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Hyatt (Chess), Martin Müller (Amazons) and Jack van Rijswijck (Hex).

The following former and present members of Jürg Nievergelt’s research
group helped in creating a stimulating and pleasant working athmosphere:
Silvia Ackermann, Silvania Avelar, Adrian Brüngger, Paul Callahan, Michele
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Abstract

Many search problems are so large that their solution on a computer requires
huge amounts of main memory or years of computation time or both. One
way to get to the solution of such a problem is to sit back and wait until
computer hardware with sufficient performance becomes available. Another
way is to seek algorithmic improvements which expand the computational
limits for search problems with current hardware.

In this thesis we present several such algorithmic improvements. As a
testbed for these new algorithms we use the domain of two-player zero-sum
games with complete information.

The main contributions of this thesis are:

• An improved retrograde analysis algorithm which improves caching per-
formance of the endgame database construction in Awari by several
orders of magnitude.

• An improved expansion strategy for the construction of opening books.
The selection of nodes for expansion is not only based on the nodes
value but also on the nodes depth in the book. As a result a computer
player is much harder to be thrown out of book.

• An improved position-value representation for opening books. The ad-
ditional values at-least-draw, at-most-draw and cycle-draw prop-
agate more information through the game graph than the traditional
game-theoretic values win, draw and loss alone. As a result more posi-
tions are solved without additional search and opening book expansion
is improved.

All these techniques have been implemented and opening books have been
constructed for several games. We also implemented Marvin, the current
computer Awari world champion.
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Kurzfassung

Viele Suchprobleme sind so gross, dass man für ihre Lösung sehr viel Haupt-
speicher oder sehr viel Rechenzeit oder beides benötigt. Eine Möglichkeit
solche Probleme zu lösen besteht darin, dass man wartet bis Computer mit
genügend grosser Rechenleistung zur Verfügung steht. Eine andere Möglich-
keit besteht darin, dass man durch algorithmische Verbesserungen die Menge
der sinnvoller Zeit berechenbaren Probleme erweitert.

In dieser Dissertation werden mehrere solche algorithmische Verbesserun-
gen vorgestellt. Als Testumgebung für die neuen Algorithmen wurde das
Gebiet der Nullsummenspiele mit perfekter Information ausgewählt.

Die Hauptbeiträge dieser Arbeit sind:

• ein verbesserter Algorithmus für die Rückwärtssuche, welcher durch
verbessertes Caching die Anzahl Festplattenzugriffe bei der Berech-
nung von Awari Endspieldatenbanken um mehrere Grössenordnungen
reduziert.

• ein verbesserter Algorithmus zur Berechnung von Eröffnungsbibliothe-
ken. Die Auswahl des nächsten Blattknotens für die Expansion erfolgt
nicht nur aufgrund des bisherigen Wertes dieses Blattknotens, sondern
auch in Abhängigkeit seiner Tiefe im Baum.

• eine verbesserte Methode zur Darstellung von Positionswerten in Er-
öffnungsbibliotheken. Durch die zusätzliche Verwendung der Werte
at-least-draw, at-most-draw und cycle-draw wird mehr Informa-
tion durch den Spielbaum propagiert als wenn man nur üblichen Spiel-
theoretischen Werte win, loss und draw verwendet. Dadurch werden
ohne zusätzliche Suche mehr Positionen gelöst und die Expansion der
Eröffnungsbibliothek wird verbessert.

Alle beschriebenen Techniken sind implementiert worden und es wurden
Eröffungsbibliotheken für mehrere Spiele berechnet. Ausserdem entstand
Marvin, der gegenwärtige Weltmeister im Computer Awari.
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Chapter 1

Exhaustive Search

The main topic of this thesis is how to solve large exhaustive graph-search
problems. A problem is a graph-search problem if its solution requires the
traversal of a graph. Unless otherwise stated we will use search problem as
an equivalent to graph-search problem.

A search problem is called exhaustive if its solution requires us, in general,
to visit all its nodes. An exhaustive search problem is called large if its
solution would require years of computation time, with current computer
hardware and current algorithms and tools.

As it is usually the case with hard problems, our focus will be on how
to reduce the space and time complexities of the algorithms used to solve
large exhaustive search problems. In theoretical computer science our goal
is usually to reduce the asymptotic complexity of a problem. Here we are
also interested in reducing space and time complexities by a constant factor
if this reduction is sufficient to make the solution of a problem feasible.

This Chapter is an introduction to exhaustive search. Section 1.1 defines
a general model of a graph-search problem, which is then used to introduce
the basic forward search and backward search algorithms. The two search
techniques are compared with respect to memory space and computation
time requirements. Section 1.2 shows how a certain class of games can be
viewed as a special case of a search problem. Section 1.3 discusses work
previously done in this field. Sections 1.4 lists the main contributions of this
thesis, and Section 1.5 is an overview of the remaining chapters of this thesis.

1



2 CHAPTER 1. EXHAUSTIVE SEARCH

1.1 Search Problems

A search problem is a tuple (S, N, V ), where S is the set of states s, N is the
neighborhood operator N(s) ⊆ S, ∀s ∈ S, and V (s) is the value propagation
function V (s) : R

|N(s)| �→ R, ∀s ∈ S. d = |N(s)| is called the degree of s, and
if d = 0 then V (s) is constant and s is called a terminal state. Otherwise V (s)
is a function of the values of other states, V (s) = props(V (s1), . . . , V (sd)),
and s is called an interior state. The states in N(s) are the successors of s,
and s is a predecessor of the states in N(s). The goal is to find the value of
one distinguished state s0 ∈ S, the so called start state.

Example 1.1 shows a small search problem. s5 and s6 are terminal states,
s0, . . . , s4 are interior states, and s0 is also the start state. The propagation
function is max() for states s0, s3, s4, and min() for states s1, s2.

S = {s0, s1, s2, s3, s4, s5, s6}
N(s0) = {s1, s2} V (s0) = max(V (s1), V (s2))
N(s1) = {s3, s6} V (s1) = min(V (s3), V (s6))
N(s2) = {s3} V (s2) = min(V (s3))
N(s3) = {s4, s5, s6} V (s3) = max(V (s4), V (s5), V (s6))
N(s4) = {s2, s6} V (s4) = max(V (s2), V (s6))
N(s5) = {} V (s5) = 3
N(s6) = {} V (s6) = 1

Example 1.1: A search problem.

A search problem implicitly defines a directed graph, with states as nodes
and arcs between every node and its successor nodes. We will assume that
all nodes are reachable from the start node. Otherwise we redefine the search
problem as S ′ = {s | s ∈ S and s reachable from s0}, N ′(s) = N(s) and
V ′(s) = V (s), ∀s ∈ S ′. Then s′0 has the same value as s0. Figure 1.2 shows
the graph corresponding to Example 1.1.

s0

s1 s3

s4

s5

s6s2

Figure 1.2: Graph representation of Example 1.1
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An obvious approach to solving a search problem is to use a forward
search algorithm. To calculate the value of the start state we first solve all
of its successors and then propagate the values. This leads to the following
recursive algorithm:

int forward1(s) {
if (isTerminal(s)) {

return V(s);

} else {
return props(forward1(s1),...,forward1(sd));

}/*if*/
}/*forward1*/

Unfortunately this algorithm does not work for Example 1.1 because the
corresponding graph is cyclic (s2 → s3 → s4 → s2), forward1() runs into
an infinite recursion. To avoid this we have to change forward1() in two
ways: First, we need to detect cycles in the recursion stack. This is done
by flagging every state on the path from the start state to the current state.
Second, we have to introduce a new state value cyclic, different from every
other V (s), because the value of a state does not necessarily depend on the
value of a terminal state anymore. We also have to adapt props() to accept
cyclic as one of its inputs. A cyclic search problem can then be solved with
the following algorithm:

int forward2(s) {
int value;

if (isFlagged(s)) {
return cyclic;

} else if (isTerminal(s)) {
return V(s);

} else {
SetFlag(s);

value = props(forward2(s1),...,forward2(sd));

ClearFlag(s);

return value;

}/*if*/
}/*forward2*/
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To solve Example 1.1 we introduce the special value cyclic and adapt
the propagation function by defining cyclic to be smaller than any other
value. Then forward2(s0) expands the search tree shown in Figure 1.3 and
finds V (s0) = 3.

s0

s1 s2

s2 s2

s3

s3

s3

s4s4 s5s5 s6

s6s6

s6

s6

cyclic

cyclic1

1

1

1

1 33

cyclic

1 1

33

3

3

1

Figure 1.3: Search tree of forward2() for Example 1.1. Every node repre-
sents a (recursive) call to forward2(), with current state number and return
value.

Another approach to solving a search problem is to use a backward search
algorithm (see backward() below). The basic idea is that at any point during
the calculation only the immediate predecessors of the solved states may be
solved in the next step, all the other states can be ignored for the time being.
The algorithm starts by initializing an array A of length |S|: The values of
the terminal states are set to V (s) and the values of the interior states are
set to cyclic. At the same time the predecessors of the terminal states are
stored in C, the set of candidates. In the main loop the states are removed
from C one by one and checked for a change in value, and if the value did
change then it is updated and all predecessors of the state are added to C.
The algorithm terminates when C is empty, i.e. nothing can change anymore.
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void backward() {
state s;

set of state C;

value NewValue;

array of value A;

C = {};
forall (s ∈ S) {

if (isTerminal(s)) {
A[s] = V(s);

C = C + pred(s);

} else {
A[s] = cyclic;

}/*if*/
}/*forall*/
while (C != {}) {

s = ExtractCandidate(C);

C = C - s;

NewValue = props(A[s1],...,A[sd]);

if (A[s] != NewValue) {
A[s] = NewValue;

C = C + pred(s);

}/*if*/
}/*while*/

}/*backward*/

backward() does not need any special handling for cycles; it is sufficient
to initialize the interior states with the value cyclic. If a state is not part
of a cycle then its value will be overwritten eventually.

Figure 1.4 shows how backward() solves Example 1.1. Note that a value
might be updated more than once, as happens to the value of s0 in this
example.

To solve a search problem it is in general necessary to evaluate all states at
least once, thus we speak of exhaustive search problems. Forward search and
backward search can both be used to solve search problems, but they differ
with respect to time complexity and space complexity. Because they have
to evaluate every state at least once, their running time is at least O (|S|),
where |S| is called the size or state-space complexity of the problem. For
some search problems there exist search algorithms with expected running
times much lower than O (|S|), e.g. alpha-beta search in min-max trees [23].
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s0 s1 s2 s3 s4 s5 s6

a) �c c c c c 3 1 C = {s1, s3, s4}
b) �c c c c c 3 1 C = {s3, s4}
c) �c c c 3 c 3 1 C = {s1, s2, s4}
d) �c 1 c 3 c 3 1 C = {s0, s2, s4}
e) �1 1 c 3 c 3 1 C = {s2, s4}
f) �1 1 3 3 c 3 1 C = {s0, s4}
g) �3 1 3 3 c 3 1 C = {s4}
h) �3 1 3 3 3 3 1 C = {s3}
i) 3 1 3 3 3 3 1 C = {}

Figure 1.4: One run of backward() with Example 1.1. The value ‘c’ means
cyclic. Line a) shows the situation right after the initialization, the follow-
ing lines show the progress at the end of the while loop. In this example, the
candidate with the smallest index is chosen for update.

If the graph of a search problem is a proper tree, then forward search
will visit every state exactly once. But in the general case some states are
reachable from the start state in more than one way. This is called a transpo-
sition and it means that the corresponding state and all of its successors will
be evaluated more than once, thus the number of calls to forward2() will
be significantly larger than |S|. This so-called search-tree complexity can be
approximated by estimating the average degree D of the interior states and
average height H of the search tree. Then the search-tree complexity is ap-
proximately DH . In Example 1.1 the exact value for the search-tree complex-
ity is 17, the number of nodes in Figure 1.3, and DH = (16/8)(31/9) = 10.9.
Because forward2() needs to store a flag for every state on the path from
the start state to the current state, it also needs O(Hmax) space. In the worst
case Hmax = |S|.

Backward search does not suffer from the transposition problem. The
initialization takes exactly |S| steps. The number of iterations in the main
loop depends on how many times the value of a state can change until it
reaches its final value. It is often possible to give an upper bound for the
number of value changes: In Example 1.1, all states have one of the three
values {cyclic, 1, 3} and are initialized with cyclic. The value of a max()
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state will only go up, and only when at least one of the successor values
becomes larger than its current value, thus it will change at most twice.
The value of a min() state will also only go up, and only when all of the
successor values become larger than its current value. Therefore this problem
is solvable with backward search in at most |S| + 2|S| iterations. In general
the runtime is O(|S|) and the required space is also O(|S|).

The memory requirements of backward search may be reduced if the state
space can be partitioned into an acyclic graph whose nodes are subsets of the
original graph. In Figure 1.5 the states of Example 1.1 have been partitioned
into subsets SA, SB and SC , which form an acyclic graph. Now the subsets
can be solved independently one by one in the order SC , SB, SA. More
generally, if S can be partitioned into subsets Si, then the required space for
backward search is O(max(|Si|)).

s0

s1 s3

s4

s5

s6s2

SA

SB

SC

SA

SB

SC

Figure 1.5: The partitioned state-space of Example 1.1.

We conclude that, in general, forward search has a larger time complexity
than backward search, but requires much less space during the calculation.
Another difference is that backward search returns a value for every state,
whereas forward search returns only the value of the start state.

As shown in the previous paragraphs several algorithms exist for solving
search problems. However, despite the continuing increase in computation
power, we will always be confronted with large search problems which are
effectively intractable with current technology. By large we mean that the
running time of the solver would be in the order of magnitude of years, and/or
the state-space complexity is significantly larger than the size of the main
memory of commonly available workstations.

The main topic of this thesis is how to solve such large exhaustive search
problems. From the previous discussion we can conclude that the two main
questions are: How can we reduce the space requirements of backward search?
And how can we reduce the number of nodes expanded by forward search?



8 CHAPTER 1. EXHAUSTIVE SEARCH

1.2 Games as Search Problems

Games are a special class of graph search problems. The states are defined
by the set of positions, and V (s) is defined by the set of moves from position
s. The terminal positions have one of the three values win, draw or loss.
The propagation function is the so-called negamax function: the value of a
position equals the maximum of the inverse values of its successor positions.
In other words: If the value of any successor of s is loss, then props() =
win, otherwise if the value of any successor of s is draw, then props() =
draw, otherwise props() = loss. A cycle in the game graph corresponds to
a position repetition in the game. The usual rule for a position repetition
is that the game is a draw (see Table 4.4), therefore we do not need a new
special value because cyclic = draw.

Although the algorithms presented in the previous section can be used as
solvers, games have the value dominance property, which can be exploited
to significantly speed up the calculation. Value dominance means that it is
sufficient to find one successor with a loss value to prove that the current
position is a win, therefore we can ignore, or prune, all other successors as
soon as we find one with a loss value. In the case of forward search this
means that the number of evaluated nodes also depends on the order in
which the successors are evaluated. Knuth and Moore [23] showed that in
a uniform tree the alpha-beta search algorithm only visits O(

√
N) states,

N = search-tree complexity, if the successors are evaluated in optimal order.
To have optimal order it is sufficient that one of the successors which has the
highest value is evaluated first.

Instead of using the depth-first algorithm forward2() together with local
move ordering in every node, we can also exploit the value dominance prop-
erty by using a best-first algorithm. A best-first algorithm stores the whole
search tree of the nodes that have been visited so far and, among all the
unsolved leaf nodes of that search tree, it chooses the “best” node for expan-
sion, where “best” is measured by a heuristic function which estimates V (s).
forward3() outlines a best-first search algorithm. Examples of best-first
search algorithms are SSS* [49], B* [8], Conspiracy-Number-search [31, 43]
and Proof-Number-search [4].
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void forward3() {
graph of states G;

G = s0;

while (s0 is not solved) {
follow a path of ‘best’ moves from s0 to a leaf node s;

for (all successors si of s) {
G = G + si;

if (isTerminal(si)) {
G(si).value = V(si);

} else {
G(si).value = EstimateValue(si);

}/*if*/
}/*for*/
’update the values of all nodes which depend on s’

}/*while*/
}/*forward3*/

In principle, backward search is always possible for games. However,
it is practical only if the state-space can be partitioned into small enough
subsets, and if the game is convergent [4]. A game is called convergent if
the size of the reachable state-space decreases during a game. For games, a
solved sub-state-space is called an endgame database or tablebase.

In the previous section, a search problem was solved as soon as the value
of the start state was known. Analogously, a game is solved when the value
of the start position is known. However, we may also be interested in playing
a game, but the knowledge of the value of the start position does not tell us
which move is best. Therefore we need a more fine-grained notion of “solved”
in games (see also [4, Section 1.5]):

ultra-weakly solved A game is called ultra-weakly solved if only the value
of the start position is known. This corresponds to the general defi-
nition of a solved search problem. For example, there is a well-known
proof (John Nash, 1949) that the game of Hex on a nxn board is a win

for the first player for any n. So far, winning strategies are only known
for n ≤ 9 [61, 62].
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weakly solved A game is called weakly solved if the value of the start posi-
tion is known and a strategy is known which guarantees that the first
player can achieve that value. This means that for example if a game
is known to be a draw, then the first player will never lose. If the op-
ponent makes a mistake, the first player does not necessarily know a
strategy which achieves the win.

strongly solved A game is called strongly solved if the best move can be
found (within reasonable time) from every position in the game. This
is only possible for small games and for subspaces of large games (the
subspace of Chess for some positions with 6 pieces and for all positions
with 5 or less pieces on the board has been strongly solved [54, 34, 59,
55, 22, 52]).

