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Abstract

Biometric methods for verifying, i.e. authenticating, someone’s identity are
increasingly being used. Today’s commercially available biometric systems
show good reliability. However, they generally lack user acceptance. Users
show an antipathy touching a fingerprint scanner and they dislike looking
into an iris scanner that might eventually malfunction and impair their
vision. In general, they favour systems with the least amount of interac-
tion. Using gait as a biometric feature would lessen such problems since it
requires no subject interaction other than walking by. Consequently, this
would increase user acceptance. And since highly motivated users achieve
higher recognition scores, it increases the overall recognition rate as well.

This monograph describes a biometric system that uses individual char-
acteristics of human gait for authentication. Two sensors measuring dif-
ferent physical properties of the walking person were used. First, a force
sensor measures the Ground Reaction Force (GRF) perpendicular to the
floor and second, a video sensor captures a side view of the passing person.
Computationally efficient algorithms were developed to extract five differ-
ent feature types, i.e. modalities, from the acquired gait data. A novel
variant of the Generalised Principal Component Analysis (GPCA) was de-
vised to reduce data dimensionality without losing, or even better, with
improving person separability. Last but not least, a Bayes Risk Criterion
approach is used to fuse the five modalities.

In the final investigation the performance and discriminatory power of
all modalities was analysed. In addition, the influence of changing clothes,
shoes, backpacks, and bags on the recognition quality was investigated. It
could be shown that fusing all five modalities drastically improves the over-
all system robustness compared to the best individual modality. Finally,
an extensive discussion of the limitations and possible future improvements
of the current system is included.

xi





Kurzfassung

In naher Zukunft werden immer häufiger biometrische Methoden zur
Überprüfung der Identität von Personen (Authentifikation) eingesetzt
werden. Die heute verfügbaren biometrischen Systeme weisen eine hohe
Verlässlichkeit auf, finden aber in der Regel nur eine geringe Akzeptanz
unter den Benutzern. Dies liegt unter anderem daran, dass die Benutzer
aus hygienischen Gründen nicht gerne Fingerabdruckscanner anfassen oder
gar in einen Irisscanner hineinschauen, der unter Umständen ihre Augen
verletzen könnte. Ob diese Befürchtungen berechtigt sind oder nicht spielt
dabei eine untergeordnete Rolle. Generell werden die Systeme mit dem ge-
ringsten Mass an Benutzerinteraktion bevorzugt. Die Gangart als biome-
trisches Merkmal ist daher geradezu ideal, da überhaupt keine Interaktion
ausser dem Vorbeigehen erforderlich ist. In der Folge wären die Benutzer
besser motiviert und würden dadurch auch eine bessere Erkennungsrate
erreichen.

In der vorliegenden Arbeit wird ein biometrisches System beschrieben,
welches individuelle Merkmale des Ganges zur Authentifikation der Person
verwendet. Als Sensoren für die Erfassung des Ganges wurden Drucksen-
soren im Boden sowie eine Video-Kamera verwendet. Die Drucksensoren
erfassen den zeitlichen Verlauf der Ground Reaction Force (GRF) senk-
recht zum Boden. Die Video-Kamera ist auf der linken Seite angebracht
und zeichnet die passierende Person von der Seite auf. Aus den gemessenen
Daten werden anschliessend mit recheneffizienten Algorithmen fünf Merk-
malsklassen mit personenspezifischen Charakteristiken extrahiert. Mittels
einer neu entwickelten Variante der generalisierten Hauptkomponenten-
analyse wird dann die hohe Anzahl der Dimensionen der einzelnen Merk-
malsklassen auf wenige Dimensionen reduziert und dadurch gleichzeitig
die Unterscheidungsmerkmale der einzelnen Personen verstärkt. Mit dem

xiii



xiv Kurzfassung

Bayes Risiko Kriterium wurden schliesslich die fünf Merkmalsklassen ver-
schmolzen.

In einer Untersuchung wurde die Leistungsfähigkeit sowie die Unter-
scheidungsfähigkeit der einzelnen Merkmalsklassen analysiert. Es konn-
te gezeigt werden, dass die Verschmelzung der einzelnen Merkmalsklas-
sen zu einer wesentlichen Verbesserung der Robustheit führt. In der
abschliessenden Diskussion wurden dann Problemfelder und Verbesse-
rungsmöglichkeiten des entwickelten Systems ausführlich besprochen.



Chapter 1

Introduction

1.1 Introduction

The process of verifying a person’s identity, also called authentication1,
plays an important role in various areas of everyday life. Any situation
with user interaction where the identity is required, needs a means to ver-
ify the claimed identity. One of the more obvious and commonly known
application areas for identity verifying technologies, i.e. authentication, is
the Logical Access Control to computer systems, where authenticity is nor-
mally established by confirming a claimed identity with a secret password
or PIN code. Cash Dispensers or Computer Login Procedures are two other
ubiquitous examples of this application area. On the other hand, authen-
tication mechanisms are also applied to control Physical Access of persons
to hazardous, dangerous, or high security areas. Similar or enhanced ap-
plications of this area include attendance monitoring of employees and the
control of visitors in prisons.

