Ex. 1 and 2, pg. 59). Note th@f) would not make sense for a scheme over a finite field, as
shown by the counterexamplé(F,).

We are now ready to prove the central result of this section, namelthak) is an algebraic
variety, if we restrict ourselves to varieti¥swhich satisfy the conditioF).

Theorem 1.3.4.Let G be a connected algebraic group and H an algebraic subgroup of G. Let
H act on the left on an algebraic variety X which satisf{E}. Then, Gy (X) is a geometric
guotient for the action of H on G« X and the H-bundlgH, G x X, Gy (X)) is a locally
isotrivial principal fibre bundle.

Proof: (See [27], Prop. 4, pg. 1-15 or [25], Thm. 4.19, pg. 195) We already savitihék)
carries in a natural way the structure of a quotient ringed spaGfX by the action ofH.

We now show thaGy (X) is a variety, which can be covered by (finitely many) subvarieties
whose structure will make clear that the fibration is principal.

For this purpose, choose an open affine subset G/H such that there is a Galois covering
U’ — U over whichG becomes trivial: this gives rise to a commutative diagram

UxH—71U)——G

S

U’ U< G/H
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wherer : G — G/H denotes again the quotient morphism. By Cor. 1.3.3, there exists a
cocycleg, € ZX(T', H(U")) such thatr ~1(U) is the geometric quotient d’ x H by the
action of[" given by(u’, h) - o = (U - o, (95) " 2(W)h)ywithu’ e U',h e H,o eT.

We consider the covering given by

U xHxX—771U)x X—=Gx X ;
itis Galois, if the action of onU’ x H x X is the lifting of the action otJ” x H:
W, h,x) -0 =U"-0, ()" Wh, X
with (U, h, x) e U’ x H x X ando € I'. This induces an open embedding
(U xHx X)/)T——G x X

of varieties; the quotiendJ’ x H x X)/ T is a variety sincé)J’ x H x X satisfiegF): U’ is
affine, since it is finite over the affine variety, H is an algebraic group and satisfieqF) by
hypothesis. Lifting the action dfi onG x XtoU’ x H x X gives the action

k(u', h, x) = (U, hk™1, kx)
with (U’, h, x) as above anll € H. Note that the map

UxHxX — U xX
W, h,x) — (U, hx)

defines a geometric quotient of x H x X by H. The actions of” andH onU’ x H x X
commute, as can be immediately verified (the left and right translatiddsoofitself commute).
This implies that the action dfl induces an action on the quotigiit’ x H x X)/T", which
is therefore an operhl-invariant subvariety oG x X. Taking the quotient byH, we get the
diagram

U'xHx X)/T——G x X

(U" x X)/ I'———=GH(X)

where the left vertical morphism can be explicitely described by the rule
W, h,x)I' — (U, hx)T

The spacgU’ x X)/T is a variety, sincd)’ x X satisfies(F). SinceG/H can be covered

by (finitely many) open subsets like, it follows that Gy (X) admits a finite open cover of
varieties like(U’ x X)/T'. This shows thaG (X) is an algebraic prevariety, since it follows
immediately that it can be covered by finitely maafinevarieties.
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In order to show thaGH (X) is itself a variety, we have to check its separatedness overkSpec
This is done as follows: by base extension ([12], Cor. 4.6(c), pg.l99% X is separated over
U’; from [9], IV, Seconde partie, Prop. (2.7.1), pg. 29 it follows thidtx X/ T is separated
overU = U’/T; since separatedness is a local condition ([12], Cor. 4.6(f), pg. 99), it follows
that Gy (X) is separated oved/H and with [12], Cor. 4.6(e), pg. 99 that it is separated over
Sped, sinceG/H is a variety and therefore separated.

In order to prove thaG x X is principal oveiGy (X), we just have to look at the diagram

U xHxX— U xHxX)/T

! |

U’ x X U’ x X)/T

where the horizontal arrows denote quotientdhwhile the vertical arrows denote quotients
by H. This shows that over thetdle Galois coveringy’ x X — (U’ x X)/T the fibration
Gx X — Gy (X) pullsbacktaH, U’ x H x X, U’ x X). This means thatH, G x X, Gy (X))

is a locally isotrivial principal bundlell

The theorem, together with Prop. 1.2.4, implies t68af(X) is a categorical quotient for the
action ofH on G x X in the category of algebraic varieties.¢fis anH -equivariant morphism
between twaH -varieties, and we consider th&-equivariant composition of morphisms

go(ldg x ¢): G x X — Gy (Y)

whereq : G x Y — Gy (Y) denotes the natural projection, the universal property of the
categorical quotient implies the existence of a unique morpl@snip) : GH(X) — GRH(Y)
which makes a commutative diagram

GxXIdG—X(ﬁGxY ,

G
Gh(X) 22 Gy (Y)

the quotientof Idg x ¢ by H.

Theorem 1.3.5.GH(-) defines an additive functor from the category of H-varieties which
satisfy(F) to the category of varieties over/Gl.

Proof: By construction, there is a morphis@y (X) — G/H. This shows thaGy (X) is a
variety overG/H. The discussion just above shows thapif X — Y is H-invariant, then
GH (¢) is a morphism oveG/H.

Now lety : Y — Z be anotheH-invariant morphism betweeH -varieties; then, the mor-
phismGy (v) o Gy (@) satisfies the universal property for the quotient @f il (1 o ¢) by H,
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and therefore it follows from the uniqueness@f (¥ o ) thatG (V) o GH (¢) = GH (Y o).
The additivity of Gy ( ) is proven as follows: let agaik andY be H-varieties; for the trivial
G-bundleG x (X x Y) we have the canonical isomorphism

CGx(XxY)=(GxX)xg(GxY) ;
taking the quotient by the action &f, we get
GH(X xY) =GH(X) xg/H GH(Y)

the image of the direct product of andY is the fibered product ove®s/H of Gy (X) and
GH (Y). This concludes the prool

Example 1.3.1.Let the notations be as above. Thep (H) = G and the structure morphism
p:Gy(H) — G/H is the natural projection : G — G/H. Indeed, the map

Yv:GxH — G
(g,h) — gh

makesG into a geometric quotient @ x H by the action oH given byk(g, h) = (gk—1, kh):
it is surjective, and its fibres are exactly tHeorbits, since
v@.h=y@.h) <= gh=dgh ,

and this is true if and only ifg’, ") = (gk~1, kh) with k = 'h~1, i.e. if (g, h) and(¢’, ) lie
in the same orbit. The claim follows then from Theorem 1.2.2.

Example 1.3.2.GH (G) = (G/H) x G with the structure morphism pr (G/H)xG — G/H.
In order to see this, consider the map
Yv:GxG — (G/H)xG
(01,92) > (w(91), 0102) .
and proceed as above.

Example 1.3.3.Let X be a variety on whichH acts trivially. Then we have the relation
GH(X) = (G/H) x X, and the structure morphism of the vari@y (X) is the first projection
pri: (G/H) x X — G/H. To prove this, consider the map

Y:Gx X — (G/H)x X
(9, X) +— (7(9),X) ,

and proceed as above.
As special cases, we see immediately Bat(G/H) = (G/H) x (G/H), andGH (Specgk)) =
(G/H) x Speck) = G/H, if G is defined ovek.
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Before turning our attention to one further example, which will be the most important for us,
we collect two more results on associated bundles. For their proofs, we need the

Lemma 1.3.6.Let (G, P, X) and(G, P’, X’) be locally isotrivial principal fibre bundles, and
let f : X’ — X be a base change. Then, 2 f*P if and only if there exists a G-equivariant
morphism F: P’ — P such that the square

P/L)P

e

X — X
is cartesian.

Proof: See [27], pg. 1-158

This implies that the diagram (1.3) on page 23 is in fact a cartesian square

G x X —= Gh(X) (1.5)
prll/ lp
G T . G/H

since now we know that both vertical arrows are locally isotrivial fibrations with fibre

Proposition 1.3.7.Let H be an algebraic subgroup of an algebraic group G, and let X and Y
be varieties satisfyin¢f) with an action of H.

1. Ifi : X = Y is an H-equivariant, open embedding, then
GH () : GH(X) —> GH(Y)
is an open embedding.
2. If X is complete (i.e. proper over the ground field k), than(®&) is proper over GH.
Proof:
1. The embeddinginduces an opertl-equivariant embedding
ldg x1 :Gx X—= G xY

overG. Since the surjective morphism : G — G/H is flat, it follows from [9], IV,
Seconde partie, Prop. (2.7.1)(x), pg. 29 tRai() : GH(X) — GRH(Y) is an open
embedding.
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2. If X is proper over Spdg, it follows by base extension th& x X is proper overG
([22], Cor. 4.8(c), pg. 102). Then, by [9], IV, Seconde partie, Prop. (2.7.1)(vii), pg. 29,
p:GH(X) — G/H is a proper morphisni

Let G be a connected algebraic group. Recall that, by Chevalley’s theore@gpilongs an

exact sequence
b

0 L G A 0
wherelL is the largest connected linear subgrousandA is an abelian variety. In the follow-
ing, we shall only be interested in the case= L, i.e. we shall study only associated bundles
of the formGy (X). Note that, sincé is uniquely determineds| (X) (resp.G( (¢)) depends
only onG and X (resp. G and¢). Because of that, Knop and Lange in [14] use the notation
"G(X)” (resp. "G(¢)”). We do not use this simplified notation here, in order to avoid confusion
with the "functor of points"G( - ), which we used on page 20.
An equivariant completionf an algebraic grouis is a complete variet$s on whichG op-
erates, together with an ope@;equivariant embeddinG — G. Here, the grouf acts on
itself by left translation.
If L is an equivariant completion of the linear algebraic grayghe embedding : L — L,
which is open, induces an open embedding

GL():G=GL(L)— G:=GL(L)

(if we assume thalt satisfiegF)). The varietyG is complete, since it is proper ovér(see the
proposition above), and the abelian variétys projective, and so in particular proper over
(see also [12], Cor. 4.8, pg. 102). Together with the observation that the act@oG x L
defined byg(g’, X) = (gd, X) induces an action d& on G, which leaves the open subvariety
G = G (L) invariant, we get the

Corollary 1.3.8. LetL be an equivariant completion of L, satisfyiff). Then,G = G, (L) is
an equivariant completion of G.

If the completion ofL is a compactificatior(i.e. if L is projective), the conditioifF) holds
automatically. In 83.4, we shall show that an equivariant compactificatioh L exists, and
we shall give some hints on how it can be obtained explicitely.



Chapter 2

The projective embedding

In this chapter, we show how the equivariant completion constructed in Chapter 1 can be made
to be a projective variety. In particular, we show how ample and very ample line bundles can be
obtained on the completion.

The methods in this chapter are similar to [5] and [14], with the difference that we make inten-
sively use of the theory of faithfully flat descent.

2.1 Faithfully flat descent and linearization

In this section, we collect some results on the topic of faithfully flat descent which will be useful
later. Our exposition, especially at the beginning, is based on [3], 86.1 (which is essentially a
translation of [10]). We begin with a brief outline of the main ideas behind the descent theory
of coherent sheaves, and successively we take a look at the situation in the case of principal
fibre bundles. Finally, at the end of the section we collect some useful results on faithfully flat
morphisms.

The main problem of descent theory is the study of the inverse image functor (i.e. the "pull-
back”) in a fibered category (see [10], pp. 190-02 and ff.). In our context, it translates as
follows: letr : X — Y be a morphism of varieties, and consider the fun@tor> 7*% which

maps a quasicohere/,-module to its inverse image under(see [12], pp. 109-110); then,
one wants to characterize the imagerdf an ©x-module (resp. a morphism dfx-modules)
which lies in the image ot * is said todescendrom X to Y.

Consider, forX andY as above, the fibered produxt xy X, with the natural projections
p1, p2 : X xy X — X. For any quasicoherex-module ¥, we call an isomorphisn :
piF — p;F acovering datunon ¥ . The set of all pair$F, ¢) wherep and ¥ are as above
gives rise in a natural way to a categ@yy(X, Y): a morphisms between two such objects
(F,¢) and(F’, ¢') consists of a morphism : £ — F’ of Ox-modules which icompatible

35
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with the covering data.e. such that the diagram

piF —L o pyF (2.1)

pfwl lpﬁw

pT}V/ ¢ p;}v/
commutes.
The pull-backz*4 of a quasicoherer®y-module§ with respect to the morphism admits a
covering datum in a natural way: it is given by the canonical isomorphism

P (7*¢) = (T o P*G = (w0 P)*G = p5 (7*9)

Hence, we can consider* as a functor from the category of quasicoher@gtmodules to the
categorygcd(X, Y).

If the morphismwr : X — Y is faithfully flat (i.e. flat and surjective), we have the following
result:

Proposition 2.1.1. Assume that : X — Y is faithfully flat. Then, the functg — 7*g from
quasi-coheren®y-modules to quasi-coheretx-modules with covering data is fully faithful.

Proof: See [3], Prop. 1, pg. 130. Note that the assumption of quasi-compactness is superfluos
here, since it is always satisfied by a morphism of varieliks.

The proposition states that, for any two quasi-cohe@pimodulesg and g/, =* describes a
bijective map between the set of morphisms betwgeand ¢’ and the set of morphisms be-
tween(r*4, ¢g) and(m*§’, ¢g') in Fed(X, Y), where we denote byg resp.¢g the canonical
covering datum forr*g resp.7*4/'.