When we look at games as search problems, then our goal is not neces-
sarily to solve them. The state-space of many games is so large that their
solution is still far out of reach. Instead of solving a game we try to find
heuristics which approximate the exact values of the positions. But even
if a game is not solvable, we can use forward search and backward search
as a kind of preprocessing for tournament game playing. For example, in
Chess we can use backward search to build endgame databases, which can
improve the values found by forward search. From the other end we can
use forward search to build opening books, which improve and accelerate
game play during the first few moves into a game. This allows us to divide a
tournament game into three phases: The opening phase, where only the pre-
calculated (heuristic) values of the opening book are used; the middlegame
phase, where values are calculated in real time using a heuristic; and the
endgame phase, where exact values are read from the endgame database.
The more computation power we can put into the preprocessing of a game,
the longer the opening and endgame phases will be. Whenever we manage to
close the gap between the opening book and the endgame databases, we will
have successfully solved a game. In the rest of this thesis we will focus on
algorithms for the first and the last game phase, but we will keep an eye on
how the results can be used to improve the winning chances in tournament
games.
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1.3 State of the Art

Both backward search and forward search have been successfully applied to
solving large exhaustive search problems.

Qubic An upper bound for the state-space complexity of Qubic is 364 ≈ 1030.
The game has no cycles and contains many forced moves. It was first
solved 1977 by Patashnik [36]. He used standard alpha-beta search to
try to solve positions with a win. If a position was not solvable within
a certain time limit and if no forced white move was available, then
human expert knowledge was used to choose a suspected winning move,
and then the successors were again checked with alpha-beta search. A
total of 2929 moves had to be chosen by hand to solve the game.
The game was solved again in 1992 by Allis [4, 2]. He manually chose
a set of 195 4-ply starting positions and then solved them one by one
using a combination of db-search and pn-search. A total of 3254 non-
forced white moves were selected by pn-search to solve the game.

Connect-four Connect-four has an estimated state-space complexity of 1014.
It contains no cycles and was independently solved by Allen [1] and Al-
lis [56] in 1988. Both took the forward search approach with alpha-beta
search, combined with several sophisticated, game-specific forward-
pruning rules. These pruning rules reduced the size of the search tree
significantly, and allowed the game to be solved in 300 and 1000 hours
of computing time respectively.

Nine Men’s Morris Nine Men’s Morris has a state-space complexity of
1010, it contains cycles in the middle- and endgame, and was solved
in 1993 by Gasser [15]. It was the first game that was solved with a
combination of backward and forward search: all positions after the
opening phase were solved with retrograde analysis, and then the start
position was solved with alpha-beta search in the opening. The forward
search was simplified by the fact that the opening phase of the game
has a fixed length of 18 plies and does not contain any cycles.

Go-moku An upper bound for the state-space complexity of Go-moku is
3225 ≈ 10105. The game has no cycles and contains many forced moves.
It was solved by Allis [4] in 1994 with a combination of db-search and
pn-search.

Kalah Kalah has a state-space complexity of 1013 and contains no cycles.
It was solved by Irving, Donkers and Uiterwijk in 2000 [20]. The com-
mercial version of the game has six pits per side and starts with four
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stones per pit (Kalah(6,4)). The authors solved all Kalah(m,n) with
m, n = 1 . . . 6, except Kalah(6,6). A combination of backward and for-
ward search was used. Forward search was simplified by the fact that
the game length is relatively short.

Amazons 5x5 Amazons on a 5x5 board has a state-space complexity of
1.2 ∗ 1012 and contains no cycles. It was shown to be a first player win
by Martin Müller in 2001 [32]. The solution was found using forward
search together with sophisticated pruning rules.

Moreover, the calculation of endgame databases in Checkers [44] and
Awari [30] was a decisive factor for the creation of world-champion-level tour-
nament programs. In Chess, some positions with 6 pieces and all positions
with 5 or less pieces have been solved [54, 34, 59, 55, 22, 52]).

An interesting observation about the above list of solved games is that
the year when a game was solved and the size of the game do not seem
to be related. What one might expect is that with increasing computation
power the size of the solvable games would increase accordingly. Instead, it
seams that the solvability of a game is strongly influenced by game specific
properties that simplify or complicate the solution process:

Forced moves/threat moves: Qubic, Connect-four and Go-moku are
called n-in-a-row games, where each player tries to place n of his own
stones in a connected straight line. If one player already has n − 1
stones placed, then the opponent is forced to block the n-th field with
one of his own stones. If a player already has n− 2 stones placed then
creating a threat by adding the n − 1’th stone is often a good move.
Both forced moves and threat moves simplify forward search because
they provide a good heuristic for move ordering, and thus significantly
reduce the size of the search tree.

Game-tree complexity Game-tree complexity [4, p.160] is defined as the
number of leaf nodes in the solution tree of the initial position of the
game. Most solved games have a relatively low game-tree complexity [4,
Figure 6.1].

Cycles: With the exception of Nine Men’s Morris, all games solved so far
are acyclic. In Nine Men’s Morris, only the subspace after the opening
is cyclic; that part of the game was solved with backward search. We
conclude that the existence of cycles makes it harder to solve games.
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1.4 Contributions

The main motivation for the presented work was to solve one large ex-
haustive search problem: the game of Awari. As a result of this quest we
present three contributions to the domain of large exhaustive search prob-
lems. First, a backward search algorithm, which allows the efficient con-
struction of endgame databases many times larger than the main memory;
second, a new opening book expansion strategy, which provides a systematic
way for a space and time efficient forward search; and third, a refined value
representation for opening books:

Backward search: During backward search it is necessary to store the en-
tire state-space. For large search problems the state-space does not
fit into main memory, therefore some portion of the state-space has to
be cached on disk. As a consequence the computation becomes much
slower because of the slow disk accesses. In Chapter 2 we introduce the
new dual-indexing algorithm. It is applicable to any search problem,
and in the case of Awari it reduces disk-I/O by three orders of mag-
nitude, with good performance even when only 10% of the state-space
fits into main memory.

Forward search: In the past, both depth-first and best-first algorithms
have been used to solve games. Our new opening book construction al-
gorithm combines the two search paradigms and takes advantage of the
space efficiency of depth-first search and the time efficiency of best-first
search. Because an opening book can be viewed as a (partial) solution
graph of a search problem, the new algorithm is useful both for game
solving and game playing.

Value representation: A win is always better than a heuristic value, a
loss is always worse than a heuristic value, but a draw is not compa-
rable to heuristic values. During opening book construction both exact
and heuristic values occur in the book, which requires a more refined
value representation than what is usually used in forward search.

Further contributions that resulted from this work are:

Drop-out diagrams: A drop-out diagram allows the visual inspection of
the quality of an opening book. It shows whether or not the opponent
can force us out (or drop us out) of the book at a certain depth with
a certain positional value. The diagram provides an excellent tool to
measure the quality of book expansion strategies.
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Drop-out expansion: When we build an opening book we have to decide
which positions should be part of the book and which shall not. Given
the current book, the drop-out expansion heuristic selects a “best”
position to be included in the book, where “best” is a linear function
of the depth of the position and its value.

Although the game of Awari remains unsolved, our work made possible
the construction of Marvin, a strong Awari program which is the current
computer Awari world champion [30]. We estimate that the solution of Awari
would require the completion of at least the 44-stone database, which means
that more than 50% of the state-space of about 0.9 ∗ 1012 positions would
have to be enumerated completely.

1.5 Thesis Overview

Chapter 2 describes backward search with Awari as an example. First it is
shown how the space requirements during calculation can be reduced to one
bit per position, and then the new dual-indexing algorithm is introduced,
which allows the efficient calculation of endgame databases several times
larger than main memory.

Chapter 3 addresses the problem of automatic opening book construction.
Drop-out diagrams are introduced to measure the quality of opening books,
and the new drop-out expansion strategy for opening book construction is
presented.

Chapter 4 introduces a new model for position value representation in
opening books. This refined position value representation helps to give a
better estimate on how close a position is to being solved.

Chapters 5 and 6 describe OPLIB, our implementation of an opening
book construction tool, and show experimental results with several games.

Chapter 7 concludes this thesis with a summary.



Chapter 2

New Techniques in Retrograde
Analysis

This Chapter presents the new dual-indexing algorithm, which significantly
improves the disk-I/O efficiency of backward search when the state space of
the search problem does not fit into main memory. We show how for Awari
the memory requirements of backward search can be reduced from 1 byte
per state in a straightforward implementation to 1 bit per state, and then we
show how caching efficiency can be improved with dual-indexing when even
1 bit per state is too much to be stored in main memory. Although Awari
is used as an example, dual-indexing can be generalized to any game. The
rules of Awari can be found in Appendix A.

The Chapter starts with an overview of retrograde analysis in Section 2.1.
Section 2.2 discusses the properties of the state space of Awari in relation
to retrograde analysis. Sections 2.3 and 2.4 show how retrograde analysis
for Awari can be done with only 2 bits per position and 1 bit per position
in memory, respectively. Section 2.5 introduces the new dual-indexing algo-
rithm, and Section 2.6 summarizes the Chapter.

15
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2.1 Overview of Retrograde Analysis

The basic retrograde analysis algorithm was introduced by Ströhlein [50],
who was the first to calculate endgame databases for Chess. Due to the
popularity of the game, most of the research for retrograde analysis was done
on Chess. This culminated in the calculation of all 5-piece databases and
many 6-piece databases [53, 54, 59, 34, 55, 22]. In other games, the influence
of retrograde analysis on the playing strength of computer programs was
much more significant. In Nine Men’s Morris [15] and Kalah [20], retrograde
analysis played a crucial role for solving the games. In Checkers [25, 44] and
Awari [30], the endgame databases were a significant contribution to building
a world-champion level computer program.

One recurring topic in retrograde analysis research is the main memory
bottleneck. The size of the databases increases exponentially with the num-
ber of pieces on the board and it is not feasible to calculate databases which
are larger than the size of main memory, because the disk accesses incurred
by caching part of the database slows the calculation down by two or three
orders of magnitude. Several ideas have been suggested and tried out to solve
this problem:

Memory space per position To store game-theoretic values (win, loss or
draw) at most 2 bits per position are required. To store additional in-
formation like the number of moves until the next capture (distance-to-
conversion, DTC) or the number of moves until mate (distance-to-mate,
DTM) usually requires one byte per position, sometimes even more [55].
Algorithms are known which efficiently calculate DTC databases [53]
and DTM databases [60] and which require only one bit of main mem-
ory during calculation.

Indexing function An indexing function maps a game position to an in-
dex in the database. Depending on the game, an indexing function
can be quite complicated, and sometimes it maps unreachable or even
illegal positions into the database. See [16] for an overview of indexing
functions in Chess.

Support databases In Chess the state-space is usually partitioned into
databases with a specific set of pieces. This reduces the maximum size
of a database, but we still need to have read access to the databases
which are reached by capture or conversion moves. Heuristics have been
used [59] to avoid the read access to the support databases, without
introducing too many errors in the resulting database.
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Distributed or parallel system In a distributed or parallel system the
amount of available main memory is equal to the sum of the main
memory available to all processors. In a distributed system a disk ac-
cess is then replaced by network communication. [48] uses a Connection
Machine with 32K processors (each with 64K bits of RAM) to solve all
5-piece Chess databases without pawns. [25] use a network of work-
stations to calculate databases for Checkers. [6] also use a network of
workstations to calculate databases for Awari. [57] uses a 16 GBytes
shared memory parallel machine with 64 processors to calculate Awari
databases. [41] recently solved Awari using a network of 72 worksta-
tions with a total of 72 GBytes of memory.

2.2 Retrograde Analysis for Awari

From the rules of Awari it follows immediately that the number of stones on
the board decreases monotonically, therefore we can use retrograde analysis
to calculate the values of all positions starting with 0, 1, 2, . . . stones on the
board, and so on.

Awari endgame databases usually store stone-difference values of config-
urations instead of win/loss/draw values of positions [3]. A configuration
is defined as the distribution of the stones in the twelve pits, ignoring the
stones already captured. The stone difference is the number of stones the
player to move can capture, minus the number of stones the opponent can
capture. For example, the stone difference (or database value) in Figure 2.1
is −2 for South-to-move, which means that with optimal play of both sides,
South will capture 8 and North 10 stones. Therefore the value of the position
is a win for South with a score of 28–20.

0 0 0

0 0 0 1 12

6 53

01

20
A B C D E F

abcdef

Figure 2.1: The configuration value for this position is −2 (South-to-move).
If both sides always play a best move then North will capture 10 of the 18
stones on the board. The position value is therefore a win for South with a
final score of 28–20.
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For Chess endgame databases it is usual to calculate distance-to-win
(DTM) or distance-to-conversion (DTC) values. This stems from the fact
that it is often hard to win a game even if it is known that a position is a
win. The DTM and DTC information helps to guarantee a win in a finite
number of moves. For Awari this additional information does not seem to
be necessary. In practical play, it is easy to guarantee a win even if only the
stone-difference values are known. This is probably a consequence of the low
branching factor of the game: most of the time there is only one optimal
move anyway, so there is no room for error.

Storing stone-difference values is more efficient than storing win/loss/
draw values. The stone difference of a N-stone configuration is always in the
range −N . . .N , thus we need 
log2(2N + 1)� bits of storage space for one
configuration. With an upper bound of 48 for N, at most 7 bits are required,
but to simplify index calculations, 8 bits are used for all databases. To store
win/loss/draw values would require (48 − N + 1) ∗ 2 bits per configuration
(48 − N is the number of captured stones and there are 48 − N + 1 ways to
distribute them between South and North), which is, in general, larger than
the 8 bits for stone differences.

The number of configurations with a fixed number N of stones is
(

N+11
11

)
,

and the total number of configurations with up to 48 stones is about 1.4 ×
1012 [3]. This number contains many unreachable configurations. For exam-
ple, configurations with 47 stones are not reachable because we always have
to capture at least two stones. Furthermore, all configurations where all pits
of the non-moving player are occupied are unreachable (with the exception of
the starting position) because any move empties one pit of the player. There
are

(
N+5
11

)
such configurations. In our calculations, we have not excluded un-

reachable configurations because doing so would make the indexing function
more complicated. However the ratio between unreachable and reachable
positions grows with N , and it may be that the benefit from excluding them
becomes greater than the penalty from the more complex indexing function.

Without the unreachable configurations, we obtain an upper bound for
the number of states in Awari of 889, 063, 398, 406, or about 0.9×1012 states.
Fortunately, it is not necessary to calculate all these states in one database,
instead we can split the state space by the number of stones in the configu-
ration into 48 separate databases (0,. . . ,46,48).

With one byte per configuration, the databases soon become larger than
today’s workstation memory sizes. For example the 27-stone database has
1.2G states, and the 34-stone database has 10G states.

In other games, compression and symmetry are used to reduce memory
requirements. In Awari, no efficient compression algorithm has been found
so far; and there is no board symmetry, i.e., we cannot mirror the board by a
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vertical or horizontal axis, because the pits form a directed cycle. However,
there is a color symmetry because for every configuration with South-to-move
there is an equivalent configuration with the same value and North-to-move.
Thus it is sufficient to calculate the configuration values for South-to-move
and to rotate the board 180 degrees whenever it is North’s move.

2.3 Reducing Memory Requirements to Two

Bits per Configuration

While it is possible to calculate large Awari databases with small memory, the
performance of a caching algorithm drops sharply because of the randomness
in the order of database accesses. During a database calculation we often
make a sequential pass over all configurations and access all successors to
determine the value of the configuration. Ideally, an indexing function should
preserve the locality of two configurations with similar indices when we access
their successors. For example the first successor of one configuration should
have an index near the index of the first successor of the next configuration.
In that case caching would show good performance, but, unfortunately, we
were unable to find such an indexing function for Awari so far.

If a database is too large for main memory and caching is inherently
inefficient, how can we still compute such a database efficiently? The solution
is to map the problem of calculating one database with a value range of
−N . . .N to the problem of calculating N databases with three composite
value ranges −N . . .− k, (−k + 1) . . . (k − 1) and k . . .N , where 1 ≤ k ≤ N .

For example, let N = 5 (5-stone database). The configurations in this
database have a value in the range −5 . . . 5. With k = 2 we separate the
configurations into three groups: configurations with values in the range
−5 . . .−2, configurations with values in the range −1 . . . 1 and configurations
with values in the range 2 . . . 5.

It is easy to see that, with respect to the propagation rules, there is
an isomorphism between these composite value ranges and the values loss,
draw and win. A database which only calculates win/loss/draw values can
be calculated with 2 bits per position [25]. Therefore we have transformed the
problem of calculating one database with 1 byte per configuration into the
problem of calculating N WLD(k) databases with 2 bits per configuration.
Figure 2.2 shows how the values from the range −N . . . N are mapped to the
values win, loss and draw.