Traditional methods of confirming the identity of an unknown person
rely either upon some secret knowledge (such as a PIN or password) or
upon an object the person possesses (such as a key or card). But testing
for secret knowledge or the possession of special objects can only confirm
the knowledge or presence, and not, that the rightful owner is present. In
fact, both could be stolen.

1For further explanations see Section 2.3 on Page 19.

1



2 Chapter 1. Introduction

Conversely, biometric technology is capable of establishing a much
closer relationship between the user’s identity and a particular body,
through its unique features or behaviour. All of the above mentioned
application areas offer potential for biometric authentication technology,
where the user’s identity is verified using a physiological or behavioural
characteristic such as the iris pattern, a fingerprint, or the voice.

This thesis describes the development of a novel type of comfortable
and easy to use biometric system. The system uses human gait as the
biometric trait to authenticate people. Gait as a biometric has several
important properties that make it an interesting solution to the authen-
tication problem. First of all, people need not to interact with a sensor
in an unnatural way. Second, since gait is a behavioural biometric2, it
performs implicitly a living person test and can thus neither be stolen nor
lost. Finally, users do not need to unveil additional information about
themselves other than already available.

Two Ph.D. theses conducted at our institute are of particular interest
regarding this thesis.

(1) For his Ph.D. thesis in the field of human motor control Etienne
Burdet [Burdet96] investigated subject’s arm movement in reaching move-
ments with via-points as well as arm movements in complex environments
such as mazes. During these experiments he noticed that the arm move-
ment of different persons in a given maze are quite different, whereas the
variations of different trials for a single person were considerably smaller.
He wrote in his thesis:

“The above analysis...shows that humans perform movements
within a maze using personal movement patterns, after
which they can be recognised. The more complex the mo-
tion requirements, the more important the individual dif-
ferences.”3

It should thus be possible to recognise persons from their movements for
a given task. This observation finally led to the idea of using gait features
to recognise people.

(2) Daniel Zlatnik developed in his Ph.D. thesis [Zlatnik98] a laboratory
prototype of an intelligently controlled above knee prosthesis. In order to

2For further explanations see Section 2.4 on Page 20.
3Section 5.3 in [Burdet96].
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construct and finally control the prosthesis he had to study normal and
prosthetic gait. In particular, a dynamic model was developed to model
the universal properties of human gait. This dynamic model was then
used to control the mechanical impedance of the prosthetic knee and to
estimate the performance of the controlled prosthesis.

In contrast to the thesis above, the quest of biometrics is to find the
particular within the universal. Nearly all people can walk; detecting these
universal human traits helps to distinguish a person from a dog, but serves
little to distinguish among individual persons. For that task, one needs to
find unique aspects in human gait which are more particular than universal.
Not only must there be great variability in such features amongst different
individuals (else the feature would not be unique), but also there must be
little or no variability in those same features for a given person over time
and conditions (else they would not be reliable). Everything in the science
behind biometric technologies depends upon the relative size of these two
variabilities: the between-person and the within-person variability.

1.2 Problem Statement and Motivation

As has been formalised in the preceding section, identity verification, i.e.
authentication, is a technology with increasing importance. With today’s
systems, individuals can authenticate their identity by one or an arbitrary
combination of the following three means:

• Knowledge: The specific knowledge of a secret, such as a password,
passphrase, or PIN code.

• Possession: The possession of a specific item or token, for example
a key, smart card, or identity card.

• Biometric: With a specific characteristic of the individual’s body,
such as the fingerprint, iris pattern, retina pattern, genetic finger-
print, voice features, facial properties, signature, or knuckle profile.

The combination, i.e. fusion, of two or three of the aforementioned
attributes can be used to further increase the security level. All of these
attributes have their specific advantages and disadvantages; they will be
discussed in the next three sections.
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1.2.1 Authentication by Knowledge

The most common method of authentication obtained through knowledge
is the use of passwords and PIN codes. Today’s modern computer systems
prompt the user for his identification (username, ID) and the appropriate
password and compare them against the previously stored and eventually
encrypted password of that particular user. Another ubiquitous exam-
ple are cash dispensers, where the user has to insert his card and enter
the numerical PIN code in order to withdraw money. Authentication by
knowledge is intuitive, cheap and very simple to implement. However,
there are some important security considerations related to this method.

Password/PIN Selection: The selection and administration of pass-
words or PINs is crucial for the success of the method. A good password
should be easy to remember, but nevertheless hard to guess. Thus, pass-
words should not be based on one’s name, date of birth, or children names
nor should they contain sequences such as 654321. Such passwords and
PIN codes would be rather easy to guess for outsiders.

Although many security experts still recommend frequent password
changes this has proven to be a suboptimal strategy. Users are generally
lazy and do not want to be bothered with remembering new passwords. If
they are forced to, they tend to pick easy to remember passwords or even
worse, they write them down somewhere (on a post-it under the keyboard
probably). Additionally, it takes some adaptation time until they key in
the new password in a fluently and hard to track manner. Until that stage,
they are vulnerable to password theft by observation. It is best to choose
a secure and hard to guess password in the first place and not change it
for a longer period of time. Once users have learned them by heart, it is
almost impossible to copy the code by merely looking at them typing.