It remains to find those objectsF, ¢) in Ob(Fcq4(X, Y)) which are in the image of*. A
necessary (but not sufficient) condition is the commutativity of

P}, P} F 12 Pi,P5F (2.2)
PI3P1F P33P F
m 4
PI3PsF == Pr3PsF

(where the unspecified identities are canonical isomorphisniseiodules). Let us namely
consider the diagram

Pij
X sy X xy X =2 X xy X —= X —Z~Y 2.3)
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wherepij, (i, j) = (1, 2), (1, 3), (2, 3) denote the projection® xy X xy X — X xy X onthe
i-th andj-th factors; if we setF’ := 7*§ for a quasi-coherer®y-module§, the diagram (2.2)
is commutative because all appearing isomorphisms are canonical: the canonical isomorphism

¢:PiF = pin*g —> pin*G = piF

plays the role of the covering datum, and it follows immediately ﬂ;ﬁapi? = pﬁ} p5¥ canon-
ically.

A covering datump on a quasi-coherem x-moduleF for which (2.2) is commutative is said
to be adescent daturon . The relation

P13 = P33 © Piod

satisfied by is called thecocycle conditionWe denote by§qq(X, Y) the category of the pairs
(¥, ¢) where¥ is a quasicoherer®x-module andp a descent datum aff, together with the
morphisms which are compatible with the data. The discussion above implies*tleain be
seen in a natural way as a functorgdgy(X, Y).

A descent datunp on ¥ is said to beeffectiveif (¥, ¢) € Ob(Fqq(X, Y)) is isomorphic to
7*G together with its canonical descent datum for some quasicoh@semiodule§. If every
descent datum is effective, the morphisnms said to be atrict descent morphism

Theorem 2.1.2 (Grothendieck).Letr : X — Y be a faithfully flat morphism of varieties.
Then,r is a strict descent morphism for quasi-coherént-modules.

Proof: See [3], Thm. 4, pg. 1348

The theorem shows that, #f : X — Y is faithfully flat, the category of quasi-coherafy -
modules is equivalent t§yq( X, Y): it amounts to the same to give a quasi-cohe@pmodule
or a quasi-coherer®x-module equipped with a descent datum.

We reformulate now the descent problem in a special setting. Namely, wé,l&t, Y) be a
(left) principal fibre bundle. Then, the projectian: X — Y is faithfully flat, and one could
ask oneself whether the isomorphism

f:Gx X — XxyX
(9, X) +— (g%, X)

makes it possible to express descent data and cocycle conditions in terms of she@wes<on
As we are now going to show, this leads in a natural way to conSldénearized® x-modules.
Denote by : G x X — X the action ofG on X and bygy : G x X — X the second projection.
A linearizationof a quasi-coherer®x-module# is an isomorphism

Yot F — G F
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of sheaves 0/ x X which satisfies a condition which is expressed by the commutativity of

[0 o (Idg x o) ]*F (doxo)y [Q2 o (Idg x o) ]*F

[0 o (u x ldy)]*F [0 o Qp3]* F

[Go o ( x ldx)|*F == [0 o O23]*F

(2.4)
whereq; : GxX — G,(2: Gx X = X,012: GXxGxX - GxG,q13: GXGx X — Gx X,
02z : G x G x X - G x X are the usual projection maps in the different components,
u: G x G — Gis the product morphism and the equalities denote canonical isomorphisms.

Remark.1.1 Letg be an element db. If we restrict the isomorphism to the subvarietyg} x
X (which is canonically identified witkX), and we denote byy : X — X the automorphism
of X given byx — o (g, X), we get an isomorphism

YgiofF — F

and the cocycle condition translates into the commutativity of

T ¢gh o~
aa‘?

for eachg, h € G, i.e. ¥gh = ¥ o o ¥g (See also [23], pp. 30/31).
If # = Ox ando is the trivial linearization 0f9x, Vg is just the transposed homomorphism
(see[9], 1, 4.4.3, pg. 100) to the morphis&described in Remark 1.2.1.

The family consisting of all pair§¥ ', ) where¥ is a quasi-coherer® x-module andy is a
linearization of# builds a category whose morphisms are given by morphisms — ¥’
betweerG-linearized® x-modules which areompatible with the linearizatigne. which make
the diagram

(2.5)

o F L F (2.6)

U*wl lqi‘w
/

o F = G F

commute, where’ is aG-linearization for#’. We denote this category It (X).
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Proposition 2.1.3.Let(G, X, Y) be a principal fibre bundle. Then the two categoriag(X, Y)
and g (X) are equivalent: to each descent datum on@g-moduleF corresponds exactly a
G-linearization of#, and a morphism of x-modules is compatible with the descent datum if
and only if it is compatible with the corresponding linearization.

Proof: Let f : G x X — X xy X be the isomorphism cited above, and (€%, ¢) €
Ob(Fqd(X, Y)) be a quasi-coheren®x-module equipped with a descent datum. We prove
first thaty := f*¢ is an isomorphism of sheaves @1x X which satisfies the condition for

a linearization, and then that a morphigm ¥ — ¥’ which is compatible with the descent
datume¢ is also compatible with the linearizatian

Sincef : G x X — X xy X is an isomorphism, the morphism

g:GxGx X — XxyXxyX
(91, G2, X) > (Q102X, G2X, X)

is an isomorphism, too. Consider the diagrams

Iij
GxGxX=—=GCx X—=x_Zxvy 2.7)

& U
Pij Pk .

XXy XXy X=X xyX—=X—Y

wherep;j resp.px are the natural projections on thie j )-th resp.k-th factor X xy X resp.X.
We want to determine morphisms

lj :GxGxX—GxX
for (i, j) = (1, 2), (1, 3), (2, 3) resp. morphisms
N :Gx X — X

for k = 1, 2 which make the diagrams commutative for each gaij) as above and fok =
1, 2. These are easily found: we set

r12(91, 92, X) := (91, 9@2X) , i.e. rip=ldg xo
r13(g1, 2, X) == (9102, X) , i.e. riz=p x ldx
r>a(g1, 92, X) := (g2, X) , 1l.e. raz=0p3
resp.
ri(g,x) :=gx , Iie. M=o

r.(g,x) :=x , ie. ro=0Qp
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The commutativity of the diagrams (2.7) will allow us to prove all required relationg fdtirst
of all, from the canonical isomorphisms

and

it follows that

defines in a natural way an isomorphistitz % g, F; in order to show that is a linearization

of ¥, we apply the functog* (inverse image of modules) to the commutative diagram (2.2), and
we use the relations between the different morphisms given by (2.7). We get the commutative
diagram

(2l

(riori)*F (rpor)*F

(riorp)*F (riorx)*F
(r2orpR)*F == (r2o0r)*F

Now, if write out explicitely all morphisms;j andrg, we see immediately that this diagram is
nothing else than (2.4). This means tijais a linearization off .

If o : F — F’is amorphism of9x-modules which is compatible with descent dataesp.¢’

for £ resp.F’, applying the functorf * to the diagram (2.1) gives us the commutative diagram

which is exactly (2.6), sincé*¢ = ¢, r1 = o andr = g. This shows thap is also compati-
ble with the linearization.

The proof works also the other way around; namely#f, ¢) is a G-linearized sheaf and if
h: Xxy X — G x X isthe inverse isomorphism tb, one shows exactly as above (it is enough
to reverse the vertical arrows in (2.7)) thet) is a descent datum fof, and that a morphism
which is compatible with the linearizations is also compatible with the descent datum.

This proves thagyq(X, Y) and§c(X) are equivalent categoriclll

Applying Theorem 2.1.2 here gives the result that @wnearized bundles oiX are exactly
those which "descend” t¥, i.e. we have the
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Corollary 2.1.4. Let (G, X, Y) be a principal bundle with projection morphism: X — Y.
Then, a coheren® x-module¥ admits a G-linearization if and only if = = *4 for a qua-
sicoherent9y-module4, and a morphisnp between G-linearized x-modules is compatible
with the linearizations if and only i = 7*¢ for a morphismyp between the corresponding
Oy-modules.

As announced, we conclude this section with some more results on the faithfully flat morphisms.
In particular, we are interested in those sheaf-theoretical properties which descend by means of
such a map. The first one, which is maybe the most important for us, is the fact of being a vector
bundle:

Lemma 2.1.5.Letr : X — Y be a faithfully flat morphism of varieties. L€t be a quasico-
herent@y-module. Then# is locally free of rank n if and only it *¥ is.

Proof: See [9], IV, Seconde Partie, Prop. (2.5.2)(iv), pg. B2.

The lemma implies, for instance, that it is possible to obtain invertible sheavéas foom
invertible sheaves oX by means of a descent datum.

Remark2.1.2 Consider the category whose objectsianertiblesheaves oiX equipped with a
G-linearization, and whose morphisms are those which are compatible with the linearizations.
Proposition 2.1.3 shows that, for a principal bund®& X, Y), this category is equivalent to

the category of invertible sheaves with a descent datum. If we denote ByBithe group of
isomorphic classes dB-linearized line bundles, descent theory shows thatYBi€= Pic®(X)

(i.e. the linearized line bundles are those which descend to the quotient), as one could expect
(see also [21], 81.3). Note that, since a line bundle might admit more than just one linearization,
the natural map PR(X) — Pic(X) is in generalnot injective. This means that we cannot
consider Pi€ (X) as a subgroup of PiX). In [21], §1.3, a criterium is given for this map to be
injective.

Now that we know that line bundles descend to line bundles, we could ask ourselves how well do
ampleness and very ampleness behave with respect to to faithfully flat morphisms; the answer
is given by the following

Lemma 2.1.6.Let f : X — Y be a faithfully flat morphism of varieties. Let@Z — Y be
another morphism of varieties. Consider the pull-back diagram

ZXY X—>Z
o b
f
X Y

An invertible sheaff on Z is ample (resp. very ample) relatively to g if and only if its inverse
image on Zxy X is ample (resp. very ample) relatively to g

Proof: See [9], IV, Seconde partie, Cor. (2.7.2), pg. IR.
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2.2 Constructing sheaves on an associated bundle

We have already mentioned the fact that a var@@ty X) constructed out of a projective variety

X can be shown to be itself projective. In order to obtain this result, we have to construct a
very ample invertible sheaf 08 (X). It is therefore of great importance for us to know how
sheaves o165 (X) can be obtained. In this section, starting with a quasi-coherent gheaf

an L-variety X, equipped with a linearization with respect to the action of the linear algebraic
group L, we show how to construct a she@f (£) on the associated bund@, (X). If the
sheaf.L is locally free (i.e. avector bundleover X), F. Knop and H. Lange in [14] solve the
problem as follows: they considef as ageometricvector bundle (i.e. a variety over X

with "linear coordinate change”, see [12], Ex. 5.18, pg. 128) and they construct the associated
bundleGy (V), which they show to be in a natural way a geometric vector bundié ofX).

This amounts to take the quotient®@fx V = p;V by an action oL, wherep, : G x X — X

is the second projection.

Our approach here is slightly different (although fully equivalent, for vector bundles): we show
that the inverse imagp;.L on G x X of an L-linearized sheaf oiX admits in a natural way

an L-linearization, and so that it "descends” naturally to a sli&af.L) on G (X). In the next
section we shall then show how to USg (L) in order to construct a projective embedding of
GL(X).

The core of this section is already contained in the next proposition, which is a direct application
of the descent theory of the previous section.

Proposition 2.2.1.Let G be a connected algebraic group, and L its largest connected linear
subgroup. Let X be a quasiprojective L-variety, afdan L-linearized quasi-coherent sheaf
on X. Denote by q G x X — G| (X) the quotient map, and by.p G x X — X the second
projection. Then, there exists a quasi-coherent sheaf& on G (X) such that

q*GL(L) = p3L

Furthermore, letM be another L-linearized quasi-coherent sheaf on X, and £ — M
a morphism of sheaves, compatible with the linearizations. Then, there exists a morphism
GL(f): GL(L) = GL(M) suchthatgGL(f) = p5 f.

Proof: The morphisng : G x X — G (X) is a strict descent morphism for the category of
guasi-coherent sheaves Gnx X, since itis surjective and fla(x X — G (X) is a principal
fibre bundle, as shown in Theorem 1.3.4). Hence, in order to "descend"@onX to G (X)

we shall need a descent datum, or, as we showed in the previous sectictinaarization of
p5L. Recall thatG (X) is the quotient of5 x X by the action ofL given by

LxGxX — GxX
1,9.x) — @l L1Ix) ;
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furthermore, the second projection
p2:Gx X — X

is equivariant with respect to this action. Hence, the proposition follows from the more general
lemma that we prove just beloll

Lemma 2.2.2.Let L be an algebraic group, and fZ — X be an L-equivariant morphism
between L-varieties. Lef be a quasicoherent sheaf on X equipped with an L-linearization
Y. Then, the®z-module f*.£ admits in a natural way an L-linearization. Furthermore, a
morphismy : £ — M between linearized sheaves which is compatible with the linearizations
pulls back to a morphism *fp which is compatible with the corresponding linearizations for
f*L and f*M.