If we use two bits per configuration, the implementation of a WLD al-
gorithm is straightforward (see Figure 2.3). Preprocess() sets the values
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drawloss win
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Figure 2.2: The values from the range −N . . .N are mapped to the values
win, loss and draw.

of terminal nodes, propagates values for capturing moves and sets the other
values to unknown. Postprocess() sets all remaining unknown values to
draw. It should be pointed out that since these WLD(k) databases can be
calculated independently, this splitting allows us to exploit an N-way paral-
lelism. However, there is also redundancy between the WLD(k) databases.
For example, if a configuration is evaluated as draw for one database, then
we already know that it will be a draw for all databases with a larger k.
The same is true for smaller ks and win and loss (Figure 2.4). Thus if we
calculate the databases sequentially we can use the results of the previous
database to initialize the current one. As an additional optimization we pre-
calculate the capture move values and store this information in a support
database. This avoids repeated random accesses to the smaller databases.

void CalcWLD() {
Preprocess();

while (any change possible) {
for (all configurations) {

if (value == unknown) {
if (all successor values are wins) {

set value to loss;

set all predecessor values to win;

}/*if*/
}/*if*/

}/*for*/
}/*while*/
Postprocess();

}/*CalcWLD*/

Figure 2.3: Basic algorithm for WLD database calculation.

With this algorithm, databases 29 (2.3 GBytes) and 30 (3.1 GBytes) were
calculated on a 1 GByte RAM machine. But database 31 is larger than
4 GBytes and therefore too large even with two bits per configuration.
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Figure 2.4: An example how the values of a 3-stone database can be repre-
sented by three WLD(k) databases. If a value is W in WLD(k) and D in
WLD(k+1), then the full value is k. If a value is L in WLD(k) and D in
WLD(k+1), then the full value is -k.

2.4 Win/Loss/Draw Database Calculation Us-

ing One Bit in Memory

For Chess endgame database construction, [53] described an algorithm to cal-
culate distance-to-mate and distance-to-conversion databases which requires
one bit per position. We adopted the method and developed an analogous
algorithm for the simpler WLD databases.

We use a total of three bits per configuration, two bits on disk and one
bit in main memory. The two bits on disk store one of the values win (W),
loss (L), draw (D) or unknown (U). The bit in memory stores one of the
values win (W) or unknown (U). These two values together determine the
value of the configuration, as shown in Figure 2.5. (Only cases which occur
during the calculation are shown.)

configuration value W W W D L U

memory value W W W U U U
disk value W D U D L U

Figure 2.5: Calculating the configuration value from memory and disk val-
ues. If the memory value is win, then the configuration value is also win.
Otherwise the configuration value is the same as the disk value.

The algorithm is divided into three phases, a preprocessing, a calculation,
and a postprocessing phase. Figure 2.6 illustrates the three phases and all
state transitions.

In the preprocessing phase we examine every configuration exactly once,
determine the values of terminal nodes and propagate the values from cap-
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Figure 2.6: State transitions during calculation. Every configuration is rep-
resented by a pair of values (X, Y ), where X ∈ {W, U} is stored in memory
and Y ∈ {W, L, D, U} is stored on disk.

turing moves (i.e., the values from previously calculated databases with fewer
stones). This is the only phase where we have to consider values of capturing
moves. The following six state transitions might occur.

1� If a configuration is a won terminal configuration, or if there is a win-
ning capturing move, we set the memory value to W. (Optionally we
might set the disk value to W too, but we do not have to because the
memory value overrides the disk value.)

2� If a configuration is a terminal configuration with a draw value, or if
at least one capturing move leads to a configuration with a draw value,
then we set the disk value to D. In the second case the configuration
might have some non-capturing moves that may turn out to be winning
moves later. The correct value for such a configuration would therefore
be at-least-draw instead of draw. The reason why we can get away
with encoding them both to D will be explained below in connection
with state transition 6�.



2.4. ONE BIT IN MEMORY 23

3� If a configuration is a lost terminal configuration, or if all moves are
losing capturing moves, then we set the disk value to L. Additionally,
we set the memory values of all predecessors of the configuration to W
( 1�).

In the calculation phase we make multiple passes over all configurations
until no change occurs in one pass. During each pass, we examine every con-
figuration which has a disk value of U. If all non-capturing moves lead to won
configurations, then the disk value is set to L (transition 4�). Additionally,
we set the memory value of all predecessors of the configuration to W ( 5�
or 6�).

Now it also becomes clear why we can ignore at-least-draw values: if
the configuration ever becomes a win, then this will be accomplished by
backpropagation, no matter how the configuration was initialized.

In the postprocessing phase we examine every configuration once again,
and merge the corresponding memory and disk values into the configuration
value.

The most important aspect of this algorithm is that all accesses to the
disk values are made in sequential order of the configurations. This sequential
access scheme limits disk I/O to a reasonable amount, because disk values
can be read in blocks. All the random order accesses caused by the one-ply-
forward look and the backpropagation of W values are made in memory.

The algorithm as described above can be applied to any game. For Awari,
some improvements are possible. As mentioned in Section 2.3, some of the
information in the WLD databases is stored in several databases, redun-
dantly. Thus we can, for example, use the preprocessing phase to set all
configurations in WLD(k) to D if they were solved to D in WLD(k-1). This
reduces the calculation time significantly. A second improvement is to cal-
culate and store the influence of the capturing moves once before the first
WLD(k) database is started. Otherwise we would have to make the same
accesses to the smaller databases N times.

With this algorithm, databases 31 (4.3 GBytes), 32 (5.7 GBytes) and 33
(7.7 GBytes) were calculated on a 1 GByte RAM machine. But database
34 is larger than 8 GBytes and therefore too large even with one bit per
configuration.
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2.5 Beyond One Bit per Configuration

If a database is too large for the main memory even with only one bit per
configuration, we have to go back to caching. In Section 2.3 we explained that
the Awari indexing function makes any caching algorithm perform poorly. So
the question arises as to whether or not there is a way to efficiently calculate
databases when caching is required.

It turns out that our one bit algorithm provides us with a prime oppor-
tunity to increase the locality of our successor indices. The problem with
the indexing function was that we rotate the board after every move. This
causes a random distribution of the indices of the successor configurations,
because the rotation of the board changes the order in which the pits are
encoded in the indexing function.

In the one bit algorithm the value of a configuration is stored in two
different places, once in memory and once on disk. During the calculation
phase, corresponding values are never accessed together. Instead, for every
configuration on disk we read or write the memory values of its successors
and predecessors only (see also Figure 2.3). So far we had implicitly assumed
that we use the same indexing function for the memory values and the disk
values, but we do not have to! Instead we can use one indexing function
for the disk values, and another indexing function for the (cached) memory
values. For Awari we chose to encode the memory values for North to move
(the disk values are still encoded for South to move). This means that the
board does not need to be rotated between moves, and as a consequence the
indices of the successors are more likely to be close together.

The impact of using this dual-indexing algorithm is shown in Figure 2.7.
The number of cache misses was measured for one pass over the 25-stone
database. The cache block size was 16 kBytes, an LRU algorithm was used
and the cache size varied from 0 to 100 percent of the database size. Dual
indexing reduced the number of cache misses by at least three orders of
magnitude, with good performance even when only 10 percent of the memory
values are actually in memory.

The disadvantage of dual indexing is that the preprocessing and postpro-
cessing phases are slowed down, because there the memory value and the
corresponding disk value are accessed at the same time for initialization or
to determine the final value of a configuration. For WLD(1) the preprocess-
ing and postprocessing phases together usually take up to 20% of the total
computation time. For larger k, they can take up to 50% of the total compu-
tation time, because more configurations can be solved during preprocessing
and therefore the calculation phase is much shorter.
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Figure 2.7: The number of cache misses during one pass over the 25-stone
database. Cache size is relative to the database size.

With this algorithm, databases 34 (10 GBytes) to 40 (47.6 GBytes) were
calculated on a 1 GByte RAM machine.

2.6 The Choice of an Algorithm depends on

Memory Size

It is always a challenge to solve large search problems with limited resources.
In this paper, we presented algorithms for Awari endgame database calcu-
lation which require only two bits and one bit in memory, respectively. An
improved version of the one bit algorithm uses dual indexing to calculate effi-
ciently databases with a size of eighty times the main memory. This expands
the horizon of solvable endgame databases far beyond the limits of today’s
memory sizes.

We propose the following rule for algorithm selection: if the database
fits into main memory, use a one-byte algorithm. Otherwise, if the memory
is sufficiently large to store 1/4 of the database, use the two-bit algorithm.
Otherwise, if the memory is sufficiently large to store 1/8 of the database,
use the one-bit algorithm. Otherwise, if the memory is sufficiently large to
store about 1/80 of the database, use the one bit algorithm with caching and
dual indexing.

The Awari databases and their statistics can be viewed online [28].
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Chapter 3

Opening Book Construction

This chapter introduces the new drop-out expansion algorithm for the auto-
matic construction of opening books. The algorithm differs from other ap-
proaches in that it uses not only position values for node selection, but also
takes the depth of leaf nodes into account to make it harder for the opponent
to throw the book player out of the book.

For Chess, the most widespread method of opening book construction is
the manual or semi-automatic compilation of human opening book know-
ledge [5, 17, 44, 11]. This requires a Chess expert to select moves that are
both favorable and suited to the playing style of the program. Besides the
fact that this is tedious work, this method has other drawbacks. For example,
there is no guarantee that the human knowledge is free of errors; every move
should also be checked by the computer. Another drawback is that the
method is only applicable if there is any human opening book knowledge
around in the first place.

Our main interest for opening book construction was to create a strong
computer Awari program. In Awari there is hardly any human literature on
the game, and the computer programs have surpassed the level of human play
anyway. The only way to create an opening book was therefore to construct
it automatically using the Awari search engine. Sections 3.1 and 3.2 motivate
our work on opening books and introduce the basics. Section 3.3 introduces
drop-out diagrams, a method for the visualization of opening books. In
Section 3.4 the new expansion strategy is introduced and compared to best-
first expansion [10].
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3.1 Introduction

Games are usually divided into three phases: opening, middlegame and
endgame. In any of the three phases, the default action of a computer
program is to start a search for a “best” move. Since such a search has
to be performed within a limited time, it can only examine nodes down to
a certain depth, which means that the calculated value is only a heuristic
approximation of the game-theoretic value.

However, in endgames a different approach is possible if the game has the
convergence property [4], i.e. the number of pieces on the board decreases
monotonically. In this case we are able to construct an endgame database
of precalculated game-theoretic values for positions with a sufficiently small
number of stones [53]. A computer program can benefit from such a database
in two ways: First, the values of the endgame positions can be retrieved in one
operation instead of performing a lengthy search. Second, the retrieved values
are exact game-theoretic values of the positions instead of approximations,
which reduces the error in the heuristic search. The disadvantage is that we
need additional space to store the database, and if the database is stored on
disk then retrieving database values causes disk-I/O.

For openings an analogous approach is possible. Since the state-space up
to a few plies into a game is small, we can precalculate a database (called
“opening book”, or just “book”) of values for positions that are likely to occur
at the beginning of a tournament game. If the opening book is stored as a
directed graph, with positions as nodes and moves as arcs, then the values
can be propagated within the book. This way the computer program not
only saves time compared to search, but also obtains better values, assuming
the search depth used for precalculation is greater than the one used during
play.

Although the benefits of using endgame databases and opening books are
similar, algorithms for the construction of endgame databases have received
more attention up to the present. The reason for this seems to be twofold:
values in endgame databases are exact game-theoretic values, whereas values
in the opening book are (mostly) heuristic values. This makes it hard to
judge the usefulness of an opening book, and the non-trivial truth of the
endgame database provides a basis for data mining. Another reason is that
efficient indexing functions for complete enumeration can be constructed for
positions in endgame databases, whereas for positions in the opening book
no efficient indexing functions exist, due to the fact that the relevance of a
position for the opening book stems from the position value and not from
the configuration of stones on the board.
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3.2 Opening Book Basics

3.2.1 Book Representation

An opening book is represented as a directed graph. The nodes of the graph
represent positions, and an arc between two nodes represents a legal move.
One node, called the start node, represents the start position, and all other
nodes must be reachable from it. If a node has an edge for each of its moves,
then it is called an interior node, otherwise it is called a leaf node.

Every node i has two attributes: the heuristic value hi and the propagated
value pi. The value hi is computed by the search engine. For interior nodes,
pi is the negamax value of psj

of all successor nodes sj. For leaf nodes, pi is
equal to hi.

pi =

{
max(−psj

) for all successors sj (interior nodes)
hi (leaf nodes)

For book construction it is not actually necessary to keep hi once i has
become an interior node. However, for testing the book expansion strategies,
it is useful to be able to compare hi and pi during the calculation. Unless
explicitely stated otherwise, let value mean propagated value.

Figure 3.1 shows an example of a node with three successors. To improve
readability we will use max-propagation instead of negamax-propagation in
the Figures. Node n is a max-node, therefore pn = max(ps1, ps2, ps3) = 3.

h
p

i
i

i

max
n 3

0

3
1

s1 2
2

s2 1
-1

s3

Figure 3.1: Node representation
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3.2.2 Book Expansion

When an opening book is created, it contains only the start node. Expansion
is done in three steps:

1. Choose a leaf node and add all successors to the book.

2. Calculate the heuristic values of the new successors.

3. Propagate the (heuristic) values up to the start node.

This chapter deals with the first step: how to choose the next node for
expansion. Step two, the calculation of a heuristic value, is a topic of ongoing
research in the field of computer games. We simply assume that a state-of-
the-art search engine is available. Once the value is calculated, it will be
negamax propagated through the graph in step three.

3.2.3 Goals

When is an opening book good? Of course, the ultimate goal in every tour-
nament game is to win. Since it will rarely be possible to win a game straight
from the book, its main benefit is that during the opening phase of the game
search time is saved, which may be used later in the game to outsearch the
opponent. Therefore, the primary goal is to maximize the expected number
of moves one can play within the book.

Which nodes should we expand to achieve this goal? A naive approach
that guarantees that a minimal number of moves can be played from the book
is to enumerate all positions at depth 1 from the start position, calculate their
values and store them. Next, the same is done for all positions at depth 2,
and so on. This will, however, waste a lot of time and space on positions
which are very unlikely to occur in a tournament game, because to reach
them some player would have to make an obviously bad move. Therefore the
secondary goal must be to achieve the primary goal with as few expansions
as possible.

3.3 Drop-out Diagrams

As a starting point for the solution of our problem we introduce a graphical
representation of an opening book. A drop-out diagram shows the depth and
value of all leaf nodes that can be reached, under the assumption that the
book player only makes best moves and that the opponent is allowed to make
any move. For example, Figure 3.2 shows the reachable leaf nodes of a small
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opening book. The value of the start node of the book is 0.9. A leaf node
with this value is only reached if the opponent only plays best moves too. If
the opponent makes a mistake, then leaf nodes with higher values (from the
point of view of the book player) may be reached.
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Figure 3.2: Drop-out diagram of a small opening book. The values are shown
from the point of view of a max-player, i.e. the greater a value the better
it is. In this example the smallest value that shows up is 0.9, which is the
value of the start node. Leaf nodes with higher values are only reachable if
the opponent (the min-player) makes a mistake.

Each dot in the diagram represents one or more candidate leaf nodes for
expansion: Which one should we choose? Or, to reformulate the question,
if you were the opponent of the book player: Which leaf node would you
try to reach? Obviously, if the opponent only plays best moves, the book
player will be able to play at least 32 plies from the book. However, as the
plot shows, there is a line in the book which ends at ply 4, with a value of
1.1, which is only 0.2 points worse than the best value. If any opponent of
this book player ever finds out about this line, he will probably decide that
it is worth to take the risk of a slightly worse position in return for getting
the book-player out of book. Such deliberate deviation from best moves is a
favorite strategy for humans (and sometimes computers) against computers.
Therefore that node at a depth of 4 plies is probably the best candidate for
expansion.
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3.4 Expansion strategies

The goals in Section 3.2.3 suggest that an expansion strategy should choose
nodes for expansion according to the likelihood of their occurrence in a game.
Since we can assume that good moves are more likely to occur than bad
moves, the most straightforward strategy is best-first. This strategy was
implemented in [10]; it is used here as a reference against which we want to
compare the new strategy.

For the following discussion of expansion strategies we will assume that
the game engine using the book will only play best book moves. This is a
reasonable assumption because there is no point in constructing an opening
book and then to ignore it. However there are also good reasons to choose
other moves now and then, for example to reduce predictability of the game
engine.

3.4.1 Best-First Expansion

The rule for best-first expansion is: Expand the leaf node that is reached by
following a path of best moves from the start node. If an interior node has
more than one best move, choose one of them at random. See Figure 3.3.

3
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s1
2
3s2 3

3
s3 1

3
s4
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-1s5

h
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i
i

i n
2
3

max

Figure 3.3: Example for best-first expansion. The best value among all
successors of n is 3, thus the candidate set for expansion is {s1, s2, s3}.

This strategy is simple and ignores bad moves, but it has a major flaw:
suppose we just expanded the start position of Chess, and the engine returned
0.1 (measured in pawns) for e2–e4, and 0 for all other moves. Expansion will
now continue along e2–e4, and it is easily possible that the value for that
move will always be > 0, so all other moves from the start node will be
ignored forever. This violates the goal of maximizing the expected number
of book moves played in a game, because for example the common move
d2–d4 by the opponent leads to a position that is not in the book, i.e. we
“drop out” of the book.
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Figure 3.4: Successor s1 is the only best move.

Of course the assumption that the value of the best move will only in-
crease is weak. But even if we assume that the propagated value of a node
will oscillate in an interval around its original heuristic value, the problem
remains.