Theft: The basic philosophy behind knowledge-based authentication is
that under no circumstances should the secret be disclosed to an undeserv-
ing party. However, in extreme cases, users could be forced to reveal their
secret. Additionally, the user can be induced into divulging his password
unintentionally, as a result of deception (e.g. with phoney or tampered
cash dispensers).
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Interception: An alternative method to attack knowledge-based au-
thentication is to intercept the secret information either during transmis-
sion from the input device to the terminal or during transmission over the
network. Sophisticated cryptographic methods such as Zero Knowledge
Protocols are needed to prevent this type of attack. Although the crypto-
graphic theory behind secure protocols is well understood, they are often
not used for the sake of simplicity and thus leave the door wide open for
attacks.

A different method to overcome this shortcoming is the application
of one-time-passwords, where a single password is only used once. This
practice is very common in banking applications.

1.2.2 Authentication Through Possession

Authentication through possession is solely based on the fact that a user
possesses a certain token or device such as a magnetic card, smartcard
or key. This authentication method can also be linked to the particular
knowledge held by the user to augment overall security. However intuitive
this authentication method is, it needs additional hardware that all users
have to bear with them as well as the card readers.

Common to this class of authentication is the possibility to pass the
authentication token onto other people. But it can only be possessed by
one single person at a time.

Key: Authentication through the possession of a key is a method already
known for several millennia. Its origins lie in the near east, where the oldest
known example was found; possibly more than 4’000 years old. In most
cases, keys identify a specific user group (namely all the owners of the
same key) rather than an individual user.

If a key is lost, security is immediately endangered and all locks and
keys need to be changed in an expensive and time consuming procedure.
Today, modern keys with an integrated Smart Token, i.e. microchip, exist
to overcome the hassles when a key is lost. The lost key is simply blocked
from the list of accepted key identifiers. Additionally, combined with a
real time clock, those systems allow access restrictions for the individual
keys to be limited to specific work hours and days, since every key bears
a unique identifier.
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Memory Tokens: Memory Tokens are a more advanced variant of the
well known keys mentioned above. They do not perform any information
processing, but they merely make information available, such as a unique
identifier. Possible examples of memory tokens are the widely used mag-
netic strip cards or RFID-tags4 respectively. The information is accessed
by read/write devices such as magnetic card readers or radio transmitters.
Of course, memory tokens can additionally be combined with the entry of
a PIN or password to augment the level of security.

Smart Tokens: The Smart Token, i.e. Chip Card, allows more elaborate
functions than a simple memory card. Thanks to the integrated circuits,
they provide additional functions to increase the level of security. In partic-
ular, smart tokens can (in contrast to memory cards) protect their stored
contents with the requirement of entering a PIN code or password in order
to decrypt the stored data. This further reduces the security risk imposed
by stolen, lost or forged cards.

1.2.3 Authentication with Biometrics

Biometric authentication systems make use of unique physiological or be-
havioral characteristics of the user. As of today biometrics is the most
secure way5 to establish authentication. However, hardware requirements
are higher compared to the previously mentioned authentication methods
but with large scale production it is possible to limit system costs.

There is a fundamental and very important difference between au-
thentication methods based on biometric traits and the methods based
on knowledge or possession. The biometric methods check for the physi-
cal presence of the specific user, whereas the knowledge/possession based
methods are only capable of verifying the presence of the secret or token
respectively. The biometric methods can therefore establish a direct rela-
tion between the presence of the biometric trait and the person itself. It
is thus not possible to hand over a biometric trait to someone else as it
is with passwords or tokens. It is therefore very difficult to lose, forget,
or steal someone’s biometric signature. For most application fields this
is a highly valued quality. However, there are certain applications where

4Radio Frequency Identification tags
5Namely, systems based on the fingerprint, iris and retina pattern
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this close relation between the person and its biometric signature is un-
desirable. A possible example is a home owner, that goes on holiday and
asks his neighbouring couple to water his plants in the meantime. In this
scenario it is more convenient to simply pass the door key to them, rather
than adding the couple to the access database of the biometric system.

An additional peculiarity of all biometric methods is that they cannot
rely on perfect agreement between the stored template and the newly ac-
quired data. They have to tolerate a certain amount of variation in order
to make allowances for natural fluctuations of the biometric trait. This
is in stark contrast to knowledge and possession based methods where a
perfect match to the value stored in the system database is mandatory.
Therefore, all biometric systems can only produce a probability estima-
tion to what extent the new and the stored template correspond to each
other.

Complex Technology: The relatively complex analysis of the behav-
ioral and physical attributes with all their possible influences and natural
variability of the biometric traits as well as ageing, make the biometric
technology elusive. Complicated schemes are necessary to compensate for
all those effects.

Feature Selection: The choice of the biometric methodology, i.e. fea-
ture (fingerprint, retina, iris,...), is crucial. However, there is no general
rule to answer this question because many different factors have to be
taken into account. Furthermore, there has to be some kind of backup
authentication because not every person has every biometric trait. There
are people, for example, without a prominent fingerprint, retina pattern
and so on.