Proof: Let us denote by
c:LxX—X

and
u:bLxzZ—12

the actions ofL on X and Z respectively. The equivariance df is then expressed by the
relation
fou=oco(d. x f):LxZ— X

where Id_is the identity map oh.. We want to show that the isomorphism of sheave& anZ
given by
Y= (de x £y (dy x *o*L = p* (F5L) — a5 (F*£) = (IdL x f)*psL

is a linearization off *.L£ (whereqy : L x Z — Z is the projection on the second factor and we
denote by =" the canonical isomorphisms). In order to do this, we have to show that it satisfies
the cocycle condition, which in this case amounts to the relation

(M x 1dz2)* Y = q339 o (IdL x w)* Y

(wheregez : L x L x Z — L x Z is the projection on the second and third factors;
L xL — L isthe product morphism dnand Id; is the identity map oZ). But straightforward
calculations show that

(M x ld2)*y = (dy x Idg x £)*(m x ldx)*y
sy = (dy x IdL x f)*p3ay
(dy x w*v = (Idy x Idy x £)*(dy x o)*¢
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(wherepoz : L x L x X — L x X is the projection on the second and third factors), and so
that the cocycle condition fap follows from the cocycle condition fog by functoriality.

Now let £ and .M be L-linearized quasi-coherent sheavesXnand v , resp. ¥, be lin-
earizations forf *.£ resp. f *.M as above. Then, the sheaf morphidriy : f*L — f*M is
compatible with the linearization if and only if the square diagram

W (F8) L g3 (1)
u*(f*ga)l _ lq;*(f*tp)
1 (a0 2 g3 (FF M)

is commutative. But this follows by functoriality from the corresponding diagram for the mor-
phismg, together with the relations™ f* = (Id. x f)*o* andq; f* = (Id. x f)*p5. W

The mapGy (-) admits also a functorial interpretation:

Corollary 2.2.3. Let the notations be as in Prop. 2.2.1. Then, the nfap- G (L) is an exact
(covariant) functor between the category of L-linearized, quasi-coherent sheaves on X and the
category of quasi-coherent sheaves on(&). Furthermore, if£ and M are L-linearized,
quasi-coherent sheaves on X,® M is linearized in a natural way, and

GL(L Qoy M) = GL(L) ®(9GL(X) GL(M)

Proof: Let f : £1 — L2 andg: L2 — L3 be morphisms betwedn-linearized®x-modules
which are compatible with the linearizations. Then, the same holdsgdof : £1 — L3, and
from p3(go f) = p5go p;f itfollowsthatGL(go f) = GL(g) o GL(f).

Now let

/

14 4

O OC £/ £// O

be an exact sequence loflinearized, quasi-coherent sheavesXgrsince the second projection
p2 : G x X — Xs a flat morphism, this induces an exact sequence

(947

0— psL 25 p3t’ 2 s -0

of L-linearized sheaves andmorphisms orG x X. Now, since taking inverse images with re-
specttog : G x X — G| (X) defines an equivalence of categories between quasi-coherent
sheaves orG| (X) and L-linearized, quasi-coherent sheaves ®Gnx X, there are sheaves
GL(L), GL(L) and GL (L") on GL(X) with q*GL(L) = p3L, g*GL(L) = p5L and

q*GL (L") = psL” and an exact sequence

0——GL(L) 2 6 226 (£ —0
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on X.
Finally, let.£ and.M be quasicoherem x-modules, with linearizationg_, resp.y.4. A natural
linearization for.L ® M is then given by

Ve @Y 0" LR M= 0" (L QM) — Pi(L M) = piL @ piM

The last claim then follows, Sin@FG (L ® M) = p5(L @ M) andq* (GL(L) ® GL(M)) =
Q*GL(L)®Q*GL(M) = p5L® p;M, both compatibly with the linearizations, apd(.L ® M)
is canonically isomorphic tp;.L ® p;.M. B

A consequence of the exactness of the fun&er -) is that, for a quotientf,/.L> of L-
linearized sheaves, one h@s (L1/L2) = G (L1)/GL(L2). In particular, if anL-linearized
sheaf£ is generated by its global sections, it is a quotient of the free sh&&f(see [12], pg.
121), which carries in a natural way a linearization. Followin@y,(L£) is a quotient of the
free shea@é‘g[‘(x), and so generated by its global sections.

Let V be a vector space ov&r Then, via the functoV +— V™ (which is an equivalence of
categories, see [12], pp. 110 and fi\),gives rise in a natural way to a vector bundle over
Speck). We letL act trivially on Spe¢k), and we consider a linearizatignof V™. Then, for
each? € L, to the automorphisng, : V™ — V™ of Ospeqgk)-modules corresponds in a unique
way an automorphismi(¢) : V. — V of k-vector spaces. The commutative diagram (2.5), pg.
38 translates then into the diagram

014
v o (L1€2) v
0(2\2)\{ Aﬁl)
V

(recall that the transition fro to V™ is contravariantso that we have to reverse the arrows).
This means that the rulé, x) — o (¢£)x defines dinear actiorof L onV. Hence, a lineariza-
tion of V™ is equivalent to a linear representation\of

For such a vector bundM™, the associated bund@ (V™) is a sheaf oG (Speck)), which

is canonically identified withA. This shows how it is possible to produce vector bundles on the
abelian varietyA out of linear representations bf

The following proposition illustrates the meaning of the vector bundles constructed out of the
representation of in the cohomology of a.-linearized invertible sheaf (as in [5], Beispiel 4,
pg. 180 and [14], Prop. 1.8, pg. 558):

Proposition 2.2.4.Let X be a projective L-variety, ang an L-linearized invertible sheaf on
X. Denote as usual by pG| (X) — A the projection. Then, there is a natural isomorphism

R p.GL(L) = GL(H' (X, £)7) (2.8)
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of vector bundles on A. In particular, for+ 0,
PLGL(L) = GL(H(X, £))

Hence, the direct image of G.L) on the abelian variety A is a vector bundle of rank equal to
dim(HO(X, £)).

Proof: We show that both sides of (2.8) pull back under the natural projegtio® — Ato
the samd_-linearized vector bundle o@. The claim then follows from the theory of faithfully
flat descent, sincél, G, A) is a principal fibre bundle.
Let us consider first the right-hand side of (2.8): we see immediately, from the definition of
GL(-), that _ _
7 (GL(H' (X, £H)T)) = praH' (X, £~
whereprs : G x Speck) — Speck) is the second projection. Now, since under the canonical

identificationG x Speak) — G the mappr- coincides with the structure morphispg, of G
over Spek), it follows that

7* (GL(H' (X, £)7)) Z o H (X, L)~

i.e. thatGL(H' (X, £)™) pulls back to the triviaH' (X, £)-bundle overG together with the
L-linearization induced by the action bfon the cohomology.
In order to deal with the left-hand side, we consider the square

G x X—q>G|_(X) ;

pll |’

G—X—A

together with [12], Prop. 9.3, pg. 255 ("cohomology commutes with flat base change”), it
shows that there is a natural isomorphism

T*R pGL(L) = R py, (GFGL(L))

Now, sinceq*G (L) = p5L by definition of G (- ), wherep; : G x X — X is the second
projection, we get _ _
R py, (°GL(L) = R py, (P5L) s

by another application of [12], Prop. 9.3, this time to the square

Gx X2 .x

P1 lwx

G — - Speck)
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we obtain the relation
T*RIPGL(L) = 0§ (R ox,L) = o H (X, L)~

This shows that both*R p, G| (£) andz*G (H' (X, £)~) amount to the samk-linearized
(trivial) vector bundle orG, and with that the proof is concludel

Remark2.2.1 Proposition 2.2.4 can be restated in terms of the funGtof- ): recalling that
p = GL(¢x), (2.8) translates into

R GL(¢x)«GL (L) = GL(R @x,L)

2.3 Ample and very ample line bundles

The aim of this section will be the study of sheaf-theoretical properties of a line bGqdle)
constructed as above out of &nlinearized line bundle on the-variety X. In particular, we

shall show how to obtain ample and very ample line bundles on the vazieyX) out of it.

We shall begin with some ineffective results, obtained from general facts in algebraic geometry,
and then improve them using the methods of [5].

Let us briefly recall some definitions. Lgt: X — Y be a morphism of varieties, anf an
invertible sheaf ornX. The sheaff is said to bevery ample with respect tq (or very ample
overY), if there exist a quasi-coherety-module¢ and an immersion : X — P(§) over

Y such thatL is isomorphic to *Op)(1). The sheafl is said to beample with respect to

q (or ample ovelY) if £2" is very ample with respect tg for some positive integan. This
definition of relative very ampleness, taken from EGA (see [9], II, pg. 79), is not equivalent to
the one that can be found in Hartshorne’s book ([12], pg. 120), which requires9E" for
somen (i.e. P(§) = Py). Here we must adopt Grothendieck’s technically more complicated
definition in order to be able to apply his results from [9], IV and [10] (which would not be
available otherwise). Note that Hartshorne’s and Grothendieck’s notions of "very ample over
k” coincide, since a quasi-coherefispe-module& corresponds to &-vector space, and so
P(&) = IP} for somen.

The following technical result will be useful later:

Lemma 2.3.1.Letq: X — Y be a morphism of varieties, agtlan invertible sheaf on X, very
ample with respect to q. Then, 4 is a quasi-coheren®y-module and there exists a closed
immersion i: X < P(g..L) over Y such thal = i*Op(q,.,)(1).

Proof: See [9], II, pp. 79-80H
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The lemma states that (in our case of varieties) very ampleness can be defined by means of the
sheafé = q,L.

We are now ready to state the first result of this section. Our notations are the same as in the
previous one:G is a connected algebraic group,its largest linear and connected algebraic
subgroup A the abelian varietys/L andG (X) resp.G| (L) the fibre bundle oveA associ-

ated to arlL-variety X resp. the line bundle o0& (X) associated to ah-linearized line bundle

L on X.

Lemma 2.3.2. Assume thai’ is ample (resp. very ample) on X. Then, the line bundlé.3
is relatively ample (resp. relatively very ample) with respect to the natural projectian p
GL(X) —> A.

Proof: Let .£ be ample onX, i.e. ample relatively to the structure morphisth— Speck).
Since relative ampleness is stable under base change (see [9], Vol. Il, Prop. (4.6.13)(iii), pg.
91), it follows thatp3.L is ample relatively tqp; : G x X — G. From Lemma 2.1.6, together
with the cartesian diagram
Gx X—=GL(X)

L

G A

it follows that G (£) is ample relatively tap : G| (X) — A. If £ is very ample, the proof is
the same, with [9], Vol. Il, Prop. (4.4.10) instead of [9], Vol. II, Prop. (4.6.1B).

The lemma shows that, in general, the line bur@|g L) is not enough for a projective em-
bedding ofG| (X), since itis only very ample ovek. In order to get a very ample line bundle,
we have to consider sheaves of the typiefo ® G (L), WhereLg is a sheaf orA. That is, we
shall consider the map
Pic(A) x Pict(X) — Pic(GL(X))
(Lo, L) > p*Lo® GL(L)

Lemma 2.3.3.

1. LetLpbe ample on A, and lef be ample on X. Then, there is a natural numbgsuach
that
P*LE" ® GL(L)

is ample on G (X) for all n > ng.
2. Let Lo be very ample on A, and lef be very ample on X. Then, there is a natural

number ry such that
P LE" ® GL(L)

is very ample on G(X) for all n > noq.
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Proof:

1. SinceGy (L) is ample relatively tgp : G| (X) — A, it follows from [9], Vol. 11, Prop.
(4.6.13)(ii), pg. 91 thap*cﬁg?” ® GL (L) is ample relatively to Spek), i.e. ample, ifn
is large enough.

2. The statement is again a consequence of Lemma 2.3.2, together with [9], Vol. IlI, Prop.
(4.4.10).m

Lemma 2.3.3 is enough in order to show t&at(X) is a projective variety, iX is projective and

L is an ampleL-linearized bundle. But it does not give any informationrmgn our next aim

is to show that this number can be chosen to be equal to one. This is proven for commutative
algebraic groups in [5], but the commutativity does not play a special role in the proof. The
idea is to embed5 (X) in the projective space bund® ¥), where¥# is the direct image of

GL (£) on the abelian variety, and to use the properties &f to construct a very ample line
bundle onP(F).

We begin by recalling some definitions. A vector bun#llen an abelian variety is said to be
homogeneoysf TV =V for all x € A. In particular, Pi€(A) consists of the homogeneous

line bundles (see [21]). A vector bundi¢is said to beunipotentif it admits a filtration

O=UgCUL1C...CU=U

such thatllj /Uj—1 = Oafori = 1,...,n (clearly,n = rank(U)). We will denote by WA)

the set of all unipotent vector bundles #n

All homogeneous vector bundles on an abelian variety can be constructed out of homogeneous
line bundles and unipotent vector bundles as follows:

Theorem 2.3.4 (Matsushima, Morimoto, Miyanishi, Mukai). Let 'V be a vector bundle on
an abelian variety A. Then, the following conditions are equivalent:

1. Vis homogeneous ;

2. there exist line bundle®; in Pic’(A) and vector bundle®(; € U(A),i =1,..., m such
that

12

v (P U) .

m
i=1
Proof: See [20], Thm. 4.17, pg. 25@

Remark2.3.1 Keeping the notation of the theorem, it is clear that

rank(V) = ) " rank(U;)

i=1
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By the following proposition, Theorem 2.3.4 applies to the vector bupd® (L):

Proposition 2.3.5.Let £ be an L-linearized, invertible sheaf on the projective L-variety X.
Then the vector bundle, & (£) on A is homogeneous.