Take, for example, the situation in Figure 3.4, where successor s1 cur-
rently is the only best move. Assume that during further expansion the
propagated values remain in the range [hi − 2, hi + 2]. Then s2 and s3

may eventually have values larger than that of s1, the favorite candidate,
and thus become eligible for expansion. However if their values ever become
less than −2 they will never be selected again, because the value of s1 will
never go below −2. At some point, a situation similar to Figure 3.5 will
be reached, where the values of the alternative moves get stuck just below
the lowest value which the optimal move has ever reached. The resulting
successor values are misleading, because they are biased to look worse than
what they are. This again leads to early drop-out, because the depth of the
book after move s2 will remain shallow, but it is still likely to be played by
an opponent.
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Figure 3.5: The successors s2 and s3 are expanded until their values fall
below −2.

The heart of the problem with early drop-out is the fact that we use the
same engine to search for values for both the first and the second player. We
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implicitly assume that the opponent uses the same evaluation function as we
do, which is not necessarily true. It would be more reasonable to assume
that the evaluation function of the opponent is only similar, and to expand
some of the inferior move alternatives in a controlled way.

There is another minor flaw in best-first expansion. Because we make
a random choice if more than one best move is available, the probability of
choosing a specific leaf node on a best path depends on the number of best
moves at any node along the path. This means that the book grows faster
along some paths. We could solve this if we first made a list of all leaf nodes
reachable with best moves, and then chose one at random, but that would be
both time and space consuming. Instead we prefer to have a strategy that
solves this by making a series of local decisions.

3.4.2 Drop-out Expansion

The problem with best-first expansion was that in situations as in Figure 3.5
only the best move is considered for expansion, whereas it is not unlikely that
an opponent will play the second-best move. To solve this we now consider
all moves for expansion, and give each move a priority depending on the
depth of the book following the move, and the difference between the best
value and the value of the move. A successor has high expansion priority
if it is a good move and/or it has a shallow subbook, and a successor has
low expansion priority if it is a bad move and/or it has a deep subbook. To
calculate the expansion priorities we add two new attributes, epbi and epoi,
to the nodes.

epbi =




1 + min(eposj
)

(
for all best successors sj ,
interior nodes

)

0 (leaf nodes)
(3.1)

epoi =




1 + min(epbsj
+ ω(pi − psj

))

(
for all successors sj ,
interior nodes

)

0 (leaf nodes)
(3.2)

epbi is the expansion priority for when it is the book player’s move (Equa-
tion 3.1). It is initialized to zero in leaf nodes, and depends only on the
expansion priority of the best successors. The +1 is the depth penalty. It
guarantees that shallow nodes have higher priorities.

epoi is the expansion priority for when it is the opponent’s move (Equa-
tion 3.2). It is initialized to zero in leaf nodes, and depends on the expansion
priority of all successors. Besides the depth penalty (+1), inferior moves
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get an additional penalty which depends on the value difference to the best
move.

ω ≥ 0 is the weight for the difference pi − psj
between the best value and

the value of successor sj . The right choice of ω is game specific and depends
on the heuristic value resolution, i.e. +1 may mean “one piece ahead” or
“0.01 pieces ahead”. A low value for ω means higher priority for inferior
moves. If ω = 0 then all successors will be expanded to the same depth,
regardless of their values. On the other hand, if ω → ∞ then drop-out
expansion degenerates into best-first expansion because only best moves will
be expanded.

Figure 3.6 uses drop-out diagrams to show a graphical interpretation of
the influence of the choice of ω on the expansion strategy. With ω → ∞
we get best-first expansion, and leaf nodes are expanded from left to right.
With ω = 0 we expand the shallowest nodes first, going from bottom to
top. Drop-out expansion allows expansion from bottom-left to top-right at
an arbitrary angle.
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Figure 3.6: The influence of ω on expansion. For ω → ∞ we get best-
first expansion and for ω = 0 we get shallowest-best expansion. Drop-out
expansion is the generalized expansion strategy.

Figures 3.7 and 3.8 show two examples of Othello opening books with
10,000 nodes each, calculated with different values of ω.

Figure 3.9 shows the pseudo-code for drop-out expansion. The recursion
is started by calling either CalcEpb(nroot) or CalcEpo(nroot), depending on
whether the book should be expanded from the first player’s point-of-view
or from the second player’s point-of-view. The function Select() selects a
node for expansion. The pseudo-code ignores the handling of exact values.

What do we gain if we use drop-out expansion? Obviously a move that
is only slightly worse than the best move will not be ignored forever, even
if the best value never decreases. With increasing depth of the best move,
the priority for the expansion of suboptimal moves will increase too and
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Figure 3.7: Drop-out diagram of an Othello book with 10,000 nodes calcu-
lated with ω = 1.0.
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Figure 3.8: Drop-out diagram of an Othello book with 10,000 nodes calcu-
lated with ω = 2.0.
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void CalcEpb(Node n) {
if (isLeaf(n)) {

Select(n);

} else {
BestValue = BestSuccessorValue(n);

epbmax = +∞;

for (all successors si) {
if (si.value == BestValue) {

if (1 + si.epo < epbmax) {
epbmax = 1 + si.epo;

BestMove = i;

}/*if*/
}/*if*/

}/*for*/
CalcEpo(sBestMove);

}/*if*/
}/*CalcEpb*/

void CalcEpo(Node n) {
if (isLeaf(n)) {

Select(n);

} else {
BestValue = BestSuccessorValue(n);

epomax = +∞;

for (all successors si) {
if (1 + si.epb + ω(BestValue− si.value) < epomax) {

epomax = 1 + si.epb + ω(BestValue − si.value);
BestMove = i;

}/*if*/
}/*for*/
CalcEpb(sBestMove);

}/*if*/
}/*CalcEpo*/

Figure 3.9: Pseudo-code for drop-out expansion. The function Select()

selects a node for expansion. The recursion is started by calling either
CalcEpb() or CalcEpo() with the start node.
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this will eventually lead to their expansion. For the same reason it will not
happen that a suboptimal move gets stuck with a bad value, as was shown
in Figure 3.5 for best-first strategy. Thus all the problems observed with
best-first expansion have been solved.

An additional benefit from drop-out expansion is that the parameter ω
can be used to control the shape of the opening book. The user can choose
any shape between full expansion of every line and best-first expansion.

The benefit from drop-out expansion may also be understood as a kind
of insurance: if the opponent wants to force a drop-out, he has to pay with a
move that is so bad that it has not been considered for expansion yet. If he
keeps playing good moves, we will not drop out of the book early. So, at the
end of the opening, we have either a good position, or we have saved lots of
time, or a combination of both.

3.4.3 Further Enhancements

So far our reasoning has led us to consider not only the values of succes-
sor nodes, but also the depths to which they have already been expanded.
The subset of leaf nodes considered for expansion was changed to avoid the
problems found with best-first expansion. However, the candidate set of leaf
nodes changes most radically when the value of the start node changes. It
would be of advantage if we could settle that value first.

This is exactly what conspiracy number search [31, 43] can do: Expand
a leaf node that is reached by following a path of best moves from the start
node and which is most likely to change the value of the start node. Two
new attributes need to be added to each node, one to count the number of
leaf nodes that have to change to increase the value of the node, and one to
count the number of leaf nodes that have to change to decrease the value.

We implemented conspiracy number expansion as an option which can
be turned on if the start node is unstable. However the expanded nodes are
often in deep remote lines and of limited use for the opening book.

Another enhancement is the use of fractional depth. The depth of the
successor nodes is not incremented by 1 as in Equations (3.1) and (3.2),
instead a value within the range 0.01 ≤ fractdi ≤ 1 is used as an increment.
fractdi depends on the difference between the best and the second best value.
If the difference is large (or if there is only one move), then the fractional
depth is small, otherwise large.

This favors the expansion of lines with unique or almost unique moves.
The increased expansion of these moves is justified by the fact that they do
not contribute to the exponential growth of the book as the other moves do.
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3.4.4 Other Considerations

The task of opening book construction would be simplified if we had a
good model of the opponent, i.e. if we could predict the opponent’s moves
with high accuracy. For drop-out expansion we proposed a linear function,
ω(pi − psj

), for the value-dependant penalty. This is a very simple opponent
model, where ω is the estimated similarity of the book player’s engine and
the opponent’s engine. We also considered some non-linear functions, but
abandoned the idea because of a lack of efficient implementations.

3.5 Conclusions

We have shown that, for opening book construction, best-first expansion has
certain deficiencies. For instance, it may completely ignore alternative moves
with values only slightly inferior to the best value, and it has a tendency to
stop expansion of inferior moves with a misleadingly low value. In both
cases, a lucky or an informed opponent can force us to drop out of the book
with only a small penalty for him. Both problems are related to the implicit
assumption that the opponent uses the same evaluation function.

We propose a new strategy, drop-out expansion, which, in a user con-
trolled way, also considers inferior moves for expansion. This not only avoids
the problems with best-first strategy, but also gives the user the flexibility to
control the growth of the opening book between full-breadth expansion and
best-first expansion. For best results, drop-out expansion can be combined
into a mixed strategy with conspiracy number expansion.

The flexibility of drop-out expansion can also be used to tune a book to an
opponent: if the opponent is known to play similar moves, then parameters
can be chosen to construct a best-first like opening book. If the opponent
is known to play differing moves often, then parameters can be chosen to
expand more alternative moves.



40 CHAPTER 3. OPENING BOOK CONSTRUCTION



Chapter 4

Position-Value Representation

The problem of position-value representation is similar for game search en-
gines and opening books. In both cases, leaf nodes have either an exact or
a heuristic value, and in both cases these values must be propagated to the
start node.

However, the requirements for propagation speed and value accuracy dif-
fer. For a game search engine we want to use a position-value representation
which allows for fast propagation, because we need to search as many nodes
as possible. We are not interested in the value of the start node; we are only
interested in the best move. For example the B* algorithm [8] terminates
as soon as one move is proved to be better than any other move, possibly
without calculating an exact value for that move.

For an opening book we do not necessarily need the fastest propagation
algorithm, because the book is constructed offline. We want to know, as
accurately as possible, the value of each node in the book, because the values
of the successor nodes are used to guide the expansion of the opening book
(see Section 3.4.2).

The question of how to mix heuristic and exact values in a search tree
was also addressed in [7]. The author shows that, by propagating bounds on
exact values, nodes are solvable even if the exact values of some successor
nodes are unknown. He then extends alpha-beta search to propagate lower
and upper bounds on the exact value in addition to the heuristic value.

Section 4.1 discusses the problem of incomparable values and how it
is dealt with in search engines. In Section 4.2 we solve this problem for
opening books by introducing two new value types, at-least-draw and
at-most-draw, which are bounds on exact values. And in Section 4.3 we ex-
tend the idea of attributed values by introducing another value type
cycle-draw.

41
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4.1 Incomparable Values

The only values we would like to deal with are win, loss and draw. Unfor-
tunately it is not always possible to determine the exact value of a position
within a given amount of time. In that case we use so-called heuristic values
to calculate an estimate of the exact value. A heuristic value is an integer
h in a range hmin ≤ h ≤ hmax. If a heuristic value is close to hmax then we
say that the corresponding position is likely to be a win. If a heuristic value
is close to hmin then we say that the corresponding position is likely to be
a loss. If a heuristic value is close to 0 then we say that the corresponding
position is likely to be a draw.

While the introduction of heuristic values allows us to estimate position
values in a limited amount of time, it also gives rise to a new problem. We
cannot, without information about the context of a game, tell whether a draw

is better than a heuristic value or not: the draw and the heuristic values are
incomparable.

For example, imagine your are playing a game in the last round of a
tournament. In your current position you have two moves: one leads to
a draw, but for the other move you have only a heuristic value. Which one
should you play? Now assume that a draw is sufficient to win the tournament.
In that case it is obviously better to play safe and to choose the move to the
position with a draw value. On the other hand, it might be that you will at
least end up on second place, regardless of the outcome of the last game, but
a win might allow you to win the tournament. In this case it is obviously
better to play for ‘all or nothing’ and to choose the move with the heuristic
value.

4.1.1 Partially Ordered Sets

Because the draw value and the heuristic values are incomparable the set of
game-position values forms a partially ordered set [47, Chapter 3].

A partially ordered set P is a set together with a binary relation ≤ sat-
isfying three axioms:

1. For all x ∈ P , x ≤ x. (reflexivity)

2. If x ≤ y and y ≤ x, then x = y. (antisymmetry)

3. If x ≤ y and y ≤ z, then x ≤ z. (transitivity)

We use the obvious notation x ≥ y to mean y ≤ x, x < y to mean x ≤ y
and x �= y, and x > y to mean y < x. We say two elements x and y of P are
comparable if x ≤ y or y ≤ x; otherwise x and y are incomparable.
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If P is a partially ordered set, and if x, y ∈ P , then we say that y covers x
if x < y and if no element z ∈ P satisfies x < z < y. The Hasse diagram
of a partially ordered set P is the graph whose vertices are the elements of
P , whose edges are the cover relations, such that if x < y then y is drawn
“above” x. Figure 4.1 shows the Hasse diagram for a game-value set with
hmin = −2 and hmax = 2.
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Figure 4.1: Hasse diagram for a game-value set with hmin = −2 and hmax = 2.
The draw value and the heuristic values are incomparable.

4.1.2 Workaround for Search Engines

For search engines the problem of incomparability between draw and heuris-
tic values is usually solved by treating draw and 0 as equal. This makes sense,
because 0 is the heuristic estimate of draw, and because this can be imple-
mented efficiently. Table 4.1 shows the propagation rules and propagate1()

in Figure 4.2 is the corresponding propagation function.

propagate(+, x) → +
propagate(−, x) → x
propagate(=, h) → max(0, h)
propagate(h1, h2) → max(h1, h2)

Table 4.1: Simple max-propagation rules. + means win, − means loss, =
means draw, h means heuristic value and x means any type of value.

Another way to solve the incomparability problem is to provide an ad-
ditional parameter hdraw, the draw-threshold, to the propagation function,
where hmin ≤ hdraw ≤ hmax + 1. hdraw represents a player’s willingness to
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int propagate1(int v1,int v2) {
if ((v1 == draw) && (v2 != draw)) v1 = 0;

if ((v2 == draw) && (v1 != draw)) v2 = 0;

return max(v1,v2);

}/*propagate1*/

Figure 4.2: Propagation function with proven draw. It is assumed that
loss < draw < win, loss < hmin and hmax < win.

end the game with a draw and is chosen separately for every game, or even
for every search. Whenever we compare a draw with a heuristic value h, we
propagate draw if h < hdraw, and we propagate h if h ≥ hdraw. This means
that the higher the value of hdraw, the higher is our preference for a draw.
This effectively turns the partially ordered set into a totally ordered set (see
Figure 4.3).
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Figure 4.3: Hasse diagram for a game-value set with a draw-threshold. This
set is totally ordered.

Table 4.2 shows the propagation rules and propagate2() in Figure 4.4
implements the corresponding propagation function. This solution is cheap
and useful for search engines, but not usable for the construction of opening
books, because at the time of construction we do not know the value of hdraw.
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propagate(+, x) → +
propagate(−, x) → x

propagate(=, h < hdraw) → =
propagate(=, h ≥ hdraw) → h

propagate(h1, h2) → max(h1, h2)

Table 4.2: Max-propagation rules with draw-threshold hdraw.

int propagate2(int v1,int v2,int hdraw) {
if ((v1 == draw) && (v2 >= hmin) && (v2 <= hmax)) {

if (v2 < hdraw) return draw; else return v2;

}/*if*/
if ((v2 == draw) && (v1 >= hmin) && (v1 <= hmax)) {

if (v1 < hdraw) return draw; else return v1;

}/*if*/
return max(v1,v2);

}/*propagate2*/

Figure 4.4: Propagation function with draw-threshold. It is assumed that
loss < draw < win, loss < hmin and hmax < win.
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4.2 At-least-draw and At-most-draw

In a situation like in Figure 4.5, the propagation rule of Table 4.1 propagates
the value 0. If we want a fast propagation and are only interested in the
best move at the start position then this is a good solution. However this
propagation function loses information, namely that the player to move has
the option of a guaranteed draw. In an opening book we want to keep this
kind of information to make better decisions for book expansion. We can do
this by introducing a new value type, the at-least-draw value, denoted by
’≥’, and its inverse, the at-most-draw value, denoted by ’≤’. This leads to
Figure 4.6.

0

0=

max

Figure 4.5: Simple propaga-
tion.

≥

0=

max

Figure 4.6: Propagation with
at-least-draw values.

That these new value types indeed do keep more information and even
help to solve positions is demonstrated in Figures 4.7 and 4.8. With the old
propagation rule the value of the start position is a heuristic 0. With the
new propagation rule we are able to prove that the value of the start position
is a draw.

We can still do better than just use the at-least-draw value. Consider
for example the situation of Figure 4.9. The two start positions have the
same value, but the left one is probably a draw and the right one is probably
a win (assuming that +9 is a real good heuristic value). What we would like
to do is to keep the information about the value of the best heuristic value of
the successors of a position with an at-least-draw value. We achieve this by
introducing the attributed at-least-draw value, written ≥|h, where h is the
value of the best heuristic successor (hmin ≤ h ≤ hmax). For at-most-draw
values, ≤|h is defined analogously. Figure 4.10 shows the same situation as
Figure 4.9, but now with attributed at-least-draw values.
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0

0=

0

=
max

min

Figure 4.7: With simple prop-
agation the start position of
this graph is not solved.