User Acceptance: User acceptance is another crucially important area
which significantly affects the realised overall performance of the biomet-
ric system. The importance should not be underestimated because the
introduction of any biometric system that lacks broad user acceptance is
doomed to fail.

In order to attain acceptance the users have to feel comfortable with
the usage of the biometric system. Thus, each user needs to be given
instructions in such domains as system handling, working principle, data
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security, privacy of stored information as well as the opportunity to ask
whatever questions might occur to them in this context.

Identification vs. Authentication: In contrast to the other authen-
tication systems, biometric systems can be operated in an additional so-
called identification mode. Thus, the biometric systems not only allow
verification of a claimed user’s identity but they can also produce a prob-
ability estimate of the previously unknown identity of the client from the
database of known users. The computational requirements in terms of
computing power are considerably higher in identification than in verifica-
tion mode because the feature has to be compared to every single template
stored in the database and not just the one of the claimed identity.

1.2.4 Comparison

In the previous sections all three authentication methods were shortly de-
scribed with their respective advantages and drawbacks. Table 1.1 briefly
summarises the most important findings:

Criterion Knowledge Possession Biometrics
Technology trivial moderate difficult
User friendly yes yes depends
Can be stolen yes yes no
Can be lost no yes no
Can be forgotten yes yes no
System price marginal moderate high
Hygienic reservations no no yes

Table 1.1: Summary review of authentication methods.

On the one hand knowledge- and token-based authentication share the
distinct drawback that passwords or tokens can be forgotten, stolen or
lost. Furthermore, they are not capable of telling the difference between
a client and an impostor with a stolen password or token. Conversely, a
user’s biometric is always present and can neither be lost nor stolen6. On
the other hand biometric systems require good user acceptance for proper
operation. Unfortunately this is not always the case as has been shown

6Assuming the biometric system performs some kind of living person test (see Sec-
tion 2.5 on Page 22).
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in the BIOIS study [Büllingen00]. According to Büllingen and Hillebrand,
users generally favour those biometric systems using the least amount of
interaction and dislike slow and complicated authentication methods. That
is in stark contrast to what privacy experts prefer. They want systems with
direct physical contact to ensure the users are fully aware of an ongoing
authentication process. Furthermore, the hygienic reservations against
direct physical contact with the biometric system, expressed by some users,
should not be disregarded.

1.3 Objectives and Scope of this Research

Biometric methods for authenticating and identifying people are increas-
ingly being used in both the commercial and private sector. Today’s com-
mercially available biometric systems show good reliability. However, they
generally lack user acceptance as has been shown in [Funk00, Staff00] and
[Büllingen00]. Users showed an antipathy towards touching a possibly
dirty fingerprint scanner, or looking into an iris scanner that might mal-
function and eventually impair their vision. Whether those fears are well-
founded or not is of minor importance. The fact is, they have considerable
influence on user acceptance. And user consent is important for a good and
successful application of a biometric system, as well as for good recognition
rates.

In response to the increasing demand for reliable as well as user friendly
biometric systems this thesis investigates the applicability of gait as a bio-
metric feature for authentication. Using gait as a biometric, would avoid
such problems as shown before, since it requires no subject interaction
other than walking past a detector grid. The goal is to propose and demon-
strate the feasibility with a prototype system which is:

• user friendly, in the sense that no other interaction with the system
is needed other than walking past the sensors

• robust, in the sense that valid users get access and impostors are
rejected

• inexpensive, so that the final system may be of some practical and
commercial relevance
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• computationally efficient, so that the authentication delay is rea-
sonable

Gait has several important properties that make it an interesting candi-
date as a biometric trait. First, people need not interact with a sensor in an
unnatural way. In particular, they just enter a building through a hallway
equipped with special sensors. The biometric system can then identify the
passing person. In combination with an RFID-tag that emits the person’s
identity, the biometric system can be operated in authentication mode,
see Section 2.3 for more details. Second, gait implicitly performs a living
subject7 test and thus can neither be stolen nor lost. Last but not least,
users do not need to unveil additional personal information about them-
selves that is not already available. This in stark contrast to most other
biometric methods where, for example, fingerprint or retina features are
used for authentication8.

This work concentrates on walking gait, whereby at least one foot is
always in contact with the supporting surface. Conversely, if there were
cyclically airborne phases for both feet at the same time it would be called
running gait.

1.4 Gait as a Biometric Authentication
Method

Gait is not a new topic in research and scientific literature. It has been
investigated and examined in various aspects over the past decades. On
the one hand, research was inspired by medical applications to track re-
habilitation or as a diagnostic tool. On the other hand, research was also
driven by the sport shoe industry.

Murray conducted in 1967 [Murray67] a systematic study to fully char-
acterise the coordinated movement patterns of the various parts of the
body9 that constitute the walking act. His empirical investigation was
based on a relatively large sample set of 60 normal men in wide ranges

7Explained in Section 2.5
8Detailed in Section 8.2
9head, neck, trunk, and upper and lower limbs
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of age and height10. He obtained the walking patterns with reflective tar-
gets attached to specific anatomical landmarks which he illuminated with
a strobe-light flashing 20 times per second. The study suggests that gait
is a unique personal characteristic, if all gait movements are considered;
this indicates that gait could be used as a promising feature for biometric
authentication.