Proof: Let Ty : A — A denote translation on the abelian vari&yy x € A. Our aim is to
show thatT p,GL (L) = p.GL (L) forall x € A.
First of all, let us fix some notations. Denote by : G — G left translation onG by an

elementg; this map induces the translation mgp** := rg x Idx : G x X — G x X, which

is compatible with the action df, and so a mangL(X) : GL(X) = G (X): the commutative

square

erX

G x X—=G x X
q) |a
TE?L(X)
GL(X) —=GL(X)
shows that the relation
ISL(X)oq :qotgxx (2.9)
holds, whereq : G x X — G (X) denotes the quotient map. Consider furthermore the
commutative diagram
GxX—-G2=A ;
Ql/ /
GL(X)
the morphisms
Tn(g) op: GL(X) — A
and
porg X :GL(X) — A
pull back by means af : G x X — G| (X) to the saméd_-equivariant morphisnd x X — A:

(Te@oP)od = Tugo(rop)=(rop)org =

= po(qo‘l,'gxx):(pofé;'-(x))oq

and by the universal property of the quoti€k X — G| (X) it follows that they are the same:
we get the relation
Tn(g) op=7po ‘L’SL(X) . (210)

Let £ be as above, and’ := p3.L be its inverse image o@ x X, with the natural linearization
obtained out of thé_-linearization of.L as in Prop. 2.2.1. As we have already seen, there is a
natural isomorphism

L= g*GL(L) (2.11)
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of L-linearized bundles 06 x X. This givesrise, by means of Lemma 2.2.2, to an isomorphism

(rgxx)* £ <I§Xx)* qGL(L) (2.12)

again compatibly with linearizations. Singe o r$** = py, the left-hand side of (2.12)
becomes

* *
<‘L’§XX) £/ o~ (TQ?XX) p§£ ~ p§£ — £/

canonically, and so it i&-isomorphic toq*G (£) by (2.11). Furthermore, an application of
(2.9) to the right-hand side of (2.12) yields the canonical homomorphism

() areLw) =g (¢-9) G
so that (2.12) becomes an isomorphism
q"GL(L) = q" (1 9) GL(L)
of L-linearized sheaves d& x X, which descends in a natural way to to an isomorphism
GL(L) = (z§L<X>)* GL(L) . (2.13)

Let us now consider the relation (2.10): it amounts to the commutativity of the square

IGL(X)
GL(X) —> GL(X) . (2.14)
pl lp
Tx
A (9 A

From the relation (2.13), we g, (rgGL(X)>* GL(L) = pGL(L). Proposition 9.3, pg. 255

of [12] states that the higher direct image funcBp, commutes with a flat morphism of the
base; in particular, since the direct image fungprcoincides withRp,, it follows from the
commutative square (2.14) that

p. (78-) GL(L) = T P.GL(L)

holds, and so that
T P<GL(L) = pGL(L)

holds for allg € G; sincer : G — Als surjective, this has the consequence that

TS pGL(L) = pGL(L)
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forall x € A, i.e. p,GL (L) is homogeneoud
Together with Theorem 2.3.4, the lemma gives an additive decomposition

POLL =P P @M , £ ePidA . WeUA
i

This fact can be restated as follows (see also [14], 81 and [5], 8lI.1):

Corollary 2.3.6. Let £ be an L-linearized line bundle on the projective L-variety X. Then, the
vector bundle pG| (L£) on A admits a filtration

O=FoCF1C...C Fn=p:GL(L) , n=dimHOX, £) (2.15)
such that#; /# _1 € PIP(A),i =1,...,n.
Proof: We write again

PGL(L) =P (P © W)
i=1

with # € Pic®(A) and'W; unipotentj = 1, ..., m. To the'W; belong filtrations
O =w2cwPc...cw™ =mw

such thatw! ™/ w =9, j=1,... .n,i=1....m
Consider the filtration given by

O=PoW2crPrewPc ... crioaW™ =2 0WcC
c(3>1®w1)@(g>2®w§°>)c c(g>1®w1)ea(g>2®wz<”2))c...

m
. CEPH@ @MW) = p.GL(L)
i=1

It has the properties stated in the corollary, since the quotient of two successive terms is isomor-
phic to somepj, and therefore it lies in PcA).
The fact than = dim HO(X, .£) follows from Proposition 2.2.48

Remark2.3.2 AssumingL solvable, we could have recovered the filtration from an application
of the Lie-Kolchin Theorem to the representationLobn HO(X, .£), and using the functorial
properties ofG () as in [14], Prop. 1.9, sincp,GL (L) = G (H(X, .£)™).

The filtration in Corollary 2.3.6 is required in order to apply the following, crucial result from

[5]:
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Lemma 2.3.7 (Faltings-Wistholz). Let A be an abelian variety, and 1t be a vector bundle
on A, such that there is a filtration

{O)=FfoCcFC...CFH=F

with F /%1 € PicO(A) fori = 1,...,r. Then, ifLg is a very ample line bundle on A, the
line bundleM = g*£Lo ® O(1) is very ample on the projective space bunBleF), where
g : P(¥) — A denotes the canonical projection.

Proof: See [5], Lemma 2, pg. 188

At this point, we have collected all elements for the proof of the announced strengthening of
Lemma 2.3.3:

Theorem 2.3.8.Let
4

0 L G A 0

be an extension of an abelian variety with a connected linear algebraic group. Let X be a
projective L-variety andC an L-linearized, very ample line bundle on X. L&g be a very
ample line bundle on A. Then, the line bundle

P*Lo ® GL(L)
is very ample on G(X).

Proof: Lemma 2.3.2 shows th& (L£) is very ample with respect to the magp G| (X) — A.
With Lemma 2.3.1 it follows that there is a natural immersion

i1 GL(X) = P(p«GL (L))

over A such that
I *Opp,6L(£) (1) = GL(L)

Lemma 2.3.7 and Corollary 2.3.6 show that the line bundle
M:=qQ*°Lo® O(1)

(whereq : P(p.GL (L)) — Aisthe natural projection) is very ample Bop, G| (L£)); together
with the commutative diagram

GL(X)—— > P(p,GL (L))

St
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this shows that
M EIQ*LoRITOL) = p*Lo® GL(L)

is very ample orG (X). &

An immediate consequence of the Theorem is the following

Corollary 2.3.9. With the same notations as in Theorem 2.3.8, assumeflfesp. .L£o) is an
ample, L-linearized line bundle on X (resp. an ample line bundle on A). Thefy ® G (L)
is ample on G (X).

Proof: Letn; andn; be positive integers such th#&®™ resp. L3™ is very ample orX resp.
on Aform > niresp.m > ny (see [12], Ex. 7.5, pg. 169). Let:= max(ny, n2). Then,

P LI @ GL(LEM) = (p* Lo ® GL(L))™"

is very ample orG (X) by Thm. 2.3.8, and this shows thatLo ® G (L) is ample (see [12],
Thm. 7.6, pg. 154)R

The above results show that, provid¥dis a projective variety with an amplé,-linearized
bundleL, G (X) is projective. In 83.4, we shall prove the existence otalinearized ample
line bundle on the completioh of the linear algebraic group, and so thaG = G (L) is
not only proper (see §1.3), but also projective (i.e. that i§ a compactification of, G is a
compactification ofG).



Chapter 3

Further results

In this chapter we draw some consequences from the results of Chapter 2. We begin with some
cohomological computations on the associated bundle (which are essentially the same as in
[37]), and successively we show how they imply results on the projective embeddings of the
group. Then we extend a work of Lange’s (see [17]) on the translation formulas on an algebraic
group, and in the final section we resume the most important results which we have obtained so
far.

3.1 Cohomology and Riemann-Roch

In this section, we study the she@f (L) ® p*Lo constructed in the previous chapter from the
cohomological point of view. For this purpose, we project the sheaf on the abelian atgty
means of the natural projectiqn and use the decomposition of the shpa®, (L) provided

by Mukai’'s Theorem 2.3.4, in order to be able to apply the well-known results on the cohomol-
ogy of a line bundle on an abelian variety.

Let us recall some more facts about abelian varieties. An invertible sheaf an abelian
variety is said to b@ondegenerated the group

K(L) :={X € A| T L = L}

is finite. In Mumford’s book, the following result on the cohomology of a nondegenerate in-
vertible sheaf is proved:

Theorem 3.1.1.1f for a line bundle.£ on an abelian variety AK(L) is finite, there is a unique
integeri=i(L),0<i < dim(A), suchthat H(A, £) =0for p#iand H' (A, £) #0.

Proof: See [21], pg. 150

55
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The number is theindexof the nondegenerate sheéf
As an application of this vanishing theorem, we get the following result on the cohomology of
the sheaf5 (£) ® p*Lo:

Theorem 3.1.2.Let Lo be a nondegenerate, invertible sheaf on the abelian variety AL et
an L-linearized invertible sheaf on the projective L-variety X, and £) the sheaf on G(X)
constructed previously. Assume that (X, .£) = 0for d > 0 and leti := i (£o) be the index
of L£o. Then, H(G(X), GL(L£) ® p*Lo) # Oifand only ifd=1i.

Proof. (see also [37], Thm. 6.1). We first show that, in the situation of the theorem, one can
compute the cohomology on the direct image, i.e.

HY(GL(X), GL(L) ® p*Lo) = HY (A, p. (GL(L) ® p*Lo))

A sufficient condition (see [12], Ex. 8.1, pg. 252) is the vanishing of the the direct images
R p: (GL(L) ® p*Lop) fori > 0. Since, by the projection formula,

R p. (GL(L) ® p*Lo) = R p.GL(L) ® Lo

(see [12], Ex. 8.3, pg. 253), it will be sufficient thRt p,GL (L) = 0 fori > 0. But this
follows from the conditiorH' (X, £) = 0 since, by Prop. 2.2.4,

R pGL(L) = GL(H (X, £)7)
This proves that
HA(GL(X), GL(L) ® p*Lo) = HY (A, p, (GL(L) ® p*Lo)) = HI(A, psGL(L) ® Lo)

(the latter again by the projection formula).
As we showed above, G| (L) is an homogeneous vector bundleArand so it can be written
in the form

k
pGLL =P (P o U;) .
j=1

with 2; € Pic(A) andU; € U(A). Hence,

k
HY(A, p.GL(L) ® Lo) = D HU(A, 2 ® Uj ® Lo)

j=1
By [16], Cor. 2, pg. 100, we can find for eaghanx; € A such that?; = X*]_Jio ® £§"1,
since?j € Pic’(A). From this, it follows that?} ® U; ® Lo = T, Lo ® Uj, and so that

k
HY(A, p.GL(L) ® Lo) = P HU(A, T Lo® Uj)
j=1
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Recall that eacfu j, being unipotent, admits a filtration

(_nj -1
J

nj)

Oz‘uﬁo)c‘uﬁl)c...c‘u cu” =u

with trivial quotients. Proceeding by induction bpwe will now show that the vector space
HY(A, Ty Lo ® ‘uj')) is trivial if and only ifd # i, forl = 1,...,nj. Forl = 1, we have,

since@p = u}l)/uﬁo) = u}l),
HYA, T Lo® ULY) = HUA T £Lo)
and this is trivial if and only ifd # i. Now assume that the hypothesis
HIAT LU ) =0 =  d#i
holds forl’ < |. The short exact sequence
0— Ty Lo®@ U™ — T Lo®@ U — T Lo — 0
gives rise to the long exact cohomology sequence
o HYA T Lo® UNTY) — HIA T Lo® U) — HUA T Lo) — -+

Letd #i(Lp). Then, as aboveH9(A, T)fj Lo) = 0. Furthermore, by the induction hypothesis,

HI(A. T, Lo@U ™) = 0,and scHI(A, T Lo®U{”) = 0. If, on the other side] = i (Lo),
we get the sequence

0— HYUA T Lo® U] ) — HUA T} Lo® UY) — HI(A, T} Lo) — O

Here we haveH9(A, T;j Lo) # 0; from the short exact sequence, it follows immediately that
HI(A, T Lo® UL) # 0.

This concludes the proof, sindéd(G_ (X), GL(L£) ® p*Lo) is the direct sum ovej of the
cohomology group$i®(A, T¢ Lo® U;). B

Remark3.1.1 The use of the filtration oil; in the proof is equivalent to the use of the filtration
of p,GL (L) in [37], Thm. 6.1.

If one assumes thati%(A, Lg) # 0, ampleness and nondegeneracy are equivalent properties
(see for instance [19], Prop. 7.1, pg. 33). This is the cas€pit= Lo(D) for an effective
divisor D on the abelian variety (as in [21], Application 1, pg. 60). A direct consequence is the

Corollary 3.1.3. Let Lo be an ample invertible sheaf on A, with®tA, £o) # 0. Let.L£
and X be as in the Theorem. Then%(&_ (X), GL(L) ® p*Lo) # 0 and furthermore
HY(GL(X), GL(L) ® p*Lo) =0foralld > 0.
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We now compute the Euler characteristic

X(GL(L) ® p*Lo) = Y _(=1)' dim (H'(GL(X), GL(L) ® p*Lo))

of the sheaf5 (£) ® p*Lg as a function ofy (Lo).