≥

0=

=

=
max

min

Figure 4.8: With
at-least-draw /
at-most-draw values the
start position of this graph is
solved.

≥

0=

≥

+9=

max max

Figure 4.9: The start position on the left is probably a draw, the start position
on the right is probably a win, but their values are the same.

≥|0

0=

≥|+9

+9=

max max

Figure 4.10: The same graphs as in Figure 4.9, now with attributed
at-least-draw values.
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Figure 4.11 shows the Hasse diagram of a value representation with at-
tributed at-least-draw and at-most-draw values, and with hmin = −2 and
hmax = +2. ≥|h means that the player to move has a forced draw, but has
the option to move into a position with value h instead. ≤|h means that
the opponent has a forced draw, but has the option to move into a position
with value h. The values [≥|hmin, . . . ,≥|hmax] and [≤|hmin, . . . ,≤|hmax] are
continuous ranges of values between draw and win and loss and draw re-
spectively, just in the same way as [hmin, . . . , hmax] is a continuous range of
values between loss and win. Therefore these new values give us a more
accurate estimate of the exact value than what we had before.

+

0
-1

+2

-2

+1

-

=

≥|0
≥|-1

≥|+2

≥|-2

≥|+1

≤|0
≤|-1

≤|+2

≤|-2

≤|+1

Figure 4.11: The Hasse diagram for a value representation with attributed
at-least-draw and at-most-draw values, and with hmin = −2 and hmax =
+2. ≥|h means that the player to move has a forced draw, but has the option
to move into a position with value h instead. ≤|h means that the opponent
has a forced draw, but has the option to move into a position with value h.

The term ‘at least draw’ is sometimes used with a different semantics.
For example Chess positions with a king and a pawn against a king (KPK)
are said to be ‘at least draw’ for the player with the pawn: whatever he does,
no mistake is bad enough to make him lose.

Our definition of at-least-draw is weaker. The value ≥|h must be read
as ‘draw exclusive-or h’, and if a player chooses h then he might still lose.
However, the name at-least-draw is still justified, because whatever the
exact value of the position with the currently heuristic value h will be, the
exact value of ≥|h will be either win or draw.
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Although the problem of incomparability between draw and heuristic val-
ues is now solved, Figure 4.11 shows that now two new types of incompara-
bility call for a propagation heuristic:

• ≥|a and h are incomparable if a < h. This case is simple to solve.
Remember that ≥|a means that the player to move can force a draw,
but has the option to move to a position with a heuristic value a (and
a is the best heuristic value that is reachable). Therefore it is natural
to propagate ≥|max(a, h) in this case.

• ≤|a and h are incomparable if a > h. We know that the propagated
value of ≤|a and h must be a heuristic value, because we cannot derive
any bounds on the exact value from ≤|a and h. Now ≤|a means that
the opponent can force a draw, but has the option to move to a position
with a heuristic value a (and a is the best heuristic value that is reach-
able). Therefore when we compare ≤|a and h, a is an option for the
opponent and h is an option for the player to move, the two cannot be
related to each other. To solve this problem we devised the following
propagation heuristic: we assume that the opponent will always play
the forced draw if a ≥ 0, but will always avoid the draw if a < 0. The
propagated value will be max(h, min(a, 0)).

Table 4.3 summarizes the propagation rules for a value representation
with attributed at-least-draw and at-most-draw values.

propagate(+, x) → +
propagate(−, x) → x
propagate(h1, h2) → max(h1, h2)
propagate(=,≥|a) → ≥|a
propagate(=,≤|a) → =

propagate(≥|a1,≥|a2) → ≥|max(a1, a2)
propagate(≥|a1,≤|a2) → ≥|a1

propagate(≤|a1,≤|a2) → ≤|min(a1, a2)
propagate(=, h) → ≥|h

propagate(h,≥|a) → ≥|max(h, a)
propagate(h,≤|a) → max(h, min(a, 0))

Table 4.3: Propagation rules with at-least-draw and at-most-draw values.
The last three rules define the propagation for incomparable values.
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4.2.1 At-least-draw, At-most-draw and Opening Book

Construction

There are two goals in opening book construction: to improve the playing
strength at tournament games, and to solve a game. In a situation like in
Figure 4.12 we have a conflict of interests.

h≤|a

0
max

Figure 4.12: Conflicting expansion priorities (for h < 0). To improve the
playing strength use drop-out expansion. To solve the start node use con-
spiracy numbers.

Improve playing strength The at-most-draw position is the most likely
move and should get the higher priority for expansion. This is exactly
what drop-out expansion does: ≤|a is treated as 0, and the expansion
priority of the two moves depends on h and the depths of the subtrees.
However, the value of the start node does not depend on a, therefore
expanding the left node is unlikely to influence the value of the start
node.

Solve the game There are several ways how the start node of Figure 4.12
can be partially or completely solved. For a partial solution we can
prove the left successor to be a draw, or prove that the right successor
is either at-most-draw or a loss. For a complete solution we can
either prove the right move to be a win or a draw. What we would like
to do is to minimize the number of nodes that have to be expanded.
This is best done with the conspiracy numbers heuristic [31, 43].
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4.3 Cycles

As explained in Section 1.1, graphs of search problems are in general cyclic.
For games, the most common rule for handling position repetitions is that
the game is declared to be a draw. See Table 4.4 for an overview of cycle
handling in various games.

The first problem of cycle handling is cycle detection, see Figure 4.13.
Any time a move is added to the book, we have to find out if this new
move closes a cycle, and update the values accordingly. Unfortunately it
is impossible to detect a closed cycle locally, in general we have to search
the whole graph to detect cycles. Our implementation of cycle detection is
discussed in Section 5.2.2.

+1

-1

+1

+1 +1

-1

+1

+1

-1

Figure 4.13: [negamax propagation] The cycle problem: when the dashed
edge is added, a cycle is created. The cycle cannot be detected locally, at the
node where it was closed, instead a global search is necessary. Moreover, all
the values in the cycle are locally consistent, but should be set to 0 because
the positions are most likely draw.

4.3.1 Cycle-draw

The second problem of cycle handling is cycle value propagation. Again
our aim is to keep as much information about the value as possible. The
simplest solution is to assign to every position in the cycle the heuristic
value 0, see Figure 4.14. However, this loses some information about the
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game cyclic? cycle value cycle breaking moves

Abalone yes draw capture
Amazons no
Awari yes The remaining stones are

split between the players,
thus the configuration has
value 0, the position value
depends on the distribu-
tion of captured stones.

captures

Checkers yes draw captures, conversions,
checker moves

Chess yes draw captures, conversions,
pawn moves, castling

Chinese
Check-
ers

yes draw none

Chinese
Chess

yes draw (Perpetual checks
and perpetual threats to
capture are forbidden.)

captures, forward moves
by pawns

Connect-
four

no

Go no
Go-
moku

no

Hex no
Nine
Men’s
Morris

yes draw opening moves, captures

Othello no
Qubic no
Shogi yes draw (If the repetition

is forced by a sequence
of checking moves of one
player, then that player
loses.)

none

Table 4.4: Cycle handling for some games.
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value of the position, as shown in Figure 4.15: the same value is propagated
for positions with a value almost identical to a 0 and for positions with a
value almost identical to a draw. As in the case with the at-least-draw

and at-most-draw values we solve this by introducing a new attributed value
type, the cycle-draw, denoted 0| + h1| − h2, which has two attributes, +h1

and −h2. +h1 is the smallest heuristic value with which the opponent can
move out of the cycle, in other words the opponent either stays in the cycle
and settles for a draw, or plays a move that has a value of at least +h1 for
the current player. −h2 is the largest heuristic value with which the current
player can move out of the cycle, in other words the current player either
stays in the cycle and settles for a draw, or plays a move that has a value of
at most −h2 for the current player.

0

0

+4

0 +2

0

+3

+1

0

Figure 4.14: [negamax propagation] A cycle using the heuristic value 0 as
cycle value.

As the use of the + and − sign in the notation for the cycle-draw sug-
gests, the first attribute is always strictly positive and the second attribute
is always strictly negative. Otherwise one player would have a cycle-leaving
move which is at least as good as any cycle-preserving move. Then the
value of the cycle-leaving move is assumed to be better and the correspond-
ing heuristic value is propagated. Figure 4.16 shows the same situation as
Figure 4.15, now using attributed cycle-draw values.

When a game has a heuristic value range hmin, . . . , hmax, the value ranges
for the attributes of the cycle-draw are 1, . . . , hmax for the first attribute and
hmin, . . . ,−1 for the second attribute. However it is possible that all the cycle-
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0

0

0

0

+8

+9 +8

+7

0

0

0

0

+2

+3 +2

+1

0

A B

Figure 4.15: [negamax propagation] Using heuristic 0 as cycle value loses
information. In this graph, the two successors of the start position look
exactly the same. However, the penalty for leaving the right cycle is higher
for both players, therefore the right cycle is closer to a draw than the left
cycle.

0|+2|-1

0|+1|-2

0|+2|-1

0|+1|-2

0|+2|-1

+2

+3 +2

+1 0|+7|-8

0|+8|-7

0|+7|-8

0|+8|-7

+8

+9 +8

+7

Figure 4.16: [negamax propagation] The same graph as in Figure 4.15, but
now with attributed cycle-draw values.
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leaving moves for one or both players have loss values. We use 0| + | − h
for the case where the opponent has only losing cycle-leaving moves, we
use 0| + h|− for the case where the current player has only losing cycle-
leaving moves, and we use 0| + |− for the case where both players lose if
they play a cycle leaving move. Obviously, the values 0| + | − h, 0| + h|− and
0| + |− are equivalent to ≥| − h, ≤| + h and draw, respectively. We conclude
that cycle-draw values are a generalization of the previously introduced
at-least-draw, at-most-draw and draw values.

Table 4.5 shows the propagation rules for a value representation with
cycle-draw values.

propagate(+, x) → +
propagate(−, x) → x
propagate(h1, h2) → max(h1, h2)
propagate(=,≥|a) → ≥|a
propagate(=,≤|a) → =

propagate(≥|a1,≥|a2) → ≥|max(a1, a2)
propagate(≥|a1,≤|a2) → ≥|a1

propagate(≤|a1,≤|a2) → ≤|min(a1, a2)
propagate(=, h) → ≥|h

propagate(h,≥|a) → ≥|max(h, a)
propagate(h,≤|a) → max(h, min(a, 0))

propagate(0| + h1| − h2, 0| + h3| − h4) → 0|min(h1, h3)|max(−h2,−h4)
propagate(h, 0| + h1| − h2) → max(h, 0)
propagate(=, 0|+ h1| − h2) → ≥|0

propagate(≥|a1, 0| + h1| − h2) → ≥|max(a1, 0)
propagate(≤|a1, 0| + h1| − h2) → 0

Table 4.5: Max-propagation rules with cycle-draw values. When compared
to other types of values, the cycle-draws are treated like heuristic 0 values.

4.3.2 Cycle-draw and Book Expansion

The attributed cycle-draw values provide a measure for estimating how close
we are in proving that a position is a draw by repetition. When we expand
an opening book, we are usually interested in expanding a cycle-leaving move
with the smallest absolute value. For example, in Figure 4.16, the candidates
for expansion are the leaf nodes with values +1 and +2 at the bottom in the
left cycle, because these are the values on which the attributes of the start
node depend.
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In general these candidates cannot be found by local decisions on a path
from the start node. At position A in Figure 4.17, look-ahead is necessary
to decide which path should be taken to reach the candidate leaf nodes.
We solved this problem by using the drop-out expansion strategy, where the
expansion priority of a leaf node depends not only on its value, but also on
its depth, see Section 3.4.2. With drop-out expansion, the leaf node with
highest expansion priority can still be found by making local decisions.

0|+2|-1

0|+1|-2

0|+2|-1

0|+1|-2

0|+2|-1

+3

+3 0|+2|-1

0|+2|-1

0|+1|-2

+1

+2

A

BCD

Figure 4.17: [negamax propagation] It is not possible to find the best cycle-
leaving moves by only looking at the successor values. For example, if we
are at position A, we cannot decide locally which move leads to the best
cycle-leaving moves (the leaf nodes with values +1 and +2).

4.3.3 Cycle-draw and Tournament Play

Like for book expansion, the cycle-draw values are useful in tournament play
to estimate how close we are in proving that a position is a draw. However,
when a position has the value 0| + h1| − h2 it only means that a move exists
such that the current player can leave the cycle with value −h2. Whether
such a move is reachable may depend on the moves of the opponent. Assume
for example that in Figure 4.17 the first player in the start node decides that
he is willing to leave the cycle with a penalty of −1, and moves into the cycle.
But at position A, it is the opponent’s move, and if the opponent moves to
position B, the game is forced into a draw.

Note that we cannot simply conclude that position A is at least a draw

for the opponent; this depends on where the cycle was entered. Had the
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current player entered the cycle at position A, then a move to B would not
force a draw, but the first player could still leave the cycle with a penalty of
−3 at position C.

We conclude that cycle-draw values are useful for estimating the solved-
ness of a position and to guide the expansion of opening books. In a tour-
nament game we still need look-ahead and opponent modelling to find out
which leaf nodes are reachable.
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Chapter 5

OPLIB: Architecture and
Implementation

This chapter describes OPLIB, a game independent tool for opening book
construction and game solving. The motivation for the implementation of
OPLIB was twofold: First, because of the lack of human expert knowledge in
Awari, we needed a tool for the automatic construction of an opening book.
Second, because of the observation that the previous solution of games always
involved some large scale forward search. Two different strategies were used
for game solving with forward search:

Single search Nine Men’s Morris [15] and Kalah [20] were solved by a single
search from the start position.

Multiple searches Gomoku and Qubic [4] were solved by multiple searches.
Whenever a position turned out to be unsolvable within given resource
constraints, then the solution task was broken down recursively into
smaller pieces by solving the successor positions one by one.

The second strategy has several advantages. For example it is more gen-
eral because it can be applied even if the resources are insufficient for the first
strategy. It also allows to keep a better eye on the progress of the solution
process. However, it also requires a certain maintanence overhead because we
need to keep track of the recursive work breakdown and the reconstruction
of the results.

For Awari we decided single search is not feasible: the runtime is un-
predictable, and we want to add endgame databases to the search as they
become available. To apply the multiple-search approach to Awari we de-
cided to automatize the search management in the form of an opening book
tool.

59
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5.1 Architecture

Figure 5.1 shows the architecture of OPLIB. OPLIB comes in two versions:
An interactive, single machine version and a background version for dis-
tributed book construction. The interactive version is used to manually
browse an opening book. It provides a shell which allows the user to navigate
the book, to add and edit nodes, and to run the search engine for the current
node. The background version is used for automatic book construction on
a cluster of workstations. It acts as a server which hands out positions to
the clients and updates the book with the values calculated by the clients.
It also acts as a server for web interfaces.

opening book

game
graph

network
interface

cluster of
workstations

interactive shell

game interface

A
m

az
on

s
A

w
ar

i
C

he
ck

er
s

C
he

ss
H

ex
N

M
M

O
th

el
lo

Figure 5.1: The main modules of OPLIB. The interactive shell is only avail-
able in the single machine version, the network interface is only available in
the background version.
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OPLIB consists of the following main components:

Opening Book The main module is responsible for book management. In
the interactive version it also provides a text-based user interface.

Game Graph At the core of OPLIB is an implementation of a directed
graph. Both the nodes and the edges are configurable to have at-
tributes. This flexibility simplifies experimenting with different expan-
sion strategies, as every strategy requires its own set of node attributes.

Game Interface OPLIB defines an interface of about a dozen game specific
functions. Currently these have been implemented for Amazons, Awari,
Checkers, Chess, Hex, Nine Men’s Morris and Othello.

Network Interface A network interface is used for the background version.
It uses a simple string-based protocol to communicate with the clients.

5.2 Implementation

During the implementation of OPLIB several design decisions had to be
made that influenced performance and usability of the system. The following
sections exemplify three such design issues, how they where solved and how
they influenced the system.

5.2.1 Main Memory versus External Memory

At the very beginning of the project the question arose as to whether the
opening book should be kept in main memory or on disk during operation.
Keeping the book in memory has the big advantage of fast access to the data
structure. However we decided to keep the book on disk for the follwing
reasons:

• A tournament program that uses the book only needs information
about the current position and its successors. The time necessary to
load this information from disk is negligible, whereas the amount of
memory that would be required to store the book is significant.

• Our estimates showed that it was likely that some books would grow
beyond the size of the main memory of a standard workstation (a few
hundred megabytes). Hard disks are up to a hundred times larger than
main memories.
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• The majority of the book operations only require access to one position
or a path of positions. For example the drop-out expansion strategy
described in Chapter 3 accesses all positions on a path from the start
position to a leaf position. The number of positions on this path is
exponentially smaller than the number of positions in the whole book.

• For a large opening book the time required to load the book into mem-
ory would be significant. Keeping the book on disk makes the startup
time of the system independent of book size.

• For some applications and systems it is preferable to keep the data
in memory and to use the swap mechanism of the operating system
to handle the details of loading and unloading data. The drawback
of this approach is that the operating system does not know anything
about the semantics of the data. For example it accesses the files
blockwise, whereas in the case of an opening book it is preferable to use
position-wise caching because the book is accessed at the granularity
of positions.