Later, in 1977, Cutting and Kozlowski [Cutting77] empirically showed
that recognising friends by their gait is indeed a surprisingly simple task for
humans; even when stripped from all familiarity cues such as clothing and
hairstyle. Light sources mounted on joints11 that are prominent during
the act of walking were sufficient for identification. It is noteworthy that
people recognised others not by using static properties such as height but
dynamic aspects such as amount of arm swing, rhythm of the walker,
bounciness, or the length of steps. But what seems to be an easy task for
humans must not necessarily apply to computers.

Although those early results were encouraging and promising, gait has
not been proposed as a biometric feature until recently. Possible reasons
might encompass the lack of reliable and inexpensive sensors as well as the
lack of processing power to handle the huge amount of data.

Murase and Sakai developed [Murase96] a method to efficiently calcu-
late the spatio-temporal correlation for model-free moving object recogni-
tion. To lower the computational cost of the spatio-temporal correlation
they reduced the dimension of the input vectors with an orthogonal trans-
formation and performed the correlation in the resulting low-dimensional
parametric eigenspace representation. This general approach can be ap-
plied not only to gait but to other moving object recognition problems as
well.

In 1997 Addlesse et al. proposed in [Addlesee97] an Active Floor sys-
tem. They used an array of four by four load cells to measure the force,
perpendicular to the floor, exerted by a walking person. To characterise the
footsteps a Hidden Markov Model (HMM) was trained using data acquired
from 15 different individuals. The best HMM-configuration achieved a
recognition rate of 91 %.

In [Little98], Little and Boyd theorised an alternate video based
method. Their description of the spatial distribution of optical flow yields

1020 to 65 yeas of age and 5 ft 1 in to 6 ft 2 in in height
11Moving Light Display (MLD)
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model-free frequency and phase features whose variation over time is peri-
odic. The relative phase difference among these periodic signals is repeat-
able for particular subjects and varies between subjects and can thus be
used as a biometric feature.

Huang et al. suggested two different approaches in their publications
using characteristics extracted from video sequences. The first approach
is based on spatial templates [Huang98a] of the subject’s binarised silhou-
ette, whereas the second uses temporal-templates [Huang98a, Huang98b,
Huang98e, Huang99] of the silhouette. In both cases a combination of
an Eigenspace Transformation (EST) and Canonical Space Transforma-
tion (CST) [Huang98c] are applied to reduce data dimensionality and to
circumvent the singularity problem that occurs in the CST, when the num-
ber of elements in the feature vector is higher, than the number of feature
vectors in the training set.

In [Nash98], Nash et al. proposed a new model-based technique to allow
the automated determination of human gait characteristics. Their tech-
nique employs a parametric two-line model representing the lower limbs.
To speed up the search of the parameter space, they used a genetic algo-
rithm (GA) based implementation of the Velocity Hough Transform (VHT)
rather than an exhaustive search. Although their approach is promising,
the accuracy of the estimated hip rotation patterns is still insufficient for
biometric purposes.

Meyer et al. described in [Meyer98] a system based on statistical models
that performs automatic classification of different gaits from grey-level
image sequences. In particular, they can differentiate between walking,
running, hopping, and limping. To extract the trajectories of the different
body parts they used statistical models. The classification is performed
with discrete Hidden Markov Models (HMM).

A different approach was followed by Orr and Abowd [Orr00] who
proposed a method using simple parameters extracted from the ground
reaction force profiles (GRF) depicted in Figure 4.1(b) on Page 43. To
characterise each footstep profile, they propose ten features (mean value
of the profile, its standard deviation, length of the profile, area under
the profile, x-y-coordinates of the two maximum points and the minimum
point). The poor recognition rate of this simple approach limits its ap-
plicability for low-security environments only. However, the method is
perfectly suitable for its intended purpose in the Aware Home Research
Initiative (AHRI) .
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In September 2000, the DARPA12 launched the HumanID program
with 26 individual projects and research groups involved from the USA,
Germany, and England. The goals of the project are to develop non-
cooperative, multimodal surveillance technologies for identifying humans
at a distance13 under day/night, and all-weather conditions. The Hu-
manID program has two phases: The initial 2 years of Phase I will end
in late 2002 with a major evaluation. Phase II lasts another 2 years and
continues research with the most promising approaches identified in the
technology assessment at the end of Phase I.

Although most of the research projects are still in an early stage, some
groups have already published preliminary results.

Recently, Bobick and Johnson published two papers [Bobick01,
Johnson01] where they proposed a multi-view method that recovers body
and stride parameters of the subjects as they walk. In particular they es-
timate four static distances: the vertical distance between the head an the
foot, the distance between the head and the pelvis, the maximum distance
between the foot and the pelvis, and finally the maximum distance be-
tween the left and right foot during the double support phase. Instead of
reporting percent of correct matches from a limited database (20 subjects),
they introduced a novel confusion metric that allowed them to predict how
their static body parameters discriminate even in a large population.