Theorem 3.1.4.Let Lo be an invertible sheaf on the abelian variety A, and(G) the line
bundle on G (X) constructed above. Then,

X(GL(L) ® p*Lo) = dim (HO(X, £)) - x(Lo)

Proof: As in the proof of Theorem 3.1.2, a combined application of Mukai's Theorem and the
projection formula yields

k k

X(GLL) ® p*Lo) = x | Lo®EP P @ Uj | =) x(Lo® Pj ® U))
j=1 j=1

with Pj € Pic(A) andU;j € U(A), and we geky, ..., Xk € Awith Pj = TX*J_ Lo® £89_1, SO
that

X(Lo® Pj @ Uj) = x(Ty; Lo® Uj)
We compute this Euler characteristic as follows: from the filtration

(nj)
j

(nj—1)
j
with trivial quotients, we get again the exact sequences

o=u’cu’c...cu cu’ =u
0— Ty Lo® U™ — TFLo® UL — Ty Lo — 0
forl =0,...,nj, sothat
X (T Lo® U) = x (Ty Lo ® UL ™) + x (T Lo)
y , Ex. 5.1, pg. . An iterated application of this relation gives
by [12], Ex. 5.1 230). An iterated licat f this relat
X (T Lo® Uj) =nj - x(Ty; Lo) = Nj - x(Lo)

and so

k
X(GL(L) ® p*Lo) = Y nj - x(Lo) = rank p.Gi (L)) - x (Lo)
j=1

This concludes the proof since, as showed in Prop. 2.2.4, the rapl@f(L) is equal to the
dimension ofH%(X, .£). &

We recall the Riemann-Roch Theorem for an invertible sheaf on an abelian variety:
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Theorem 3.1.5.For a line bundleLg on an n-dimensional abelian variety A, we have

(£0)

n! ’

x(Lo) =

Where(£8) denotes the n-fold self intersection numbeigfe Pic(A).

Proof: See [21], pg. 1500

From this, together with Theorem 3.1.4, we get the following resul&p(L) ® p*Lo:

Corollary 3.1.6. Let G be a connected algebraic group, L its largest linear and connected
subgroup and A the abelian variety/G. Let X be a projective L-varietyf an L-linearized
invertible sheaf on X andlp a nondegenerate, invertible sheaf on A. Lgt(@&) be the line
bundle constructed above on the variety &), and p: G| (X) — A the natural projection.
Then,

dim(A)
GL(L) ® p*Lo) =dim (HO(X, £ (£0 )
X(GL(L) ® p*Lo) = |m( (X, ))W
If £ andLp are both very ample, we know from Theorem 2.3.8 Bat.L) ® p*Lo is also
very ample. This implies, with Theorem 3.1.2, that its Euler characteristic coincides with the
dimension of the space of its global sections. Hence, the corollary provides an upper bound for
the dimension of a projective embedding®f (X).

3.2 Normal generation and normal presentation

We describe two further applications of the vanishing theorem 3.1.2. The first one regards
the projective normality of the embedding of the vari€y(X) in projective space, while the
second one gives conditions under which the embedded variety is defined by homogeneous
polynomials of degree two.

Let X be a projective variety, ang an ample line bundle oX. Following [22], we callL£
normally generatedf the natural map

HO(X, £)®% — HO(X, £5%

is surjective for alk > 1. By [22], pp. 38-39, if£ is normally generated, then it is very ample,
and X is projectively normal with respect to the embeddkg— PM = P(HO(X, .£)).

The following criterion for normal generation is also taken from [22]: for any two coherent
sheavesF and 4 on X, define two groupsR (¥, ) and$(¥, é) by means of the exact se-
quence

0— R(F,9) — HOX, F) ok HOX, §) 5 HO(X, F ®ox §) — 8(F,9) - 0 |
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l.e. letR(¥F, 4) and8(F, §) be respectively the kernel and the cokernel of the natural map
¥. Then, the ample sheaf on X is normally generated, if and only #(.£%', .£) = 0 for all

i > 1.

The following theorem, the so-called Generalized Lemma of Castelnuovo, is very useful in this
context, since it relates projective normality to cohomology:

Theorem 3.2.1 (Mumford). Let £ be an ample, invertible sheaf on a projective variety X,
generated by its global sections. Supp@sés a coherent sheaf on X, such that

HX, F@L2H =0 , i>1
Then
1. HX, F L) =0,ifi+j>0,i >1
2. 8(F @ LY, £)=0,if i >0.
Proof: See [22], pp. 41 and fll

Consider again the sheat := G| (L) ® p*Lo on Gy (X), constructed out of ah-linearized
sheaf.£ on X and a nondegenerate invertible shé&afon A. As in [22], Theorem 3, pg. 45,

an application of the Generalized Lemma of Castelnuovo, together with the Vanishing Theorem
3.1.2, yields the following result:

Lemma 3.2.2.Let L and Lo be ample and generated by their global sections, &hds above.
Then
/S(M(X)k’ M@Z) -0

ifk >dimGL(X)+1and¢ > 1.

Proof:(see also [22], Thm. 3, pg. 45) Let firét= 1, and set in the hypotheses of Theorem
3.2.1F := M® and.L := M. The invertible sheaf is ample (Cor. 2.3.9) and generated by
its global sections (since bottt Lo andG| (L) are, for the latter see pg. 45). Furthermore,

H (GL(X), F @ L&) = H (G (X), M®KT).

If i > dimGL(X) 4+ 1, cohomology vanishes by the Grothendieck Vanishing Theorem (see
[12], pg. 208). If 1<i < dim G (X), we havek —i > 0, and

Hi(GL(X), M®k_i) — HI(GL(X), GL(°C®k_i) ® p*£(%§k—i) -0

by "our” vanishing theorem, sinoB (£2k1) @ p*£3* ™ = (GL(L) ® p*Lo)® is again
very ample. This proves th&t(M®K, M) = 0 fork > dim G (X) + 1. Explicitely, that means

HO(GL(X), M®) @ HOGL(X), M) — HOGL(X), MEKTT
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is surjective, itk > dimG( (X) + 1. By an inductive argument, one gets surjectivity for

HO(GL(X), M®) @ HOGL(X), M)®* N HO(GL (X), MEKHE)
if £ > 1. Now, sincey factorizes through the maps

HO(GL(X), M®) @ HOGL(X), M)®¢ — HOGL(X), MZK) ® HOGL(X), M®)
—  HOGL(X), MEKHY

it follows that the latter is also surjective fér> 1, if k > dimG_(X) 4+ 1. That means by
definition
S(MB*, M®Y =0

This concludes the prool

In particular, fori := M@IMCLCO+L e gets(M®', M) = O for alli > 1. By the criterion
for normal generation, together with Theorem 2.3.8, we get the following

Corollary 3.2.3. Let

0 L G A 0

be an extension of an abelian variety A with a linear algebraic group L.£gbe an ample
line bundle on A, generated by its global sections, and lg{£3 be constructed out of an L-
linearized, ample line bundlg on X, generated by its global sections. Let kdim G (X)+ 1.
Then, the line bundle

G (L8 ® p*LEX

is very ample on G(X), and its global sections define a projectively normal embedding of the
variety G_ (X) (where p denotes again the canonical projection(&) — A).

Let us now sketch the second promised application of the vanishing theorem£ beta
normally generated line bundle on a projective variétylet

Rx = @ H(X, £&%

k>0

be the projective coordinate ring of with respect to its projective embedding Bl =
P(HO(X, £)). Denote byl i the kernel of the natural map

SHOX, £) — HOX, £8K) |
so that

Ix =1

k>0
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is the graded ideal oX in PN:
Rx = R/Ix = P (skHO(x, £)/I>(<k)) ,
k>0

whereR = @kzOSkHO(X, L) = K[Xo, ..., Xn]. Again following [22], we call.L normally
presentegf for all k > 2 the natural map

1P ® ST2HOX, £) — 1

is surjective. In that case, the iddal of X in PN is generated by homogeneous polynomials of
degree 2. One says in this case tRas cut out by quadrics

Recall that we defined, for two coherent shea¥eandg, the groupR (¥, §) as the kernel of
the natural mapi(X, ) ® HO(X, §) — HO(X, F ® 4). In [22], the following criterion for
normal presentation is given :

Lemma 3.2.4.Let L be a normally generated invertible sheaf on a projective variety X. Then,
L is normally presented if and only if the natural map

j{((ﬁ@i’ £®J) ® HO(X, £®k) N j{(£®i+k’ £®j)
is surjective foralli j, k > 1.
Proof: See [22], pp. 39-40. Note that we exchanged the roleé®fand.£®!, but this is no
problem, since the proof is symmetriciiand j . B
The following Theorem, which is proven in [22], relates normal presentation to the vanishing
of the higher cohomology groups:

Theorem 3.2.5 (Mumford). Let £ be an ample invertible sheaf on a projective variety X.
Assume that€ is generated by its global sections, and that(M, £®!) = Ofori, | > 1
Then, the natural map

R(£®i, £®]) ® HO(X, £®k) — R(°C®i+k, °C®l)
is surjective, ifi> dimX 4+ 2and j, k > 1.
Proof: See [22], pp. 50-511

Recall the definitions of the varie® (X) and the sheaid = G (L) ® p*Lo on it. By
Theorem 3.2.5, if we set( := MB®IMCLX)+2 the natural map

RME, M®HY @ HOGL(X), M®K) — RMOTTK A(®])

is surjective for alli, j,k > 1, if both £ and £y are ample and generated by their global
sections.
Together with Lemma 3.2.4, we get the following sharpening of Corollary 3.2.3:
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Corollary 3.2.6. Let
0 L G A 0

be an extension of an abelian variety A with a linear algebraic group L.£gbe an ample
line bundle on A, generated by its global sections, and lg{£3 be constructed out of an L-
linearized, ample line bundlg on X, generated by its global sections. Let kdim G (X)+2.
Then, the line bundle

G (L8 ® prLsX

is very ample on G(X), and its global sections define a projectively normal embedding of the
variety G_(X) in somePM, such that the image of GX) in PM is cut out by quadrics.

3.3 Families of translations

In the previous sections, we showed how it is possible to embed an algebraic group in projective
space. For number-theoretical purposes, it is often convenient to have bounds for the degree of
homogeneous polynomials describing the translation on the group. In his work [17], H. Lange
shows that, for commutative algebraic groups, translation can be described locally by quadratic
forms. The aim of this section will be to extend these results to algebraic groups without the
restriction of commutativity. As a matter of fact, we shall show that, once the results of the
previous sections are known, Lange’s ideas can be immediately applied also to the noncommu-
tative case.

We begin by recalling the notations of [17], and adapting them to our purposes. Let, as before,

T

0 L G A 0

be an extension of an abelian variety with a linear algebraic groupX lbeta projective variety
with an action ofL. As before, we construct the projective vari&y (X) and, if £ is anL-
linearized line bundle oiX, the line bundlés (L) on G (X). If £ is very ample, and’g is a
very ample line bundle on the abelian varigtywe showed that

M = GL(L) ® p*Lo

(where we denote again y: G (X) — A the natural map) is very ample. Furthermore, by
a result in the previous section, we can assume that the projective embedding defisteid by
projectively normal (since we can always replac@andLg by suitable powers).

As we have already see@, (X) admits in a natural way an action @fwhich we shall denote
by¢ : Gx GL(X) = GL(X). LetU = Spe¢R) be a nonempty affine open set®) following
[17], we call the map

(P1,9) :U x GL(X) —> U x GL(X)
(U, g9) — (u,ug
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(p1 denoting the first projection) thiamily of translations o5 (X) parametrized by . Now
assume thaG (X) is projectively embedded as above. MetC U x G (X) be a nonempty
open subset armal > 1 an integer. The familyp, ¢) : U x G| (X) — U x G (X) is said to be
described o by forms of degrea, if there existfp, ..., fy € R[Xop, ..., Xn] homogeneous
of degreen such that

(P, #)(U, @) = (U, fo(u; X(9)), ..., fn(U; X(9))) V(u,9) eV

By the notationf; (u; X(g)) we mean that coordinates ofin a local chart are inserted in the
coefficients of the polynomiali € R[Xo, ..., Xn], andX(g) = (Xo(Q), ..., Xn(Q)) denote
projective coordinates fay € G| (X) € PN. If U x G (X) admits an open covél = {V;}ic|
such that ps, ¢) is described oV, by forms of degrea for everyi € |, one says thatpi, ¢)
can be describedompletelyonU x G| (X) by forms of degree.

Following [17], we shall now show that in our casean always be chosen to be equal to 2 (i.e.
(p1, @) is described byyuadratidorms onU x G (X)).

Assume again thab, (X) is embedded if?N by means of the invertible sheaf in a projec-
tively normal way, and let) = Spec¢R) as above. Denote b, : U x G| (X) — G (X) the
second projection. Then, the sheaf

£ = p3M = p; (GL(L) ® p*Lo)

induces an embedding
U x GL(X) = U x PN =P))

The following proposition expresses the fact that a family of translations is described by forms
of degreen as above in terms of the shesf

Proposition 3.3.1. With the notations above, assume that the invertible sheaf
(P §) L £

on U x G (X) is generated by its global sections; then, the family of translatignse) can
be described completely by forms of degree n or G (X).

Proof: See [17], Lemma 2, pg. 268

We are ready to prove the

Theorem 3.3.2.Let G (X) — PN be a projectively normal embedding as above. Lgkg
G be a given point. Then, there is an open neighborhood Ugddugh that the family of
translations(p1, ¢) can be described completely by quadratic forms o (& (X).