With hindsight we can say that the decision to store the book on disk was
justified. Not having to bother about main memory size improves the usabil-
ity of the system, for example we can run background servers for all games
on a single machine. The drawback is that some operations like calculating
drop-out diagrams become increasingly time consuming for larger books.

5.2.2 Transposition Detection and Cycle Detection

Transposition detection is done every time a new successor is about to be
added to the opening book. If the successor already is in the book, then a
new edge is added between the leaf node and the successor. If the successor is
not yet in the book then a new node and a new edge are added to the book.
To check for the existence of a node we store every node in an extensible
hash table [12]. Extensible hashing has the advantage that every lookup can
be done with two disk accesses.

Cycle detection is a classical problem from graph theory. We need to find
the cycles in a game graph so that we can assign the proper values to the
positions in the cycle, see Section 4.3.

In a first attempt we tried an incremental solution: Every time an edge
was added to the graph we immediately checked if the new edge had closed
a cycle. This turned out to be a major performance bottleneck, the system
started to spend most of the time in cycle detection. Moreover, most of the
time the result of the check was negative.
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Therefore we decided to use a global cycle detection algorithm: When an
edge is added to the graph we do not check for cycles. Instead we do cycle
detection on the whole book, see Figure 5.2. This cycle detection is invoked
manually, whenever the book seems to suffer from too many undetected
cycles. For most games this change is irrelevant, because they either have
no cycles, or cycles only play a minor role for opening books, see Table 4.4.
Currently the only game which has an abundance of cycles in the opening is
Chess.

5.2.3 Distributed Expansion

The idea of distributing the work for forward search to a cluster of work-
stations is straightforward. One server which manages the book can keep
several clients busy which run searches on expanded positions in parallel.

The code for the network interface is relatively simple, consisting of about
100 lines of code. However, the whole system also requires some adaptions
for distributed expansion.

Efficiency When a client connects to the server we want to send it a job
as quickly as possible. Therefore we keep a short queue of jobs ready
for search, and we refill that queue in the idle time between client
connections.

Re-scheduling Once a job has been sent to a client, we have to make sure
that the same job is not sent to another client. Therefore we keep a
history of recently sent jobs. Any job in the queue is assumed to be
running on a client already.

Robustness There are various issues of robustness in connection with dis-
tributed computing. The most important issue here is client death:
there is no guarantee that the result of a job sent to a client is eventu-
ally returned, be it because of network problems or because the client
process has been killed. If the result of a job is never returned then the
job would remain in the history forever. To avoid this we use history
aging: When a job remains in the history for too long then it is allowed
to be resent to a client.

These adaptions also influence the process of book expansion. Because of the
queue we do not only expand the ‘best’ node but the ‘best n’ nodes. Therefore
the single machine version and the distributed version do not necessarily
calculate the same opening book. Moreover the distributed version is non-
deterministic because the order in which the results are entered into the book
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void cycledetection() {
Node n;

Value NewValue;

boolean Changed;

for (all unsolved interior nodes n) {
n.value = 0| + ∞| −∞;

}/*for*/
Changed = true;

while (Changed == true) {
Changed = false;

for (all unsolved interior nodes n) {
NewValue = propn(s1.value, . . . , sd.value);
if (NewValue != n.value) {

n.value = NewValue;

Changed = true;

}/*if*/
}/*for*/

}/*while*/
for (all unsolved interior nodes n) {

if (n.value == 0| + ∞| −∞) {
n.value = draw;

}/*if*/
}/*for*/

}/*cycledetection*/

Figure 5.2: The global cycle detection algorithm. First set all node values
to the new artificial value 0| + ∞| −∞, which is a synonym for draw. Then
propagate until no changes occur. All nodes which are not part of a cycle
will receive their former value. Nodes which are part of a cycle with unsolved
cycle-leaving moves will end up with a value of the form 0| + a| − b. If all
the values of cycle-leaving moves are loss then the values of the nodes in
the cycle will be 0| + ∞| −∞, these nodes are draw.
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is non-deterministic. Therefore two runs of the distributed version do not
necessarily calculate the same opening book either.

There also is a trade-off in the choice of history-aging speed. If the history
ages too fast then too many jobs are solved twice. If the history ages too slow
then it may take too long until the result of the most interesting position is
returned to the server. We usually tune the history-aging speed in such a
way that only about every thousandth position is calculated twice.
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Chapter 6

Experiments with Opening
Book Construction

This Chapter gives an overview of the current state of the opening books for
the games that were implemented for OPLIB. Every Section starts with a
short discussion of game properties and the engine used for book expansion.
Then follows a Section with book statistics, which includes a diagram and a
table with node distributions and, if applicable, a drop-out diagram.

The diagrams give an impression of some graph properties of the games.
For example it is shown how the branching factor varies during the course of
a game, and the average number of predecessors of the nodes is an estimate
of the connectivity of the graph. The statistics also give an impression of
how far the games are from being solved.

67
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6.1 Amazons

Game Properties

The tournament version of Amazons is played on a 10x10 board with four
queens for each player. The game is scalable to other board sizes; reasonable
games can be played from 5x5 upward. Scalability makes Amazons a nice
testbed for game solving tools.

An upper bound for the size of the state-space of Amazons on a nxn
board is

(
n2

4

)(
(n2−4)

4

)
2n2−8/8, see Table 6.1. The branching factor is very high

at the beginning of the game, but drops significantly in the first couple of
moves. The game graph contains no cycles, but transpositions are possible.

board size state-space first move
branching factor

5x5 1.2 ∗ 1012 260
6x6 7.1 ∗ 1016 544
7x7 8.7 ∗ 1021 812
8x8 2.8 ∗ 1027 1232
9x9 2.7 ∗ 1033 1700

10x10 8.1 ∗ 1039 2176

Table 6.1: Amazons state-space sizes for different boards. The number of
moves from the start position is very high compared to other games with
similar state-space sizes.

Search Engine

As a search engine we used Arrow (Macintosh version available at [33]), a
strong Amazons program written by Martin Müller. Arrow was able to prove
that 5x5 Amazons is a first player win [32].

Opening Book Statistics

Figure 6.1 shows the distribution of the depths of the nodes in the book.
About 2,000,000 nodes were expanded in the depth range from 0 to 9 with
a peak of over 1,000,000 nodes at depth 4. Table 6.2 shows more details of
the book statistics. The ‘Nodes’ column shows the number of nodes at each
depth. The ‘Solved’ column shows the number of nodes that were solved.
The start position has been prooven to be a win, two winning moves are
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known. The ‘Predecessors’ column shows that, on average, every position
in the book has about 1.5 predecessors which are also in the book. This
means that Amazons has many transpositions. The ‘Degree’ column shows
the average number of possible moves at each depth. The branching factor
is very high at the beginning of the game, but drops significantly during a
game.
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Figure 6.1: The depth distribution of the nodes in the Amazons 5x5 opening
book.

6.2 Awari

Game Properties

An upper bound for the number of states in Awari is 889, 063, 398, 406 (see
Section 2.2). [4] gives a branching factor of 3.5 and a search-tree complexity
of 1032. In our opening book, the average branching factor is about 5 6.3.
This is due to the fact that the vast majority of the positions in the book
have 40 or more stones on the board. The game graph contains transpositions
and cycles, but both are rare, and to the best of our knowledge the current
opening book does not contain a single cycle.
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Depth Nodes Solved Predecessors Degree

0 1 1 0 260.0
1 130 2 260 193.9
2 22,872 824 25,211 158.6
3 570,854 2,949 862,755 118.9
4 1,036,913 63,123 1,401,896 93.5
5 323,503 84,437 586,791 57.2
6 15,496 11,442 18,182 62.7
7 61 61 61 35.3
8 35 35 35 23.9
9 25 25 25 21.0

Total 1,969,890 162,899 2,895,216 95

Table 6.2: Book statistics for Amazons 5x5.

Search Engine

As a search engine we used Marvin, a strong Awari program written by the
author. Marvin has won a silver medal in international computer Awari
tournaments twice (1992 [9] and 1995 [58]), has won the gold medal once
(2000 [30]) and currently is the reigning computer Awari world champion.
For opening book construction, Marvin was configured to search to a fixed
depth of 20 plies. Endgame databases with up to 40 stones were used, but
only on the first 8 plies of the search, because accessing the databases in
deeper positions would increase the search time without noticable benefit.

Opening Book Statistics

Figure 6.2 shows the distribution of the depths of the nodes in the book.
About 1,100,000 nodes were expanded in the depth range from 0 to 93 with
a broad peak in the range from depth 17 to 50. Tables 6.3 and 6.4 show more
details of the book statistics. The ‘Nodes’ column shows the number of nodes
at each depth. The ‘Solved’ column shows the number of nodes that were
solved. Thanks to the endgame databases an average of about 25% percent
of all nodes are solved. The ‘Predecessors’ column shows that, on average,
every position in the book has about 1.02 predecessors which are also in the
book. This means that cycles and transpositions are rare in Awari. The
‘Degree’ column shows the average number of possible moves at each depth.
The degree is remarkably stable during the course of a game.
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Depth Nodes Solved Predecessors Degree
0 1 0 0 6.0
1 6 0 6 6.0
2 36 0 36 5.3
3 81 0 81 5.3
4 244 0 244 5.1
5 437 0 437 5.2
6 932 0 944 5.1
7 1,711 4 1,749 5.2
8 2,880 7 2,921 5.1
9 4,592 46 4,644 5.1

10 5,959 116 6,046 5.2
11 7,905 183 8,027 5.1
12 9,494 257 9,655 5.1
13 12,220 334 12,471 5.1
14 13,469 501 13,813 5.1
15 16,583 589 17,020 5.1
16 17,187 779 17,680 5.1
17 19,479 857 20,117 5.0
18 19,057 1,128 19,671 5.1
19 21,352 1,284 22,001 5.0
20 19,356 1,578 20,048 5.0
21 20,916 1,817 21,571 5.0
22 19,967 2,210 20,679 5.0
23 22,336 2,402 22,985 5.0
24 21,407 2,838 22,045 5.0
25 24,067 3,149 24,735 4.9
26 22,924 3,484 23,615 5.0
27 25,516 3,945 26,142 4.9
28 24,127 4,341 24,785 5.0
29 26,703 4,830 27,334 4.9
30 24,635 4,924 25,186 5.0
31 27,381 5,670 27,946 4.9
32 25,676 5,541 26,288 4.9
33 26,859 5,865 27,473 4.9
34 25,043 5,581 25,583 4.9
35 26,054 5,956 26,548 4.9
36 24,655 5,976 25,140 4.9
37 24,847 6,348 25,325 4.9
38 23,713 6,278 24,152 4.9
39 24,055 6,664 24,519 4.9
40 23,746 6,839 24,214 4.9
41 23,985 7,325 24,460 4.9
42 23,628 7,663 24,075 4.9
43 23,075 7,503 23,492 4.9
44 22,950 7,696 23,350 4.9
45 22,646 7,743 23,025 4.9
46 22,651 8,115 23,025 4.9

Table 6.3: Book statistics for Awari, part 1.
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Depth Nodes Solved Predecessors Degree
47 23,051 8,463 23,437 4.9
48 21,661 8,207 22,034 4.9
49 21,035 7,885 21,397 4.9
50 19,895 7,538 20,252 4.9
51 19,203 7,084 19,553 4.9
52 18,696 6,882 19,030 5.0
53 17,914 6,479 18,236 4.9
54 16,853 6,011 17,170 5.0
55 16,506 5,820 16,787 4.9
56 15,658 5,441 15,954 5.0
57 14,136 5,000 14,410 4.9
58 12,365 4,333 12,570 5.0
59 11,402 3,792 11,602 4.9
60 10,154 3,514 10,339 4.9
61 8,936 3,078 9,103 4.9
62 7,682 2,671 7,826 4.9
63 6,288 2,292 6,386 4.9
64 5,281 1,911 5,397 4.9
65 4,514 1,804 4,575 4.9
66 4,032 1,772 4,086 4.9
67 3,667 1,705 3,712 4.9
68 3,437 1,720 3,484 4.9
69 3,350 1,633 3,391 5.0
70 3,190 1,691 3,232 5.0
71 2,916 1,553 2,953 5.0
72 2,620 1,477 2,653 5.0
73 2,278 1,271 2,308 5.0
74 1,990 1,128 2,010 5.0
75 1,635 939 1,649 4.9
76 1,436 833 1,456 4.9
77 1,278 767 1,297 5.0
78 1,005 588 1,017 4.9
79 792 478 800 4.9
80 647 384 662 4.9
81 475 287 483 4.9
82 377 211 380 4.8
83 278 154 283 4.9
84 218 100 218 4.9
85 128 60 129 5.0
86 151 72 152 4.8
87 99 60 102 5.0
88 89 46 90 5.0
89 112 66 114 4.9
90 59 36 60 4.9
91 44 23 44 4.9
92 30 22 30 5.3
93 11 4 11 4.7

Total 1,104,117 265,651 1,128,167 4.9

Table 6.4: Book statistics for Awari, part 2.
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Figure 6.2: The depth distribution of the nodes in the Awari opening book.

Figure 6.3 shows the drop-out diagram of the Awari opening book. The
dashed line is the angle of the expansion frontier as defined by our choice of
the parameter ω. At this moment, nodes with value 0 at depth 22 have the
highest expansion priority.

Opening Book Evaluation

Figure 6.4 shows the first three plies of the Awari opening book. On their
first move, both players have only one good move, F4 and f4, respectively.
All other moves seem to lose at least two stones. After that the first player
has a choice of four moves which are all drawish.

The construction of the Awari opening book started when the 30-stone
database was available and continued until the 40-stone database was avail-
able. The question arose what to do with the book when new databases are
added: should we just continue with the current book so that we don’t lose
our previous search results, or should we throw the book away and start all
over because we can get better values with new database?

In the case of Awari throwing away the whole book seemed to be a waste
of time, because the heuristic evaluation function doesn’t seem to change too
much when a new database is added. Therefore we decided to throw away
only those positions which are now solved in the database. For example,
when the 39-stone database became available all positions with 39 or fewer
stones where removed from the book. This means that some positions had



74 CHAPTER 6. EXPERIMENTS WITH OPENING BOOKS

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

value

Figure 6.3: The drop-out diagram of the Awari opening book. The value 1
is equivalent to one stone.
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Figure 6.4: The first three plies of the principal variations of the Awari
opening book. A value of 5 is equivalent to on stone.
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to be searched several times because they got removed every time a new
database was added. But the overhead of doing that is small because the
reevaluation is done with one database lookup.

The opening book was an important factor in winning the computer Awari
world championship [30].

6.3 Checkers

Game Properties

Checkers has an estimated state-space complexity of 1018 [46], an estimated
search-tree complexity of 1031 [4] and an estimated average branching factor
of 1.1 in capture positions and 7.8 in non-capture positions [45]. The game
graph contains cycles, but only after both players have converted at least one
checker to a king. As a consequence, cycles are rare in the opening book.

A speciality of the Checkers games rules are the so-called 3-move-ballots.
In human tournaments the game is not played from the start position, be-
cause from there it is too easy for the weaker side to keep a draw. Instead
the first three plies are picked at random, and then two games are played
with each player playing black once.

To take 3-move-ballots into account OPLIB was configured to ignore the
expansion priorities on the first three plies. In other words, all 216 positions
reachable in three plies are treated as start positions with equal expansion
priorities.

Search Engine

As a search engine we used Cake++ [13], a strong Checkers program written
by Martin Fierz. Cake++ is freely available, together with the CheckerBoard
GUI. For opening book construction, Cake++ was configured to search about
30 seconds per position and used the 6-stone endgame databases available
from the Chinook project [40].

Opening Book Statistics

Figure 6.5 shows the distribution of the depths of the nodes in the book.
About 1,834,000 nodes were expanded in the depth range from 0 to 28 with
a peak of more than 200,000 nodes at depth 14. Table 6.5 shows more
details of the book statistics. The ‘Nodes’ column shows the number of
nodes at each depth. The ‘Solved’ column shows the number of nodes that



76 CHAPTER 6. EXPERIMENTS WITH OPENING BOOKS

were solved. Obviously the engine together with the 6-stone database cannot
solve positions in the early opening. The ‘Predecessors’ column shows that,
on average, every position in the book has about 1.2 predecessors which are
also in the book. The ‘Degree’ column shows the average number of possible
moves at each depth. The degree is remarkably stable during the course of
a game.
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Figure 6.5: The depth distribution of the nodes in the Checkers opening
book.

Figure 6.6 shows the drop-out diagram of the Checkers opening book. The
dashed line is the angle of the expansion frontier as defined by our choice of
the parameter ω. At this moment, nodes with value 8 at depth 13 have the
highest expansion priority.