Gene Greneker’s group at the Georgia Tech Research Institute is work-
ing on a radar device that can be used to record the human gait signature
over a distance of up to 120 meters.

J. Shi’s research group at the Carnegie Mellon University has already
published a technical report [Gross01] detailing the capturing of 25 individ-
uals walking on a treadmill in the CMU 3D room. The subjects performed
four different activities: slow walk, fast walk, inclined walking, and walking
with a ball while being filmed using six colour cameras with different view-
ing angels. Two papers [Collins02, Liu02] detailing recognition methods
are to be published soon.

J. Phillips et al. from the NIST14 will publish a proposal [Phillips02] of
a reference implementation of a biometric system using gait analysis. This
baseline algorithm will be used to characterise the conditions under which
the problem of identifying/authenticating people using gait is solvable.

12Defense Advanced Research Projects Agency
13Up to 150 m from the acquisition sensor.
14National Institute of Standards and Technology, USA
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There are several other HumanID research groups reported to be work-
ing on using gait as a biometric trait: P. Sinha’s group at the Massachusetts
Institute of Technology (MIT), E. Grimson working in the AI Lab of the
Massachusetts Institute of Technology (MIT), and R. Chellappa’s group
from the University of Maryland. However, they have not yet published
any papers or technical reports referring to their research conducted in the
course of the HumanID program.

All of the aforementioned methods and approaches can be roughly di-
vided into two groups. Namely, the model-free and the model-based ap-
proaches. Model-free approaches have no underlying three-dimensional
representation of a walking person and mainly rely on statistical proper-
ties of the acquired gait data. Conversely, the model-based methods have
a model of the human body, or at least part of it, that is fit to every frame
of the walking sequence. In order to fit the model in the frame, static
parameters such as the limb lengths, body height, body width as well as
dynamic parameters such as the angular velocities and walking speed need
to be estimated.

The method proposed in this work follows a multimodal model-free
approach using video and force sensor data.

1.5 Outline of the Thesis

The presented work has a progressive structure. It begins with the fun-
damentals of biometric technology, then describes the hardware setup,
the feature extraction, data reduction and finally discusses the biometric
modality fusion. A dedicated chapter details the dangers and the legal sit-
uation of biometric technology. The thesis concludes with a chapter that
contains the main contributions and open problems as well as an outlook
on potential topics for further research.

Chapter 1 introduces the subject of this thesis.

Chapter 2 gives an introduction to the fundamentals of biometric
technology as well as explains some of the terminology extensively used
throughout this thesis.

Chapter 3 describes the design and implementation of the laboratory
prototype biometric system built and used during the course of this thesis.
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Chapter 4 details the computationally efficient methods for extracting
the individual features of the acquired force plate and video gait data.

Chapter 5 describes different methods to reduce the data dimensional-
ity of the extracted gait features without losing class separability. Addi-
tionally, a novel computationally efficient variant of the generalised PCA
is described.

Chapter 6 details the process of combining, i.e. fusing, the different
modalities and the subsequent classification of the result to come up with
a decision.

Chapter 7 discusses and compares the performance and discriminatory
power of the different biometric gait modalities developed during the course
of this work. Furthermore, it investigates the influence of changing clothes
on the recognition quality.

Chapter 8 sheds some light on privacy legislation closely related to
the application of biometric technology. Furthermore it discusses ethical
implications and possibilities of abusing biometric technology.

Chapter 9 gives a summary of the described work, discusses the major
contributions of this thesis and gives an outlook for future directions of
research.





Chapter 2

Fundamentals

This chapter gives a short introduction to the fundamentals of biometric
technology as well as explaining some of the terminology extensively used
throughout this thesis.

2.1 Biometrics Generals

A biometric system is a pattern recognition system that establishes the au-
thenticity of a specific physiological or behavioural characteristic possessed
by a user.

“A biometric system is an automated method for identifying
or authenticating the identity of a living person based on a
physiological or behavioural characteristic.”1

Logically, the process of a biometric system can be divided into two
independent phases: the enrolment phase and the challenging phase. The
enrolment phase is responsible for training the system to identify a given
person. During the enrolment phase, a biometric sensor scans the person’s
body to create a digital representation. A feature extractor processes this
representation, to generate a more compact and expressive representation

1US Department of Defense, Biometric Management Office (BMO).
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called a template. For a facial image, these features may include the size
and relative positions of the eye, nose, and mouth extracted from the facial
image. The template for each user is then stored in a biometric database.
The database can be a central or distributed database, such as the one
in which each user’s template is stored on a smart card and issued to the
user.

The challenging phase is responsible for recognising the person. During
this phase, the biometric sensor captures the characteristic of the person
again and converts it into the same digital format as the template . The re-
sulting template is fed into the feature matcher, which compares it against
the stored templates, to determine whether the templates match.