According to Proposition 3.3.1, the Theorem follows from the
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Lemma 3.3.3. Let the notations be as above. For evepyggG there is an open neighborhood

U <€ G containing g such that(ps, ¢)*I®_l ® %%is generated by its global sections on
U x GL(X).

Proof: As we already noticed in the proof of Proposition 2.3%,(L£) is invariant under the
action ofG on G (X):

(rgL(X)>* GL(L)=EGL (L) VgeG
This has the consequence that
$*GL(L) ® P3GL(L® HigxaL ) = (tgL(x)) GL(L) ®GL(L)® L
= Og.x) VgeG

(under the natural identificatidg} x G (X) = G (X)). SinceG_ (X) is a complete variety,
the Seesaw Theorem ([21], Cor. 6, pg. 54) implies the existence of a line b#noieG such
that

¢*GL(L) ® P3GL(L® T = pj2

¢*GL(L) = p1P Q@ P3GL(L)

Choose an open neighborhodg of go such that? |y, = Ou,, and so
¢*GL(L) = p5GL(L) onUg x GL(X)

Recall thatf = pj (GL(£) ® p*Lo); onU1 x G (X), we have

(P L2 TR L® = (prd)*ph (GL(L) ® P*Lo)® " ® pj (GL(L) ® p*Lo)™ =

= ¢*GLL® T ®* P LY T ® PIGL(LTZ ® prp* Ly =
= ¢ p* LY@ PP LY ® PEGL(L)

Together with the relations

po¢p = Mo(mr xp):Up xGL(X)— A
and popz = Pro(@xp):UxGL(X)— A

wherem : A x A — Ais the product map oA, 7 : G — Alis the quotient map anp is the
second projection oA x A, we get

(P @) L™ @ LT = (v x p (L5 @ P2 L) © PEGLL)
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The line bundle£ is very ample, and so generated by its global sectionXphy Corollary
2.2.3 and the remark just thereafter the same holdGfof.L) , and so forp;G (L), too.
Therefore, it will be sufficient to show that there is a neighborhdod- U1 of x such that

(T x p)* (m*ocgz"l ® E*ocffz) is effective orlJ x G| (X). This is implied by the existence of
a neighborhoodV of (gp) in 7 (Uy) such tham*oﬁgs"l@E*Ji?Z is effective onW x A, since
then(r x p)* (m*oc?—l ® m*x?z) is effective on( x p)~L(W x A) = 7~ 1(W) x G| (X) €

Ui x GL(X).
By [18], Prop. 2.3, pg. 609, the line bundle

is ample and effective, ifo ist, and in our case this holds singg is very ample. We choose
the open se¥V C Ain such a way thatg is trivial on W. It follows that

M L8 1 © Pr*LE% @ P2 LI wna = ML @ P2* LA

and so tham*.LY* @ Pz* L7 is effective onW x A.

We setU := 7 ~1(W); by the discussion abovep;, qb)*f@_l ®f®2 is generated by its global
sections oiJ x G (X), and so the proof is concludell.

Assume now thaX = L, anL-equivariant, projective completion of the linear algebraic group
L, and so thaG (X) = G_(L) = G is aG-equivariant, projectively normal completion Gf
Then,G x G can be embedded IHN x PN, and the coefficients of the polynomidi .. ., fy €
R[Xo, ..., Xn] describing a family of translations oi € U x G can be seen as rational
functions in the homogeneous coordinafgs. . ., Ty of the firstPN. After eventually passing

to smaller open setg, we can assume that the coefficientsfef. .., fy are homogeneous in
To, ..., Tn, all of the same degree. We get the following

Corollary 3.3.4. LetG — PN be a projectively normal embedding, such as the one constructed
above. Then, there is an affine open covering= {Vi}ic; of G x G, and for every ic |

there are bihomogeneous polynomiafs .f. ., f,i\l € k[To, ..., Tn, Xo, ..., Xn] Of degree 2in
Xo, ..., XN such that

9d = #(9,9) = (1§ (T(@), X(@)), ..., Tl (T(9), X(@)))

for every(g, @) € V.

LActually, the Proposition in [18] asserts that LS~ @ Pr* L5 @ Pz* £ is ample and effective, but a rapid
check shows that the exponents@f‘.Lo andpz*Lo are interchangeable (this is implicitely meant in the main
Theorem of [18]).
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3.4 Serre’s compactification

In this section, we discuss some explicit compactifications for the linear part of an algebraic
group, and we draw some consequences from the theory exposed up to this point.

As we already noticed, in order to get a compactification of a connected algebraic group by
Serre’s method, one has to start by compactifying the tibirethe fibration

T

0 L G A 0

given by Chevalley’s theorem, and to do it in an equivariant way. A general strategy to follow in
order to obtain such a compactification is to consider an actidnaf a suitable spad@N such

that the stabilizet.y of some pointx € PN is trivial. In this case, we shall be able to identify
the groupL = L /Ly with the orbitL - x. By [13], 8.3, pg. 60 the closure - x of the orbit is

itself invariant under the action a@f, andL - x is open in its closure. Therefore, the projective
variety L := L - x can be considered as an equivariant compactificatidn, @bntainingL as

an open, invariant subset.

The existenceof such a compactification is a consequence of the following

Theorem 3.4.1 (Sumihiro).Let L be a connected linear algebraic group and let Y be a normal
quasi-projective variety on which L acts morphically. Then there is a projective embedding
¥ : Y — PN and a group representatiop : L — PGLy such thato(g)y (y) = v (gy) for
everyge LandyeY.

Proof: See [31], Thm. 1, pg. 9

Indeed, if we seY := L andy := e, the neutral element df, the relationo(g)v (eL) = ¥ (Q)
shows thalL can be equivariantly embedded®f as the orbit ofy := v (e.) € PN under the
action ofL onPN induced by the representatipn

In many cases, as shown by the following examples, the arbit is dense ifPN, so that one
obtains the equivariant completidn= P4mL),

Example 3.4.1.(Commutative algebraic grouplset L be a commutative and connected linear
algebraic group (as usual, defined over an algebraically closedkfiefccharacteristic zero).
Then, the Jordan decomposition

L=Lsgx Ly

(whereLs andL, denote the semisimple resp. unipotent part pfee [13], pp. 98-100) allows

us to identifyL with a direct product of multiplicative and additive groups. Indeed, the closed,
connected subgroups consists of commuting semisimple elements, and so it is isomorphic to
a torusGm (k)m, while the unipotent pait , is a successive extension of additive groGisk),
which can only be trivial (see [28], 82.7, pg. 172). Hence, we can write

L=Gi" x Gl ., €m+ La =dim(L)
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(this result was first proven by |. Barsotti, see [1], Thm. 3.3, pg. 104). Each fagiaesp.
Ga can be naturally embedded in an equivariant way (see for instance [29] or [37]); this
gives immediately the projective, equivariant completios- (IP ) .

Another method by which one can constriic{see [14], pp. 569-570) is the following: we
consider the representation lof= anm X Gga in PGL,(k), n = dim(L) given by

0 :GiMx G — GlLpy1(k)

1 O ... 0 0 ... O]
0 a . :
' 0
(@1, ..oy Oy, X1, -5 On) > 0 ... 0 a, O
ap+1 O 0 1
: 0
| an 0O ............ 0 1]

This gives us an action df onP" given explicitely by
n:LxP" — P"
(0, X) = a-X:=[Xo:a1Xy:...:0Xey @ Qpp+1X0 + Xepptd © - - - AnXo + Xn]
(where the square brackets stand for homogeneous coordinates), and the arbftthe point

X=[1:1:...:1:0:...:01eP"
tm la

can be identified with_ itself, since the isotropy groupy is trivial. FurthermorelL - x is
dense inP" (note that diniL) = dim(P") = n). This means that = P" is an equivariant
compactification oL.

As special cases of this compactification, we recover(fgy, £3) = (1, 0) resp. (¢m, €a) =
(0, 1) the completions foz, resp.Gg given in [37], 81/2.

Example 3.4.2.(The general linear grojpet L = GLp(k), and denote by 1resp. p. the
trivial representation of onk and the identity representation bfonk". Define a new repre-
sentation

p=1@pL®...0pL

n

of Lonk@ K" @ ... ® K" = k"*+1. This representation can also be interpreted as a left action
of L onk & Mp(k), where M, (k) denotes th&-vector space off x n-matrices with entries in

k; let namelyp, (9) = (gij)ﬂjzl elL,a e kandx = (xij)ﬂjzl € My(Kk): since Gl, acts on

Mp columnwise byp| , we can write

p (@) (e, X) = (a, ((@X)ij))
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where by((gx)ij) we denote matrix multiplication (so thagx)j; = > g OimXmj). This
action ofL onkn*+1 gives rise to an action o, given by

r]:Lx]P’nz — p

(9. X) > g-X:=[Xo: {(gxij)] ,

(and so again to a representationlofn PGL,). Since the poink = [1 : (§jj)] (whered;
denotes the Kronecker delta) has trivial isotropy group, its drbik can be identified with.:
this gives rise to the embedding

L < p"v

(gij) +— [1:(gij)]

Th_e orbit closurel - x coincides withIP’”Z; this means that also in this case we can choose
Pdim(L) as an equivariant compactification.

Example 3.4.3.(Solvable groupd_et L be a connected and solvable group, given as a subgroup
of some GL(V). The action ofL onV fixes a full flag

0 =VoCViC...CVa=V , n=dmV)

of subspaces o¥: this follows from a repeated application of the Lie-Kolchin Theorem (see
[13], pg. 113), which claims that a solvable subgroup of(&).has a common eigenvector in
V.

Choose the representationlofon

W=VieVod...dV,
an appropriate choice of a basisWwfidentifiesL with the full diagonal group
Dn = {(@j) € GLn(k) |&; =0 if i>j} ;

in particular, we can again let it act on a vector space of matrices, the subspace of upper triangu-
lar matrices in M (i.e. we "forget” the entries which lie under the the diagonal in the previous
example). Proceeding as with Glwe find an open, equivariant embeddingloin PN, with

N = ”(”T_l) Since this is also the dimension of,Dwe notice that also in this case we can

choosel = pdimL),

Besides an equivariant completiarof the linear part. of an algebraic groufs, Serre’s recipe
for a compactification o6 requires a very ampld,-linearized invertible sheaf oh. SincelL

is equivariantly embedded in a projective sp&e¥ its existence follows from the existence of
an L-linearized invertible sheaf BN (recall Lemma 2.2.2, pg. 43). This is provided by the
following
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Proposition 3.4.2. Let a connected linear algebraic group L act on an algebraic variety X,
proper over k. Letf be an invertible sheaf on X. Then, if X is a normal variety, some power
L8N of £ is always linearizable.

Proof: See [23], Prop. 1.5 and Cor. 1.6, pp. 34-Bb.

If X = PN, it follows from the proposition tha® (n) is linearizable for soma. Of particular
interest is the case = 1, as we shall see later. This holds whenever the Picard grougsof
trivial, as shown by the next lemma. We assume againlttats onPN by means of a faithful
representation in PG&

Lemma 3.4.3.Let L be a connected linear algebraic group, acting on a projective sipace
Assume thaPic(L ) is trivial. Then, the sheafpn (1) admits an L-linearization.

Proof: (see [37], pg. 284) Denote by
u : PGLy x PN — pN

the projective action, and hy: L — PGLy the representation df in PGLy. Then the action
of L onPN is given by

n:,uo(pxldPN):LxIPN—>IP’N

Let us denote byy; : L x PN — L andg : L x PN — PN the natural projections. A
linearization ofOpn (1) is an isomorphism

7 Opn (1) — A5Opn (1)

of sheaves o x PN satisfying the cocycle condition.

We shall denote by; and p, the natural projections of PGLx PN to PGLy andPN respec-
tively. Being a morphism t®N (k) = Projk[Xo, ..., Xn1, 1« can be defined by specifying the
w*(Xi),i =1,...,n(see[12], Thm. 7.1, pg. 150). In our case we have

n
WX =Y piaik) ® ps(Xi) (3.2)
k=0
this gives an isomorphism
1 (Opn (D) = pi (OpoLy (D) ® p3 (Opn (D) (3.2)

(see [23], pg. 33), where we denote BygL, (1) the restriction 00,2,y (1) to PGLy (since
PGLy can be considered as the pricipal open subsgf¥6t2N defined by the nonvanishing of
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the determinant).
The "restriction” of (3.2) toL x PN (i.e. its inverse image with respectox Idpn) gives

7 O0pn (1) = (p x ldpn)* P06 (1) @ (p x Idpn)* p5Opn (1)

The evident relations

Pro(p xldpn) =poqgr and pzo(p x ldpn) =02

show that

(p x ldpn)* P10 (1) = 07 p*Oc(1)
and

(p x Ide)*p§(9PN = q;(Q]P)N D

hold; since PicL) is trivial, it follows that p*Og (1) is trivial on L and so that; p*Oc (1) =
O pn- Followingly,
N (Opn (D) = 05 (Opn (D)

and this shows that (3.1) defines ladinearization ofOpn (1). B

In general, the Picard group of a linear algebraic group cannot be expected to be trivial: for
instance, this is not the case for= PGLy (see [23], pg. 35). But a nice characterization

of a family of groups for which Pic is trivial is given by R. Fossum and B. Iversen in [7]: we
meet again the "special” groups, of which we already made mention in Remark 1.2.5, pg. 23
("special” in the terminology of [27]).