6.4 Chess

Game Properties

Chess has an estimated state-space complexity of 1050, an estimated search-
tree complexity of 10123 and an estimated average branching factor of 35 [4].
The game graph contains many transpositions and cycles, because almost ev-
ery position can by part of a cycle of length four by just moving some piece
forth and back. Therefore the game is an ideal testbed for the cycle-draw

values presented in Chapter 4. Moreover the large literature on Chess open-
ings allows us to compare our book to human opening knowledge.
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Depth Nodes Solved Predecessors Degree

0 1 0 0 7.0
1 7 0 7 7.0
2 49 0 49 6.2
3 216 0 302 4.7
4 805 0 1,025 4.7
5 2,406 0 3,426 4.7
6 6,663 0 9,319 4.7
7 15,758 0 22,956 4.6
8 29,603 0 40,977 4.8
9 51,516 0 71,481 4.9

10 81,209 0 106,757 5.2
11 121,744 0 159,973 5.4
12 166,078 0 212,014 5.5
13 196,675 0 253,591 5.6
14 215,052 0 264,314 5.8
15 203,939 0 252,680 5.9
16 192,647 1 226,408 6.0
17 152,652 1 181,680 6.1
18 124,358 0 140,343 6.1
19 87,159 7 101,706 6.1
20 70,204 3 78,776 6.1
21 44,004 8 50,781 6.1
22 32,646 4 35,877 6.1
23 18,292 36 20,890 6.1
24 10,683 10 11,444 5.9
25 4,863 25 5,219 5.9
26 2,781 2 2,870 5.4
27 1,621 35 1,736 5.8
28 1,144 9 1,193 5.2

Total 1,834,775 141 2,257,794 5.8

Table 6.5: Book statistics for Checkers.
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Figure 6.6: The drop-out diagram of the Checkers opening book. The value
100 is equivalent to one checker. The shallowest line of the principal varia-
tions is 15 plies deep.

Search Engine

As a search engine we used Crafty [19], a strong Chess program written by
Robert Hyatt. Crafty is available in source code [18], and has about 2500
Elo on the Swedish Rating List [21].

For opening book construction, Crafty was configured to search to a fixed
depth of ten plies and the built-in options for using an opening book or
endgame databases were turned off. The heuristic values returned by Crafty
are mapped to a range of −60 . . . 60, where +10 is equivalent to one pawn,
+30 is equivalent to a knight/bishop and +60 is a near win.

Opening Book Statistics

Figure 6.7 shows the depth distribution of the nodes in the book. About
950,000 nodes were expanded in the depth range from 0 to 11, with a dis-
tinctive peak at plies 7 and 8. Table 6.6 shows more details of the book
statistics. The ‘Nodes’ column shows the number of nodes at each depth.
The ‘Solved’ column shows the number of nodes that were solved, their num-
ber is insignificant compared to the total number of nodes in the book. The
‘Predecessors’ column shows that, on average, every position in the book has
about 2 predecessors which are also in the book. This proves the fact that
the game graph of Chess looks more like a mesh than like a tree, with many
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transpositions and cycles. The ‘Degree’ column shows the average number
of possible moves at each depth.
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Figure 6.7: The depth distribution of the nodes in the Chess opening book.

Figure 6.8 shows the drop-out diagram of the Chess opening book. The
dashed line is the angle of the expansion frontier as defined by our choice of
the parameter ω. Nodes with value 0 at depth 9 and nodes with value 1 at
depth 5 have the highest expansion priority.

Opening Book Evaluation

First we compare our book with about 950,000 positions to human Chess
opening knowledge. As a measure of the size of human Chess opening knowl-
edge we chose the “Moderne Eröffnungstheorie”, a series of 24 volumes writ-
ten by several russian Chess masters. Each volume contains about 240 pages
of annotated Chess variants, and by sampling 40 pages from 4 different vol-
umes [37, 38, 39, 51] of the series we found that about 74 positions occur
on every page. We conclude that the Chess opening knowledge in this book
series contains about 426,000 positions.

On first sight it might seem that our book is about two times larger than
the human book knowledge. However the number of positions in our opening
book and the number of positions in the human literature cannot be com-
pared directly with each other, because the knowledge as presented in the
human literature is already heavily filtered; the human literature contains
only positions which are considered to be part of a principal variation. The
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Figure 6.8: The drop-out diagram of the Chess opening book. The value 10
is equivalent to one pawn. The shallowest line of the principal variations is
9 ply deep.
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Depth Nodes Solved Predecessors Degree

0 1 0 4 20
1 20 0 114 20
2 400 0 1,305 22
3 4,474 8 11,082 22
4 33,140 85 67,794 25
5 99,211 127 231,843 27
6 173,213 60 348,577 29
7 244,530 104 545,928 30
8 258,007 21 494,721 31
9 94,107 18 196,336 31

10 34,181 34 49,012 33
11 9,392 0 13,911 33

Total 950,676 457 1,960,627 29

Table 6.6: Book statistics for Chess.

positions which are only reached with at least one bad move are not men-
tioned, the reader is assumed to be able to figure out for himself if a move
immediately loses a queen. On the other hand, our book contains many po-
sitions which are not part of a principal variation. To find out that a certain
move is bad, our book has to add the position after that move to the book
and then let the engine evaluate the position. Therefore an automatically
generated opening book contains many positions which are only reached with
one bad move.

To compare the sizes of our book and human opening knowledge we have
to use the additional observation that the branching factor of principal vari-
ations in the human literature is close to one. Therefore an automatically
constructed opening book in Chess has to contain about 30 × 426, 000 po-
sitions to be equal to human Chess opening knowledge. In other words,
our book corresponds to about 32, 000 positions of human Chess knowledge.
From this relatively small number and from the shallowness of the book it
is obvious that the book is not very useful (neither for computers nor for
humans).

As mentioned earlier the game graph of Chess contains many cycles.
To show an example of cycle-draw values we manually forced the game
Sax 2610 – Seirawan 2595 (Bruxelles, 1988 [42]) into the book. Figure 6.9
shows the position after the 10th move of black, and Figure 6.10 shows the
game graph starting from the same position. All nodes in the graph are
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labeled with their value. For better readability the graph contains only the
best moves deviating from the game.
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Figure 6.9: Sax – Seirawan (Bruxelles, 1988): 1.e4 d6 2.d4 Nf6 3.Nc3 g6
4.f4 Bg7 5.Nf3 c5 6.Bb5 Bd7 7.e5 Ng4 8.e6 fxe6 9.Ng5 Bxb5 10.Nxe6 Bxd4
(Diagram)11.Nxd8 Bf2+ 12.Kd2 Be3+ 13.Ke1 Bf2+ 1/2–1/2.

As the example shows, the cycle-draw values are an intuitive aid to
model the human way of thinking about such positions: the positions in the
cycle are not solved in the strong mathematical sense, but they are solved for
all practical purposes. It is quite possible that the game of Chess will turn
out to be a draw, and that the principal variations will all end in a position
repetition. In that case we conjecture that the game will first be solved “for
all practical purposes” before any proven value will be known.

6.5 Nine Men’s Morris

Game Properties

Nine Men’s Morris has a state-space complexity smaller than 1010 [15], and an
estimated search-tree complexity of 1050 [4]. On the first 18 plies (opening
phase) of the game the graph is acyclic, after that (middle- and endgame
phase) the graph contains cycles. The game was solved and proven to be a
draw by Ralph Gasser in 1993 [15].
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Figure 6.10: Node A represents the position in Figure 6.9. In every node only
the best move deviating from the game is shown. Nodes B and C represent
different positions because in B White still has castling rights. Inside the
cycle White always has only one move. The best Black move leaving the
cycle is always Kxd8, once with a value of -41 and once with a value of -42
(+10 being the value of a pawn).
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Search Engine

The search engine was written by Jörg Kreienbühl as part of his diploma the-
sis project [24]. The engine uses the endgame databases of Ralph Gasser [15].

Opening Book Statistics

Figure 6.11 shows the depth distribution of the nodes in the book. About
260,000 nodes were expanded in the depth range from 0 to 10. Most of the leaf
nodes are at depth 9, because the search engine was configured to solve these
positions with 9 ply searches into the endgame databases. For experimental
purposes some lines were expanded to depth 10. Table 6.7 shows more details
of the book statistics. The ‘Nodes’ column shows the number of nodes at each
depth. The ‘Solved’ column shows the number of nodes that were solved.
The nodes at depths 9 and 10 were solved by the search engine, the others
through backpropagation. Opening book expansion was stopped when the
start node was proved to be a draw. The ‘Predecessors’ column shows that,
on average, every position in the book has about 3 predecessors which are also
in the book. This high ratio of transpositions is explained by the fact that
most of the times two consecutive moves of one player can also be played in
the inverse order. The ‘Degree’ column shows the average number of possible
moves at each depth. At the beginning of the game the degree equals the
number of empty fields on the board, later on the degree is slightly larger
because in capture moves there is a choice in which opponent stone should
be captured.

Opening Book Evaluation

The main purpose of our work on Nine Men’s Morris was to construct an
opening book. As a side effect we confirmed the previous result of Ralph
Gasser that the game is a draw [15]. Because the correctness of the endgame
databases has been verified by Fabian Mäser [35], and because we solved the
opening phase with a different engine, all parts of the proof have now been
double-checked independently. In addition we also strengthen the result:
now the game is ’weakly solved’ instead of ’ultra-weakly solved’, because the
first player can determine an optimal move from any position within a few
seconds.

Our solution of Nine Men’s Morris also demonstrates the ability of an
opening book tool to efficiently close the gap between a start position and
endgame databases: while there are about 1010 opening phase positions, only
260,000 of them had to be added to the book to solve the game.
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Figure 6.11: The depth distribution of the nodes in the Nine Men’s Morris
opening book.

Depth Nodes Solved Predecessors Degree

0 1 1 0 24.0
1 4 1 24 23.0
2 46 2 92 22.0
3 428 15 1,012 21.0
4 4,054 24 8,694 20.2
5 11,885 373 37,970 19.3
6 27,889 621 76,119 18.8
7 40,446 6,185 137,293 18.0
8 92,288 10,832 199,492 17.5
9 80,147 79,941 258,961 16.7

10 3,831 3,827 10,704 16.4

Total 261,019 101,822 730,361 18.0

Table 6.7: Book statistics for Nine Men’s Morris.
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6.6 Othello

Game Properties

Othello has a state-space complexity of about 1028, an estimated search-tree
complexity of 1058 and and average branching factor of 10 [4]. The game
graph is acyclic and at most 60 plies deep.

Search Engine

As a search engine we used Wolpers, written by Alvaro Fussen [14]. The
engine was configured to do full endgame searches from ply 43.

Opening Book Statistics

Figure 6.12 shows the depth distribution of the nodes in the book. About
1,500,000 nodes were expanded in the depth range from 0 to 42, with a
distinctive peak around ply 20. Table 6.8 shows more details of the book
statistics. The ‘Nodes’ column shows the number of nodes at each depth.
The ‘Solved’ column shows the number of nodes that were solved. These
values are all zero because nodes are only solved by endgame searches, and
the book is not deep enough for that. The ‘Predecessors’ column shows
that, on average, every position in the book has only slightly more than one
predecessor which is also in the book. This proves the fact that the game
graph of Othello does not contain many transpositions. The ‘Degree’ column
shows the average number of possible moves at each depth.

Figure 6.13 shows the drop-out diagram of the Othello opening book. The
dashed line is the angle of the expansion frontier as defined by our choice of
the parameter ω. Several nodes at various depths are candidates for further
expansion.
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Figure 6.12: The depth distribution of the nodes in the Othello opening
book.
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Figure 6.13: The drop-out diagram of the Othello opening book. The value
1 is equivalent to one piece. The shallowest line of the principal variations is
35 plies deep.
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Depth Nodes Solved Predecessors Degree
0 1 0 0 4.0
1 1 0 4 3.0
2 3 0 3 4.7
3 14 0 14 4.4
4 60 0 61 5.7
5 180 0 195 5.9
6 631 0 657 7.1
7 1,743 0 1,957 7.3
8 3,873 0 4,227 8.5
9 7,574 0 8,414 8.7

10 13,794 0 15,052 9.6
11 21,300 0 23,076 10.0
12 31,717 0 34,407 10.5
13 43,153 0 46,142 11.0
14 57,658 0 62,251 11.3
15 71,201 0 76,382 11.8
16 85,115 0 91,449 12.0
17 98,150 0 105,314 12.3
18 115,345 0 124,032 12.7
19 120,516 0 129,443 12.8
20 123,041 0 132,374 13.3
21 115,097 0 123,973 13.1
22 109,766 0 118,307 13.6
23 106,424 0 114,325 13.2
24 93,372 0 100,877 13.9
25 81,636 0 87,721 13.2
26 63,639 0 68,547 14.0
27 51,232 0 54,867 13.1
28 37,175 0 39,838 13.8
29 27,562 0 29,509 12.9
30 15,630 0 16,496 13.3
31 11,304 0 11,759 12.6
32 6,631 0 6,867 13.1
33 5,334 0 5,500 12.2
34 3,004 0 3,107 12.6
35 2,253 0 2,301 11.5
36 1,171 0 1,199 11.9
37 782 0 788 10.3
38 544 0 561 11.8
39 315 0 330 9.5
40 72 0 72 10.6
41 29 0 29 9.4
42 9 0 9 8.1

Total 1,528,051 0 1,642,436 12.3

Table 6.8: Book statistics for Othello.



Chapter 7

Conclusions

To a large degree the advances in exhaustive search are triggered by advances
in technology. Memory chips with larger capacities mean we can solve larger
problems, and microprocessors with higher clock frequencies mean that we
can solve them faster. When confronted with a large exhaustive search prob-
lem, one solution is to simply wait until technology catches up. However,
there will always be a search problem for which the solution seems to be just
out of reach, which gives us the motivation to look for algorithmic improve-
ments that make that problem solvable even with today’s technology.

In this thesis we presented such algorithmic improvements both for back-
ward and forward search. In backward search, the main bottleneck for solving
large exhaustive search problems with retrograde analysis is the size of main
memory. If the whole problem does not fit into main memory then we have to
store part of the problem space on a disk. The resulting latency in accessing
the data on disk may increase the running time of the algorithm by a factor
of 100, thus making the solution of the problem infeasible. In Chapter 2
we presented our new dual-indexing algorithm. When applied to retrograde
analysis in the game of Awari, the new algorithm significantly reduced the
number of disk accesses with good performance even when only 10% of the
state space fit into main memory. The new algorithm was used to calculate
a 47.6 GBytes database on a 1 GByte machine.

For forward search we implemented an opening book construction tool
called OPLIB. It was used to implement and test the new opening book
expansion strategy presented in Chapter 3. Drop-out expansion is a best-
first expansion strategy which strikes a balance between expanding leaf nodes
with good values and expanding leaf nodes at shallow depths. This ensures
the usefulness of the opening book no matter how the opponent plays the
opening. If the opponent plays only good moves, then we stay in the book
longer, and therefore save time which can be used later for deeper searches.
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If the opponent plays bad moves, then we might drop out of the book earlier,
but we will leave the opening book in a superior position.

For the representation of position values in opening books we proposed
new types of attributed values in Chapter 4. The at-least-draw,
at-most-draw and cycle-draw values give us a more accurate estimate of
the game-theoretic value of a position. This allows for a better control of
book expansion and game solving.

The techniques presented in this thesis and their combined application
to the game of Awari played a significant role for the implementation of a
competitive computer Awari program. As a result, the author’s Awari engine
Marvin won the computer Awari world championship [30]. Moreover, as a
result of the use of opening book expansion in other games we confirmed and
strengthened various previous results, see Chapter 6.



Appendix A

Awari Rules

Awari is a simple board game for two players, usually called North and South.
The board contains two rows of six pits and each player is in charge of one
row. An extra pit for each player is used to collect captured stones. The
game starts with 48 stones on the board, as shown in Figure A.1. South
makes the first move. The player who captures more than 24 stones is the
winner. If both players capture 24 stones the game is a draw.

4 4 4 4 4

444444

4
A B C D E F

abcdef

South

North

Figure A.1: The start position.

To make move, a player chooses any non-empty pit on his side of the
board, takes out all the stones and drops them one by one counter-clockwise
into the other pits, starting with the next pit. Whenever a move starts with
twelve or more stones, the pit from where the move started is skipped in the
sequence of dropping stones. In Figure A.2, F5 would be a legal move for
South (’F’ is the start pit and ’5’ is the number of stones moved). After the
move, pit F would be empty and pits a,b,c,d and e each would contain one
additional stone.

If the last stone of a move falls into a pit of the opponent containing two
or three stones (including the ones that just have been dropped), these stones
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0 0 0

0 0 0 1 12

6 53

01

20
A B C D E F

abcdef

Figure A.2: South has two legal moves: F5 and E3×5. C6×7 is illegal.

are captured, as well as all stones from the preceding pits, as long as they
belong to the opponent and contain two or three stones. In Figure A.2, the
move E3×5 would capture 5 stones.

If a player runs out of moves, the opponent captures all the remaining
stones. If a position is repeated, the remaining stones are divided between
the players (including an occasional odd stone). If the player to move has a
choice, then he must make a move in such a way that the opponent does not
run out of moves. For example, in Figure A.2 the move C6×7 is illegal.



Appendix B

Awari Endgame Database
Statistics

The rows are labeled with the difference between the number of stones cap-
tured by the first player and the number of stones captured by the second
player. The columns are labeled with the number of stones left on the board.
For example the value 6,828 in the cell -4/8 means that there are 6,828 8-stone
positions where the first player captures 2 and the second player captures 6
stones. (Assuming optimal play by both sides.)