The challenging phase can be in the form of authentication (verifying
a claim “I am Peter”) or identification thus determining the identity of a
person from a database of known persons. In an authentication system,
when the captured characteristic and the stored template of the claimed
identity are the same, the system concludes that the claimed identity is
correct. In an identification system, when the captured characteristic and
one of the stored templates match within a predetermined threshold, the
system identifies the person with the matching template.

2.2 Typical Biometric System

The gait identification and verification system detailed in this work shares
the typical architecture (see Figure 2.1) with all other biometric systems.
More generally formulated, it is a pattern recognition system. It works in
two phases: the learning phase (enrolment), where several gait patterns
are taken from the user; these are then pre-processed to enter the feature
extraction block, where a set of measurements is performed. With the
features extracted, the data reduction block determines the user’s tem-
plate that is stored, for later reference, either in a central database or on
a portable storage media together with the user’s ID. In the authentica-
tion (verification) phase, a single gait sequence is taken, pre-processed,
and entered in the feature extraction block. This single set of features is
compared to the template previously stored, obtaining a ratio of likeliness
to verify the user’s claimed identity.
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Figure 2.1: Typical architecture of a biometric authentication system.

2.3 Identification vs. Authentication

As has already been shown in the previous section, all biometric systems
can be operated in two different modes: identification and authentication.

In identification systems, a biometric signature of an unknown person is
presented to a system. The system compares the newly acquired biometric
signature to a database of biometric signatures of known individuals. This
is called a “one-to-many” search, with the question “Do I know you?”.
On the basis of the comparison, the system reports the probable identity
of the unknown person from this database in the form of a list of likely
candidates. Systems that rely on identification include those that the
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police uses to identify people from fingerprints2 and mug shots. Civilian
applications include those that check for multiple applications by the same
person for welfare benefits and driver’s licenses.

In authentication systems, a user presents a biometric signature and a
claim (“I am user X”) that a particular identity belongs to the biometric
signature. This is called a “one-to-one” search, with the question “Are
you who you claim to be?”. Authentication is basically a binary classifi-
cation problem, where the algorithm either accepts or rejects the claim.
Alternatively, the algorithm can return a confidence measurement of the
claim’s validity. Authentication applications include those that authenti-
cate identity for physical access control of secure buildings or logical access
control as used for cash dispensers. Because the claimed identity of a per-
son presenting herself or himself for authentication is known in advance,
the database search time is much faster than in identification and a matter
of milliseconds rather than seconds.

The quality requirements for authentication systems are generally
weaker compared to identification systems, since not all people need to
be differentiable. Just the probability of a missauthentications has to be
small.

2.4 Physiological and Behavioural Charac-
teristics

As can be seen in the biometric typology chart, Figure 2.2, human bio-
metric characteristics can be separated into two different categories: the
physiological and the behavioural traits.

The physiological characteristics are relatively stable, such as a finger-
print, hand silhouette, iris pattern, blood vessel pattern of the retina, or
DNA fingerprint. Those biometric traits are essentially fixed and do not
change over time. On the other hand, behavioural characteristic are more
prone to changes depending on factors such as aging, injuries, or even
mood. The most common behavioural characteristic used today is the sig-
nature, although not in biometric systems. Other possible behaviours that
can be used are how one speaks, types on a keyboard, or walks. Because

2The AFIS (automated fingerprint identification system) systems are widely used in
law enforcement.
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Figure 2.2: Typology of Biometric Methods.

of the inevitable modest variations of all behavioural traits, many systems
use an adaptation mechanism to update the reference template in order to
compensate for slight changes of the biometric trait over time. Generally,
behavioural biometrics work best with regular use.

There are important differences between physiological and behavioural
methods. First, the degree of intra-personal variation in a physiologi-
cal characteristic is smaller than in a behavioural characteristic. Apart
from injuries the iris pattern remains the same over time, whereas speech
characteristics change and are influenced by many factors, e.g. the emo-
tional state of the speaker. Developers of behaviour based systems, there-
fore, have a harder job in compensating for those intra-personal variations.
Second, due to the intra-personal variations of behavioural methods, their
discriminatory power (“How many distinguishable persons are there?”) is
generally smaller than for physiological methods.
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2.5 Living Person

While the term Living Person appears obvious, it is nevertheless important
to explain it. A common question asked by newcomers to the field of
biometrics is “Can’t biometric fingerprint systems be fooled by fake fingers
made out of latex or by fingers that were cut off a living person?” The
answer is that many but not all devices include measures to determine
whether there is a live characteristic being presented or not. The methods
are sometimes ingenious but usually simpler than one would expected.

Face recognition systems for example often try to detect the blinking
of the eyelid in order to differentiate a real face from a picture. However,
most of those systems can be by-passed relatively easy by cutting a hole
in a photograph and then holding it in front of the intruder’s face. This
way the blinking of the intruder’s eyelid is detected but the image of the
photograph is taken as the face. A different approach chosen by many
commercial systems3 is to combine face recognition with a behavioural
characteristic such as voice or lip movement.

Although it is quite feasible to combine fingerprint detection with a
different behavioural characteristic such as lip movement, a different ap-
proach is normally chosen to determine the living status of the user. To-
day’s modern fingerprint detection systems try to either measure the oxy-
gen (O2) or carbon dioxide (CO2) level and its change over time in the
finger’s blood stream.