Proposition 3.4.4 (Fossum-lversen)Let L be a linear and connected algebraic group with
the property that all locally isotrivial principal L-bundles are locally trivial. The?ig(L) = 0.

Proof: See [7], Cor. 3.2, pg. 27@
The Proposition allows us to give a list of groups for which Lemma 3.4.3 holds: it comprises

e the general linear group Gl and all its linear subgroupk for which the fibration
GL, — GLp/L is locally trivial ([27], ThéoEeme 2, pg. 1-24);

e all connected and solvable linear algebraic groups ([27], Prop. 14., pg. 1-25), and so in
particular all connected and commutative linear algebraic groups;

e the groups Sk and Sp (these groups, and their direct products, are the only semisimple
groups which are "special”, see [11], @w€me 3, pg. 5-22).
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In any case, the results of this section yield a projective compldtiof a connected linear
algebraic group. and a very ampld, -linearized invertible sheaf onL. Being projective, the
variety L satisfies the finiteness conditi¢R) of page 29, and so if is the largest linear and
connected algebraic subgroup of a connected algebraic @dufollows thatG = G| (L) is

an equivariant completion @&. Together with the results of the previous sections, this implies
the following (qualitative) result:

Theorem 3.4.5.Let G be a connected algebraic group, and L its largest linear and connected
algebraic subgroup. Then, the complete vari@ty= G, (L) is projective, and the projective
embedding of can be chosen in such a way thatis projectively normal and cut out by
quadrics, and such that the translation @nis defined locally by quadratic forms.

The strength of the results of the previous sections lies in their effectivity; if we apply them
more carefully, we obtain a quantitative version of Theorem 3.4.5. We recall once again the
notations: the connected algebraic gr@sis given as an extension

b

0 L G A 0

of an abelian varietyA with a linear algebraic group; L is an equivariant compactification of
L, andL = O(1) is a very amplel-linearized invertible sheaf o satisfyingH' (L, £) = 0
fori > 0. We denote byG = G| (L) the completion ofG and byp : G — A the natural
projection. For a very ample invertible sheéf on A, we denote byM (£, L) the sheaf

M(L, Lo) := GL(L) ® p*Lo
onG.
Theorem 3.4.6.

1. The invertible shea#( (L, Lo) is very ample o1G; its global sections define a projective
embedding o6 in PN, with N = dimHO(L, .£) - dimHO(A, £g) — 1

2. Let k > dim(G) + 1. Then, the global sections of the very ample invertible sheaf
M(L, L£0)®K define a projectively normal embedding®fsuch that there is an affine
open coveringy = {Vi}ic; of G x G and for every ie | there are bihomogeneous
polynomials §, ..., fl, € K[To, ..., Tn, Xo, ..., Xn] of degree 2in X, ..., Xy with

9-x=¢(9,% = (1 (T(@. XX)...., f§ (T©@. X))
for every(g,x) e V; € G x G.

3. Let k > dim(G) + 2. Then, the global sections of the very ample invertible sheaf
M(L, L0)®K define a projectively normal embedding®fsuch that the homogeneous
ideal of the image o6 in projective space is generated by polynomials of degree 2.
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Proof:

1. Follows from Theorem 2.3.8 and Theorem 3.1.4, together with the fackihég) =
dimHO(A, Lo).

2. See Corollaries 3.2.3 and 3.3.4.
3. See Corollary 3.2.aa

Remark3.4.1 If, as in the examples abové, = PI9™L) s a projective space and =
Opamu) (1) is L-linearized, one has ditd%(L, £) = dim(L) + 1. In this case, we get the
effective bound

N = (dim(L) + 1) - dimHO(A, £o) — 1

for the embedding dimension &.
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Chapter 4

An affine analogon

The final chapter is an appendix which can be read independently from the rest of this work. It
is based on V.L. Popov’'s work [24], which was recently brought to our attention by Professor
Wistholz. Although the original idea of using this material in order to improve the results from
Section 3.4 did not bear the hoped fruits, we have chosen to include Popov’s results in our
work since they can be seen as the affine counterpart of what we showed for the quasiprojective
groups (especially Theorems 3.4.5 and 3.4.6).

4.1 Popov’s results on semisimple groups

In [6], D. E. Flath and J. Towber outline a method for the description of the affine coordinate
ring K[G] of a connected and reductive linear algebraic group, defined over an algebraically
closed fieldk of characteristic 0, by means of generators of relations. They formulate a con-
jecture about the structure kfG], which they prove for the classical groups by rather explicit
methods. In [24] V. L. Popov proves the conjecture for the semisimple algebraic groups, and
he goes a step further: incorporating results from [4] and [15], he is able to give a method for
describing the ring[G] out of the fundamental representation€fThe aim of this section is

to briefly resume Popov’s methods and results.

Let alsoG be a reductive and connected algebraic groupBléie a Borel subgroup o,
T a maximal torus oB andU the unipotent radical oB. Let furthermoreB~ be the Borel
subgroup ofG oppositeto B, i.e. the uniquely determined maximal solvable subgrouf of
such thatB N B~ = T, and letU ~ be its unipotent radical. We considdiG] as aG-module
with respect to the action given by the left translation, and we definégsabmodulesS and
S~ of kK[G] as follows:

S = {f ek[G]|f(gu) =f(@,geG, ueU} ,
S = {fekG]|f(guy=1"f(@,geG, ueU}

75
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The G-algebraSis sometimes referred to as tfeg algebraf G, and denoted b *(G) (for
instance in [15]). It admits a direct sum decomposition as follows: denot hythe monoid
of the highest weights of the simp{e-modules (i.e. th&lominant weighs We shall denote
by R(%) a simpleG-module with the highest weighte P, , and byr* the highest weight of
R()*. For anyx € P, ., define aG-submodule

S.:={feS|f(gh=xrb)f(g),geG,be B}

of S. Itis well-known (see for instance [25], pg. 173) tligtis a simpleG-submodule ok[G]
with the highest weight*, and furthermore th& is graded by th&,’s:

s=Ps . S-S=Suw . (4.1)

rE P++

In a similar way, we get a decomposition®f: letwg € Ng(T) be an element of the normalizer
of T such thatweUwy* = U~; then,S™ is obtained fromsS by right translation bywo, and if
we defineS as the right translation d§, by wo we get

S = @ S, S.oS =Sy - (4.2)
)\,EP++
The G-submoduleS is simple, of highest weighit* and it admits the explicit description

S ={feS|fg)=wort)f(g),geG, teT} ,

where the action oNg (T) on the roots is given byl (t) = A(wgltwo).

Let us now consider the homomorphism@{algebras
w:S®kS — K[G]

given by the ruleu(f ® h) := fh. Flath and Towber’s conjecture is formulated in terms of the
morphism:

Conjecture 4.1.1 (Flath, Towbers).

(Sur) u is surjective ,
(Ker) ker(w) is generated by the G-invariant elements.

The conjecture yields the presentation
KIGl = S®k S/ (ker(w)®)

where(ker(11)€) is the ideal inS®k S~ generated by th&-invariant elements in kég).
As we already mentioned, the conjecture is proven for the classical groups in [6]:
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Theorem 4.1.2 (Flath, Towbers). (Surand(Ker) hold if G is any of the groups
SLa(k), GLn(k), SOn(k), Sp,(K)
with n > 1.

Proof: See [6], 83 through 86. Note that, although they are giveik fer C, the proofs work
for any algebraically closed field of characteristic zdib.

As we already mentioned, thanks to Popov the conjecture is known to hold in the semisimple
case:

Theorem 4.1.3 (Popov). (Surpnd(Ker) hold for any connected semisimple algebraic group.

Proof: See [24], Thm. 3 and 4. We do not repeat Popov’s entire proof here: this would take
us too far away, since it requires a considerable amount of invariant theory from [25]. We just
sketch the main geometric constructions behind it, which are quite enlightening, skipping most
of the technical details.

The core of the proof consists in a reformulation of the problem in the language of algebraic
geometry: the ring§&S and S~ are realized as the coordinate rings of affiaevarietiesX and

X~, andG is equivariantly embedded in the producik X~ as a closed orbik - z of a suitable
pointz, so that the ideal kér) can be identified with the ideal @ - zink[X x XT] = S® S™.
Since S is defined as the subring & G] consisting of theU-invariant elements, a natural
candidate forX could seem to be the homogeneous sp@¢e; unfortunately, this space is
only quasi-affine (see [25], pg. 172), and so its coordinate ring does not coincide with its ring
of regular functions. The varieti is constructed as follows: Ig¢hq, ..., As} be a system of
generators foP, ; (i.e. a basis ofundamental dominant weightsand define th&-module

V:=RMA) @ ... R(ks)

(the direct sum of théundamental representatioassociated ta.q, ..., As). Forv; € R(%;) a
highest weight vector,= 1, ..., sandv := (vy, ..., vs) define the morphism
5:G — V

g +—> g-v ;

then,5(G) = G - v, the orbit ofv under the action o5 onV. The restriction of functions from
V to the orbit closurés - v gives rise to an isomorphism

8* :kK[G-v] — S

(for details see [24], pg. 6). Hence we see that we can ch¥oseG - v. The affine variety
X~ can be constructed in an analoguous way: one takes

V¥ =ROD @...® R1LY)
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(whereA is the highest weight of the simp{e-moduleR(4; )*) and, for highest weight vectors
u; of R(A*), one setsw := (wg - U1, ..., wg - Us) andX™ := G - w.
Let nowz := (v, w) € X x X7; the isotropy groups; for the action ofG on X x X~ is
U NU~ = {1c}; hence, we can identif¢d with the orbitG - z, and this gives a (left) equivariant
embedding

I :G— X x X~

This embedding is closed (i.& - zis closed inX x X7) if and only if the comorphism
i*:K[X x X7] — K[G]

(which amounts to the restriction of functions froix X~ to G - 2) is surjective; but the
isomorphisnk[X x X7] = S® S identifiesi* with 1 : S® S— — k[G] and kefu) with the
kernel of the restriction of functions frodd x X~ to G - z. Therefore(Sur) is reduced to the
verification thatG - zis a closed subvariety of x X~.

We shall be very sketchy at this poirg:is the sum of the weight vectots, i = 1,...,s of
weightj andwo - U, i = 1,..., sof weightwoA = —A;j. Hence, 0 is an interior point of the
convex hull of the weights afy, . .., vs, wo- U1, ..., wo - Us. By [24], Thm. 2 this is equivalent

to the closedness @ - zin X x X~, and this provegSur).

A proof of (Ker) can also be derived from the geometric situation: Thm. 5 of [24] shows that,
sinceG - zis closed inX x X~ andGg; is trivial, the kernel of the morphism

KIXx X7] — K[G-Z]
f — flGZ

is generated by its intersection wikliX x X~1©. Under our identifications, this means that
ker() = (ker(w) N (S® S7)€) = (ker(n)®). This provegKer). B

We now begin with Popov’s explicit description kifG] for a semisimple algebraic group. The
first aim is the determination of the kernel pf By (4.1) and (4.2), this algebra admits a
decomposition

(sexs)®= P (s&xs)®

)\.,)\,/E P++

as in [24], (8) an application of Schur’'s Lemma implies that this decomposition reduces to

(s&xs)°= P (s esn)°

L€ P++

Proposition 4.1.4. The restriction of to (S ®x S—)G gives isomorphisms

i (S ek Ss)® = KIGI® =k
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Proof: See [24], Thm. 2R

It follows that for each dominant weightthere is a uniquely determined elembpbof (& Rk S;*)G
such thatu(h,) = h, (e, e) = 1 (wheree denotes the neutral element@). Theh,’s are ex-
actly what is needed for the construction of (ex°:

Theorem 4.1.5 (Popov).Let 1, ..., As be a set of generators for,R. Then, kefu)® coin-
cides with the ideal generated by the set

by =1 by, —1,... hy, — 1}

Proof: See [24], Thm. 71

The elemenh, for a fixedA can be constructed as follows: let
(«,):S xS, —K

be a nonzerds-invariant pairing, and letp;} and{q;} be a pair of dual bases & andS.

respectively; then, the suln; pi ® q; is a nonzero element cQSA ®k S;F)G, independent on
the choice of the bases (see [24], Lemma 1, (ii)); therefore, we can set

h = =i P®d
PR ICETC)

Up to now, we have described the rikig>] as a quotient 065®y S, which is not a priori given
in an explicit way. This algebra can be described by means of the irreducible representations of
G, as showed in [15] and [4]. Popov chooses to follow the more geometric approach from [4].
Assume thaP, ;. admits a free system of generators, i.e. that there gxist.., As} € Py,
s = dim(T) such that each element &f., can be written in a unique way as a positive linear
combination ofrq, . .., Ag (this holds, for instance, I& is simply connected). Consider again
the G-module

V:i=RXx)®...®R0Ms) |,

the direct sum of the corresponding sim@emodules. The decomposition ®f induces in a
natural way aNs-grading of the rin[V] of regular function orV:

KVIZSVH = @ (S*Ra*@...0 S*R(s)Y)

(a1,...,a5)eNS

In particular, ifg € N°is thes-tuple (84, . . ., si) (Wheres;; denotes the Kronecker delta), we
havek[V]g = R(%i)*, and

RAi)* ®k R j)* ifi #j,

KVla e = {SZR(M)* ifi=j.
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TheG-modulek[V]g +¢; (1 <i < j < s) contains a unique simple submodule with the highest
weight A" + )ﬁj‘, the Cartan producof the representationB(4)* and R(xj)*. Let Qjj be its
G-invariant direct complement. It can be determined with the help of Kostant’s Theorem 1.1 of
[15]. Let J be the ideal generated by &)ij, 1 <i < j <s.