0 1 2 3 4 5 6 7 8
-8 12,370
-7 8,948
-6 4,242 228
-5 1,892 3
-4 532 116 75 6,828
-3 177 2 2,948
-2 40 110 85 772 9,977
-1 7 1 224 442 61
0 1 13 63 143 1,548 4,487 8,351
1 5 7 121 491 236
2 25 165 184 550 10,182
3 116 22 62 2,294
4 415 302 239 6,972
5 1,838 145 168
6 4,784 507
7 11,752
8 19,702

Table B.1: Awari endgame database statistics, part 1.
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9 10 11 12 13 14 15 16
-16 34,460
-15 34,835
-14 27,769 1,114
-13 36,074 1,213 709
-12 29,152 1,176 715 46,499
-11 34,321 889 893 13,358
-10 22,941 770 493 11,508 90,304
-9 24,408 790 574 19,911 69,533 26,185
-8 211 329 15,547 81,311 34,106 58,024
-7 60 34 24,144 31,986 24,031 50,127 41,199
-6 192 13,906 42,517 31,669 58,180 68,751 438,669
-5 15,183 20,784 15,404 41,136 32,038 238,847 200,956
-4 25,783 22,017 49,215 68,851 300,409 248,812 532,060
-3 7,037 3,938 25,218 12,818 159,908 132,793 440,305 450,420
-2 10,080 33,687 58,269 229,747 185,455 381,555 549,991 1,686,085
-1 5,407 752 54,813 43,954 242,574 228,981 918,495 687,719
0 20,308 93,743 92,787 197,894 312,251 905,779 591,903 1,445,158
1 4,287 738 60,937 50,657 282,308 271,478 1,077,291 796,128
2 13,081 38,773 72,301 287,396 233,025 520,046 701,647 2,148,284
3 6,942 7,722 36,111 27,892 264,506 212,762 726,614 741,567
4 34,896 30,814 84,465 112,279 518,286 400,852 977,733
5 18,932 35,658 29,073 102,112 92,458 582,414 433,693
6 458 25,402 80,045 59,923 150,334 156,984 949,245
7 390 298 51,041 88,712 65,349 185,874 164,754
8 810 874 55,585 186,835 97,298 237,137
9 41,195 1,533 1,246 85,393 216,425 113,209

10 49,082 1,816 1,495 96,016 316,761
11 82,691 2,718 2,910 121,523
12 96,311 3,982 3,018 187,810
13 132,476 5,586 4,451
14 150,521 6,983
15 189,643
16 220,579

Table B.2: Awari endgame database statistics, part 2.
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17 18 19 20 21 22 23
-23 243,099
-22 253,255
-21 254,025 1,260
-20 191,172 829 1,251
-19 144,669 933 545 282,445
-18 86,123 841 410 295,383
-17 42,905 1,217 740 266,450 307,605
-16 985 540 177,281 252,492 42,746
-15 1,493 774 59,116 150,160 28,929 453,083
-14 590 76,827 105,949 26,949 386,473 55,219
-13 76,859 113,092 24,178 175,806 48,454 871,469
-12 118,957 25,937 175,793 56,504 640,974 288,839
-11 69,399 24,163 192,896 48,708 635,342 252,487 1,174,136
-10 28,839 138,366 54,510 642,857 273,871 1,079,746 761,939
-9 64,013 42,978 467,274 270,978 1,112,744 732,323 3,760,360
-8 63,747 484,703 293,617 890,816 788,118 3,584,717 1,934,855
-7 379,260 254,513 793,781 713,691 3,119,656 1,882,065 6,468,322
-6 285,746 673,845 771,474 3,011,026 1,895,376 5,606,957 4,384,820
-5 604,115 623,720 2,571,382 1,722,876 5,180,632 4,059,524 13,384,230
-4 693,040 2,510,685 1,637,473 4,458,973 3,820,632 12,214,084 7,770,039
-3 1,786,369 1,274,500 3,780,934 3,059,399 9,768,828 6,879,520 20,472,752
-2 1,143,933 2,878,883 2,797,775 8,546,121 5,793,223 16,697,549 12,790,789
-1 2,232,281 1,839,168 5,863,824 4,459,475 13,371,559 9,798,515 29,321,280
0 1,609,187 4,768,086 3,310,844 9,263,057 7,877,744 22,897,612 15,354,066
1 2,542,408 2,118,595 6,638,702 4,873,157 14,461,718 10,788,634 32,291,319
2 1,423,911 3,683,748 3,454,533 10,400,148 7,004,962 20,129,882 15,414,994
3 2,705,626 1,815,924 5,291,792 4,353,606 13,516,752 9,281,073 27,163,537
4 1,170,387 4,053,817 2,563,688 7,021,373 5,910,671 18,323,654 11,740,549
5 1,287,552 1,333,837 4,921,937 3,145,834 9,062,415 7,207,310 22,600,192
6 615,430 1,601,036 1,718,101 6,310,717 3,859,539 11,063,487 8,622,147
7 1,092,262 716,356 2,055,589 1,965,644 7,485,818 4,473,208 13,766,879
8 216,056 1,456,782 889,144 2,503,309 2,340,451 9,136,900 5,160,163
9 300,233 237,249 1,721,107 1,017,008 3,174,547 2,620,350 10,639,880

10 142,239 434,877 288,293 2,216,108 1,165,964 3,669,143 3,005,089
11 370,137 169,533 576,043 324,822 2,589,801 1,311,973 4,398,254
12 513,741 202,487 679,125 381,331 3,046,691 1,508,672
13 251,878 610,431 239,700 827,478 418,419 3,822,854
14 5,218 300,010 720,336 279,751 1,236,809 473,355
15 9,558 6,857 339,718 915,600 319,476 1,498,643
16 9,893 7,672 551,255 1,153,625 364,308
17 259,509 12,785 9,603 733,474 1,383,768
18 347,759 13,740 9,869 930,456
19 454,923 16,097 11,410 1,157,672
20 562,899 18,187 13,208
21 719,280 20,505
22 803,600
23 927,168

Table B.3: Awari endgame database statistics, part 3.
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24 25 26 27 28 29
-29 461,324
-28 347,309
-27 297,299 1,203
-26 261,189 1,267 860
-25 244,084 1,618 977 380,486
-24 235,353 1,288 1,189 325,575
-23 1,307 1,169 215,966 427,433
-22 890 2,011 183,254 377,746 39,485
-21 870 180,775 324,228 42,618 620,415
-20 228,866 278,102 43,175 475,031 83,999
-19 271,234 49,222 404,600 75,210 1,270,433
-18 328,160 54,013 397,792 74,995 1,128,382 312,755
-17 47,059 416,693 77,916 1,074,397 320,393 1,624,515
-16 450,764 68,213 1,127,524 320,193 1,500,391 733,230
-15 88,938 1,090,063 347,647 1,607,556 732,524 4,230,434
-14 995,558 355,539 1,510,647 798,548 4,342,897 1,826,143
-13 356,169 1,536,911 752,748 4,304,687 1,961,417 7,695,531
-12 1,414,692 885,779 4,594,263 2,038,420 7,727,382 4,551,984
-11 781,492 4,467,176 2,151,966 8,098,784 4,696,825 18,712,693
-10 4,064,136 2,142,064 7,977,335 5,055,625 19,360,464 9,614,659
-9 1,957,512 7,253,524 4,818,960 19,132,541 10,068,795 34,284,855
-8 6,601,638 4,613,768 17,691,926 9,720,977 33,366,536 19,997,762
-7 4,421,066 16,520,574 9,256,306 31,312,981 19,404,874 67,035,493
-6 15,353,510 8,877,654 28,535,230 18,548,350 62,790,716 35,834,914
-5 8,563,115 26,690,922 17,615,921 57,651,735 34,066,512 109,166,720
-4 23,304,597 16,503,750 52,332,367 31,530,521 98,228,502 60,017,087
-3 14,604,434 44,431,147 28,975,242 87,373,503 54,880,375 169,257,602
-2 38,236,499 24,754,815 72,892,024 48,422,228 145,475,257 87,819,805
-1 20,341,031 59,677,862 39,942,586 117,211,310 74,915,275 223,185,818
0 44,357,445 31,717,625 91,990,780 58,669,738 172,674,564 109,030,172

Table B.4: Awari endgame database statistics, part 4.
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24 25 26 27 28 29
0 44,357,445 31,717,625 91,990,780 58,669,738 172,674,564 109,030,172
1 22,117,967 64,592,557 43,587,682 127,507,635 81,029,791 239,626,083
2 45,603,797 29,617,409 86,442,306 57,448,687 170,526,617 103,654,645
3 19,641,398 58,677,777 38,060,622 112,593,824 71,824,851 216,937,797
4 34,506,278 24,433,005 75,107,858 46,118,073 139,398,973 86,626,451
5 14,453,288 43,335,085 29,298,512 91,388,510 55,082,367 169,371,315
6 28,085,753 16,875,753 51,542,064 34,148,128 109,017,715 63,798,616
7 9,970,443 33,480,187 19,603,597 61,647,591 39,365,173 128,095,459
8 15,927,689 11,503,239 39,347,743 22,509,411 71,992,791 44,513,129
9 5,852,540 18,992,568 13,111,100 46,315,459 25,413,943 81,846,374

10 12,508,979 6,731,389 22,440,013 14,855,454 52,446,685 27,835,738
11 3,394,848 14,749,300 7,517,971 25,498,902 16,161,806 58,529,637
12 5,415,335 3,888,927 16,833,708 8,255,062 28,601,989 17,827,459
13 1,732,680 6,269,652 4,172,887 18,836,248 9,097,713 32,066,853
14 4,452,714 1,918,235 7,183,052 4,684,801 21,227,668 9,753,318
15 546,376 5,227,590 2,099,935 8,244,834 4,999,222 23,212,449
16 1,822,448 558,637 5,989,775 2,256,756 8,982,467 5,367,361
17 393,873 2,149,286 616,123 6,618,995 2,428,643 10,131,504
18 1,650,134 429,225 2,446,987 654,715 7,524,351 2,596,893
19 1,845,759 456,961 2,845,888 695,554 8,482,044
20 1,330,211 2,154,054 476,633 3,283,203 761,530
21 13,858 1,552,314 2,472,541 503,314 3,840,171
22 22,208 16,525 1,832,103 2,802,535 518,004
23 24,109 15,895 2,139,695 3,169,951
24 1,049,289 24,753 16,677 2,577,097
25 1,179,265 25,444 16,999 2,927,746
26 1,343,047 24,759 16,678
27 1,527,161 24,179
28 1,742,004
29 2,052,246

Table B.5: Awari endgame database statistics, part 5.
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30 31 32 33 34
-34 948,306
-33 881,583
-32 824,833 1,583
-31 697,823 1,785 1,066
-30 578,961 841 1,231 819,219
-29 970 973 852,875
-28 897 1,256 830,449 782,095
-27 839 685,224 744,479 54,995
-26 486,063 617,105 42,522 1,396,500
-25 526,717 39,874 1,259,129 89,589
-24 474,580 37,413 1,072,137 83,741 2,505,270
-23 38,973 905,955 86,585 2,161,336 360,652
-22 809,137 67,834 1,835,945 352,978 3,079,719
-21 103,160 1,678,356 352,222 2,828,631 930,411
-20 1,461,525 326,470 2,586,583 817,952 6,122,301
-19 319,432 2,307,867 802,523 5,576,279 1,982,494
-18 1,777,595 779,690 5,098,871 1,890,790 9,146,641
-17 700,221 4,582,031 1,782,126 8,592,354 4,072,232
-16 4,434,651 1,730,336 7,643,162 4,080,081 17,439,746
-15 1,793,765 7,477,427 4,023,486 16,988,447 8,115,057
-14 7,285,983 4,142,783 17,064,474 8,272,515 29,903,322
-13 4,258,789 17,300,690 8,667,983 30,295,809 16,334,978
-12 18,221,822 8,833,931 31,068,870 17,034,747 58,368,912
-11 9,479,031 32,687,170 17,999,663 61,337,315 31,750,330
-10 33,391,939 19,143,456 64,843,303 33,296,722 106,843,891
-9 19,535,652 67,029,382 35,595,732 113,709,165 60,291,029
-8 68,437,188 36,157,205 117,276,131 64,339,968 202,342,100
-7 36,898,814 119,735,086 65,931,743 210,947,279 112,582,875
-6 116,284,342 66,544,140 213,681,647 114,856,020 362,549,635
-5 64,274,682 206,624,395 114,681,026 362,957,495 198,056,654
-4 190,630,010 109,075,681 344,639,679 193,941,924 613,898,148
-3 99,885,149 312,203,168 179,933,810 567,370,580 312,835,808
-2 268,380,775 159,407,509 499,926,160 282,000,952 885,516,383
-1 135,382,286 414,067,129 239,429,941 750,409,683 422,402,448
0 329,539,527 192,547,212 592,741,535 339,869,158 1,077,956,188

Table B.6: Awari endgame database statistics, part 6.
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30 31 32 33 34
0 329,539,527 192,547,212 592,741,535 339,869,158 1,077,956,188
1 146,382,668 445,501,970 257,801,186 804,135,425 454,051,201
2 312,680,181 187,061,985 580,529,439 329,345,133 1,028,504,726
3 129,216,314 396,284,378 231,558,571 721,751,925 401,115,068
4 267,079,494 155,368,326 480,873,852 274,582,719 859,193,573
5 102,206,122 318,447,533 179,875,691 559,231,434 311,368,891
6 198,872,990 116,502,190 364,145,925 200,585,232 626,239,246
7 72,388,600 226,840,564 129,004,903 405,148,088 220,362,778
8 145,241,196 79,889,179 252,198,425 141,462,865 441,691,198
9 49,018,609 161,661,902 87,968,563 276,790,147 150,957,608

10 91,195,051 53,809,812 177,365,838 93,721,119 295,358,274
11 30,723,950 100,739,637 57,458,154 189,830,866 99,499,636
12 64,965,929 32,814,431 108,505,776 60,960,621 201,802,772
13 19,203,793 70,268,247 35,358,865 117,035,177 64,429,679
14 34,726,226 20,642,105 76,358,362 37,480,333 125,320,833
15 10,529,295 38,268,578 22,010,423 82,047,001 39,623,776
16 25,666,321 11,183,313 41,488,732 23,347,297 87,990,324
17 5,716,944 28,057,308 11,925,609 45,620,736 24,611,922
18 11,234,920 6,120,104 30,903,106 12,707,575 49,499,851
19 2,792,942 12,857,951 6,495,797 33,893,922 13,497,191
20 9,574,592 2,968,223 14,347,211 6,846,475 37,163,673
21 825,675 10,838,209 3,162,539 16,056,576 7,331,086
22 4,481,090 830,086 12,126,133 3,334,639 17,976,393
23 544,505 5,084,600 920,841 13,793,819 3,526,943
24 3,543,891 567,483 5,913,194 955,488 15,612,419
25 3,966,308 599,437 6,842,812 1,011,835
26 3,382,628 4,494,214 635,791 7,860,269
27 17,371 3,957,524 5,089,031 681,523
28 23,667 18,149 4,473,687 5,680,254
29 24,192 19,290 5,031,537
30 2,361,216 24,697 21,923 5,617,946
31 2,682,783 26,915 23,206
32 3,016,477 27,687
33 3,230,986
34 3,483,552

Table B.7: Awari endgame database statistics, part 7.
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35 36 37 38 39 40
-14 106,433,189
-13 56,307,971 192,402,777
-12 29,697,687 95,059,460 333,084,328
-11 100,799,622 52,006,042 161,140,295 559,306,553
-10 56,016,351 174,463,098 88,617,647 265,847,982 916,421,450
-9 188,779,461 97,678,963 294,492,420 150,537,480 447,273,434
-8 105,629,019 323,436,150 167,856,412 504,729,720 254,581,825
-7 348,198,523 182,972,378 560,294,086 286,839,884 855,228,661
-6 196,094,310 605,312,549 315,052,775 957,187,874 492,369,013
-5 624,551,247 333,557,304 1,027,362,150 537,403,909 1,644,075,038
-4 330,768,201 1,037,939,616 557,039,062 1,727,385,463 909,122,797
-3 988,897,846 534,929,234 1,689,562,105 908,417,444 2,814,358,086
-2 489,553,590 1,555,836,520 844,245,880 2,653,356,924 1,430,578,535
-1 1,337,655,782 738,002,652 2,335,460,580 1,269,402,934 4,011,201,003 15,885,256,635
0 602,028,938 1,898,144,926 1,043,646,738 3,315,952,673 1,810,860,804 5,697,177,482
1 1,436,469,545 792,758,539 2,511,910,933 1,368,668,443 4,331,469,299 26,043,582,853
2 571,113,849 1,813,852,483 988,673,102 3,116,239,469 1,686,748,696
3 1,259,854,492 688,025,632 2,174,289,050 1,175,721,928 3,662,571,578
4 469,045,954 1,468,121,199 794,644,058 2,479,272,464 1,317,733,511
5 975,447,519 526,827,700 1,631,808,113 864,872,842 2,679,810,595
6 344,261,322 1,067,303,647 564,214,359 1,737,542,126 910,250,725
7 682,297,614 366,041,834 1,130,697,259 590,259,694 1,794,374,309
8 234,909,527 724,098,607 383,475,918 1,170,366,419 603,314,853
9 469,784,997 246,875,120 753,445,114 393,409,640 1,187,427,653

10 158,723,099 491,480,370 254,262,022 769,914,442 3,593,966,935
11 312,087,486 164,773,205 506,730,229 2,333,279,957
12 103,904,986 325,725,938 1,483,195,733
13 213,013,077 919,507,674
14 548,457,992

Table B.8: Awari endgame database statistics, part 8. From the 35-stone
database on we only calculated the value ranges which are relevant to deter-
mine win, loss and draw. For example in the 39-stone database, all config-
urations with a value ≥ 10 are wins, because the opponent has captured at
most 9 stones. The 40-stone database is incomplete.
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