Theorem 4.1.6 (Popov).Assume that P, admits a free system of generatdps, ..., As}.
Then, the G-algebras S an¢\k]/J are isomorphic.

Proof: See [24], Thm. 8 for Popov’s geometric version of the proof and [15], Thm. 1 for
Kostant’s original, more algebraic-oriented proof.

The idea behind Popov’s proof goes as follows: in [4], Thm. 4.1, it is shownltiathe ideal

of the closed subvarietg - VY of V in k[V] (whereVY denotes the subset of the invariant
elements); since the proof of Theorem 4.1.3 shows $iatthe affine coordinate ring @& - v

in V, in order to prove the claim it is sufficient to show ti@t v = G - VY. W

Since the ideal is graded, it follows as expected tHat= k[V]/J is a gradeds-algebra. In
particular, we recoveg,; as the image oR(Ai)* under the natural projecticki]V] — S, for
i =1,...,s. OnceSis known, translation bwg € Ng(T) allows one to construcs = S*o.

Remark4.1.1

1. The standard way of linearizing an affine algebraic group (see for instance [13]) is to con-
sider its action on a suitabl@-module, for instance a finite-dimensioratsubmodule
of its affine coordinate ring which contains a set of generators for the algéBia In
Popov’s presentation such module is given by twice all irreducible representati@s of
(once forSand once foIS™).

2. Since kefu)© and the ideall are generated by (inhomogeneous) polynomials of degree
2, it follows that all semisimple connected algebraic groups whose mdpwaidof the
dominant weights is freely generated can be cut out by quadrics in an affine space.

4.2 An application

As an illustration of the usefulness of Popov’s construction, we shall now apply it to the special
linear groupG := SLn (k).

The subgrou® of all lower triangular matrices is a Borel subgroup&fits maximal torust
consists of the diagonal matrices@) and the unipotent radicél of G is the subgroup of all
lower triangular matrices with 1's on the main diagonal. &gtbe the identity representation

of G onk"; then the fundamental representations are given by the irreducible representations

A'og: G — GL(AK")
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forl<r <n-—1(seel8], pg. 234). Lefey, ..., ey} be the standard basekA. With respect
to the above choice d8, the vector

Ehri1A... A€ € AK"

is a maximal vector of the highest weight

n

w= ] t=[]t" .

i=n—r+1 i=1

wheret is a diagonal matrix with entrids, .. ., t, satisfyingt; ...t, = 1. The verifications of
this facts are straightforwarde,_r 11 A ... A &, is invariant under the action & since, for
u € U, ugj is obtained by adding te; a linear combination oj 1, ..., e, and in particular

ue, = e,, and furthermore it is clear that

ANog(t) (Bnrs1 A ... A€) =thry1€hri1 A... Atpen = A (Denry1 A ... AGn

by linearity. The vectoe,_r 11 A ... A &, generates the wholB-moduleR(};) := A"k", since
the action of Sk permutes the one-dimensional subspacdd' of

Let us denote by\; the family of all subsets ofdl, ..., n} with r elements: an element &%
isasetA = {i1,...,Iir}, where we shall always assume thatli, < ... < iy < n. For such
an A, we denote bga the vectog, A ... A g, ; abase folR(),) is then given bylea| A € W, },
andej_r1,..ny is the maximal vector described above.

Let {€}|A e W} € (A"k™)* be the dual base t@a|A € W }. The relation

.....

implies that we can identify the elements of the dual base withigtg minorsof an (n x n)-

matrix. Kostant’s theorem in [15] can then be used in order to determine the relations between
the minors, i.e. the ideal. The result is given by Towber’'s Theorem 3.1 in [33].

Let us denote by 5 the image of} in S=k[V]/J, where as aboV¥ is the direct sum of all
R(%i)’s. We write also

S=K[ZA|AeW, r=i,...,n—=1]
and furthermore we have that the imageRgh, ))* in Sis equal to
Qg =S, =span{Za| A e W}

In order to get theG-algebraS—, we need to look for the elemeniy € Ng(T) such that
woU wgl = U~, whereU ~ is the unipotent radical of the Borel subgroup®fpposite toB.
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From the conditiorB N B~ = T it follows that B~ is the subgroup of all upper triangular ma-
trices inG, andU ~ is the group of all upper triangular matrices with 1's on the main diagonal.
Thereforewg can be given by the matrix

0 0 1
0 1 0
wo=| - -
0 1 ... 0
1 0 ... 0

where the lower left entry has to be chosen in order to ensureuthat SL, (also—1 for
Nn=236,7,...and+1forn=4,5,8,9...). The right translation 0Qg ; by wo gives

Per =S, = (QG,r)wO = span{Ya| A € W}
(forr =1,...,n— 1), where we denote bya theleftr-minor given by
Ya(Q) = Z,°(9) = det(dij )icp j_1...c

It follows that
S =S =K[Ya|lAeW,, r=i,...,n—1]

Since(Sur) is proven for the semisimple groups, we know that
wn:S®S —> K[SLn]

is surjective. It remains to look for the kernel @f We do it by Popov’s method. First of all,
we have to determine tr@-moduIeS;;k. From [13], pp. 193-194, we know that

R )™ = R(—wo(Ar))
wherewg is seen as an element of the Weyl group, acting on the (abstract) weights. Furthermore,
r
(—woe D) = [t =2ns®) .
i=1
and soR(\;)* = R(An—r). From this, it follows thaS;? =S, = Qc.n—r, and so
S)L_;F = (QG,n—r)wO = Pe.n—r = span{Ya| A € Wy}

In order to describe th&-invariant pairing(-, -) : S, x S;r — k and the dual bases, we

introduce some new notations. Fare W, we letAY € W,,_; be its complementifi, ..., n}.
ForAe W, andB € W/, r, 1" € {1, ..., n}, we define

sign(A, B) := (_1)|{(a,b)€A>< Bla>b}|

We denote by, the symmetric group on elements; for a permutation € 4, we shall denote
by  also the corresponding permutation matrix i, acting by left matrix multiplication.
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Lemma4.2.1.Letl <r <n— 1. Then, the mapping

(-,-):Penr xQcr — Kk
(P.@) +—> ) sign(r)p(re)q(re)

T[E/Sn

(where e denotes the neutral element of G) is a G-invariant pairing, and the bases
{YAlA€Wh—r} S Pgnr and {signB”,B)Zg|B e W} < Qg
are dual with respect to it.

Proof: Let A € Wy, B € W;. We begin by calculating

Z sign(m)Ya(re)Zg(re) ;

7'[65;1

if A and B are not disjoint, this expression is zero, since eitfigfrg) or Zg(rg) vanishes
for all z’s (the left and right minors have a line in common, and on each line only one entry is
nonzero). This shows that, B £ AY,

(Ya, sign(BY, B)Zg) =0
LetalsoB = AY; write A= {a1,...,ay,_r} andB = {by, ..., b} and define the permutation
ﬂA::( 1 ...n—-r n—-r+1 ... n )
a ... an_r by ... b
The map

383 —> 4n

T +—> TJAOT

is a bijection on8,,. Letg € SLy(K). It follows that, for allg € G,

Y SigNOYa(r@Zav(rg) = Y SigN(raT)Ya(TaTG) Zav (TATY) =

7'[65;1 ﬂe/Sn

T[E/Sn

Noting that sigiiza) = sign(A, AY), and that the rest of the expression is a Laplace expansion
for the determinant of, we get finally

D Signm)Ya(r@)Zav(wg) = sign(A, A) dei(g) = sign(A, A")

7'[65;1
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This proves that the pairing iG-invariant (the expression is independentg)nand if we set
g = ethat
Sign(A, AY)(Ya, Zav) = (Ya, Sign(A, A)Zav) =1

and with that the proof is concludell

As a corollary to this lemma, we recover Flath and Towber’s presentation of the affine coordi-
nate ring of Sk (K):

Corollary 4.2.2. The map

n:S®kS —> K[SLn]
(.o — fg
is surjective, and its kernel is generated by
kerw)® = (F1—1,...,Fha—1)

where
Fo= ) signA A)Ya® Zav
AeW;

Proof: The surjectivity ofu is clear by Popov’s Theorem 4.1.3. Furthermore, by Thm. 4.1.5,
the kernel ofu is generated by the elemetits — 1, ..., h;,, , — 1 with

_ Yacw Ya®SIgnA, AV Za
" > acw, YA(E) - SIgN(A, AY)Z av(€) -

since the denominator is just the determinant of the neutral elesradr®, also 1.1

hy,

r )

Remarkd.2.1 The standard definition as the zero set of the determinant gives a closed embed-
ding of SL, in A" as the zero setof a polynomial of degrednere, fom > 3, we get a different
presentation, as the zero set of an ideal generated by polynomials of degree 2 in an the affine
space of dimension(2" — 2) = 2"t1 — 4 (one coordinate for each left and one for each right
minor).

4.3 Bounds for the affine embedding

Let us step back to the general case of a connected semisimple @roBp Popov’s method
(see the proof of Theorem 4.1.3), we can construct a closed, left-equivariant embed@ng of
inV @ V*, whereV = @®;_; R(:) andV* = B;_; R(A}) is its dual; identifying bothv and
v*with AN, N = 3°°_, dimR(%i) we see that this is the same as a closed embeddiGgilof
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AN x AN = AN,

Fork = C, the dimension of the irreducible representations can be explicitely computed by
means of a formula due to H. Weyl (see for instance [32], pg. 9): hence, with Popov’s construc-
tion we are able to exhibit explicit upper bounds for the dimension of an affine embedding of a
connected semisimple algebraic group which depends only on the type of the group.

Let us denote byN(T) the numbem (see above) for a group of tyge Denote furthermore

by nj = n;(T) the degree of the-th fundamental representati®i(r;) (i = 1, ..., ¢, wheret

is the rank of the root system), so tHatT) = Zle n; (T). With the help of Tits’ tables from

[32], we obtain the following list:

o [ TypeA,|(¢ > 1)

here we have; = (Zfl), i=1...,¢andso

V4
N(Ag):Z(E—:_1>:25+1_2 :

i=1

o (TypeB,|(¢ > 2)
here we have; = (

2t+1

: )fori < ¢ —1andn, = 2¢ and so

-1
N(B;) = Z (ZE:Fl) +2¢

i=1

o | TypeCy| (¢ = 3)

here we have; = 2¢ andn; = (2f> — <i2_£2) fori =2,...,¢,and so

L

- () (7)) ()

o | TypeD,|(¢ = 4)
here we have; = (Zf) fori <¢—2andn,_1 =ny, =21 and so

-2 £-2

N(D,) = Z (ZIE) L.l Z (2|E> NPT

i=1 i=1
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e | TypeEsg
here we have; = ns = 27,n, = ng = 351,n3 = 2925,ng = 78 and so

N(Eg) =nN1+...4+neg=3759 ;

e (TypeE;
here we hav@; = 56,n, = 1539,n3 = 27 664,n4 = 365750,n5 = 8 645,ng = 133,
ny = 912 and so

N(E7) =ni1+...+n7=404699 ;

e | TypeEg

here we haven; = 248,n, = 30380,n3 = 2450240,ns = 1463252705 =
6899079 264ng = 6696 000Ny = 3875 ,ng = 147 250 and so

N(Eg) =n1+4...+ng=7054732527 ;

o (TypeFy
here we have; = 26,n, = 273,n3 = 1274,n, = 52 and so

N(F2) =ni1+...+n3=1625 ;

e | TypeGo
here we have1 = 7,n» = 14 and so

NG =n1+ny=21

If the monoid P, ;. of the dominant weights is freely generated, Theorem 4.1.5 and Theorem
4.1.6 show that the ideal & in A2N is generated by polynomials of degree 2. We get the

Theorem 4.3.1.Let G be a connected, semisimple linear algebraic group of Typaefined
overC. Assume that the monoid of the dominant weights is freely generated. Then, the group
G admits a closed, equivariant embedding as an intersection of quadrics in an affine space of
dimensio2N(T), where NT) is determined by the list above.

At this point, one could ask oneself whether the results of this section can be combined with
those of section 3.4 in order to gain some more informations on an extension

b/

0 L G A 0

of an abelian varietyA with a linear algebraic group, and in particular if they can be used to
compute the dimension ¢1°(L, .£) in Theorem 3.4.6. Unfortunately, two problems arise: the
first one is that by Popov’s method we get a closed embeddihgimfan affine space, and not
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an open embedding inB. The second problem is that the only semisimple groups for which
the Picard group is trivial are the products of,\Sdnd Sp, and so even if we could construct

an open embedding df in a projective space Lemma 3.4.3 would not apply in general. This
obstacle could be overcome by considering suitable powers of an ample line bundle (since the
Picard group of a connected linear algebraic group is finite, see [7], Cor. 4.4, pg. 278), but this
would still require an explicit compactification af. For the moment, we leave this question
open.
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