One of the main advantages of most behavioural biometric methods
is that the living person detection is intrinsic, i.e. an integral part of the
method, and no special measures need be taken. Possible examples include
hand signature and gait recognition systems, but not speech, although a
very popular behavioural characteristic, as it can be easily recorded. How-
ever, it is obvious that you cannot steal somebody’s signature by chopping
off his or her hand.

2.6 Performance Measures

Performance statistics for identification systems differ substantially from
those for authentication applications. The main performance measure

3e.g. BioID http://www.bioid.com/
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for identification systems is its ability to identify a biometric signature’s
owner. More specifically, the performance measure equals the percentage
of queries in which the correct answer is the top match.

On the other hand, the performance of an authentication system, is
commonly characterised by two error statistics: the False Reject Rate
(FRR) also called Type I Error and the False Accept Rate (FAR) also
known as Type II Error. These error rates come in pairs; for each False
Reject Rate there is a corresponding False Accept Rate and vice versa, see
Figure 2.3. These error rates are defined as follows

FAR(λ) =
Number of False Accepts

Number of Impostor Accesses
(2.1)

and

FRR(λ) =
Number of False Rejects

Number of Client Accesses
. (2.2)

A false accept status occurs when a system incorrectly approves an
identity and a false reject status occurs, when a system incorrectly denies
an identity. In a hypothetically perfect biometric system, both FAR and
FRR would be zero. Unfortunately, biometric systems are not perfect,
and the system operators must determine what trade-offs they are willing
to make and set the variable security level appropriately, to attain the
desired balance of FAR and FRR. If the security level is increased to
make it harder for impostors to gain access, it will also become harder
for authorised people to get access, i.e. as FAR decreases, FRR increases.
Conversely, if the security level is decreased to make it easier for rightful
people to gain access, then it will also be more likely that an impostor may
slip through, i.e. as FRR decreases, FAR increases.

The point at which these two curves intersect (see Figure 2.3) is gen-
erally referred to as the Equal Error Rate (EER), or the rate at which the
number of people who are incorrectly accepted and incorrectly rejected
is equal. Generally the lower the EER the better the biometric system.
Table 2.1 on page 27 summarises EER values of two popular commercially
available biometric systems.

The EER is a parameter that gives valuable information about the
quality of a biometric product or method. However, this information is
generally not sufficient. A related but more specific quality measure was
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Figure 2.3: Plot of the dependencies of FAR, FRR from the security level.

suggested by Lassmann et al. in [Lassmann98], that obtains closer infor-
mation by determining how fast the two error rate functions FAR(λ) and
FRR(λ) increase when moving the security level λ away from the optimal
λEER point.
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For this purpose, a fixed value ∆ =5 % is considered and the size of the
zone where FAR(λ) and FRR(λ) are both below EER + ∆ is calculated.
Figure 2.3 shows the two curves for FRR and FAR with the crossover point
at the EER. The area A between the horizontal line for EER + ∆ and the
two curves represents the measurement for the discriminatory power and
can be calculated with

A = (EER + ∆)(λ1 − λ0)−
λEER∫
λ0

FAR(λ)dλ−
λ1∫

λEER

FRR(λ)dλ. (2.3)

In practical applications it is often difficult to determine an adequate
security level λ. Many biometric systems show substantial FAR and FRR
deviations for only small changes from the theoretically optimal λEER.
This makes it difficult to fine-tune the security level λ. However, methods
with a large A are less prone to minute changes in λ and are thus more
robust and have a larger discriminatory power.

Yet another method to characterise the overall performance of a bio-
metric authentication system is the so called Receiver Operating Char-
acteristic (ROC) depicted in Figure 2.4, which represents the FRR as a
function of the FAR [Melsa78].

The optimal point is at the lower left of the plot, and curves of well
performing systems tend to bunch together near this corner.

An improvement to this ROC plot visualisation tool, called the Detec-
tion Error Trade-off (DET) plot, has been introduced by Martin et al.
in [Martin97]. The DET plot is a non-linear transformation of the afore-
mentioned ROC plot, see Figure 2.6 for example. It improves the visual
presentation of detection error trade-off by plotting the normal deviate
of the False Alarm probability, i.e. False Reject, on the horizontal axis
and the normal deviate of the Miss Probability, i.e. False Accept, on the
vertical axis.

Figure 2.5 illustrates the Accept and Reject Score Distributions that
are assumed to be normally distributed4 with a mean of µ0, µ1 and a
standard deviation of σ0, σ1 respectively.

4Which is a reasonable assumption as will be shown in the results chapter.
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Figure 2.4: Typical ROC plot with two different biometric methods.

The operating threshold λ is shown by a bold line and the two error
probabilities by shaded areas. Rather than plotting those two error prob-
abilities, as in the ROC curves, the DET plot uses the normal deviates
d0, d1 that correspond to the probabilities instead. This linear deviation
scale results in a non-linear probability scale, but the advantage is that
the plots are visually more intuitive. In Figure 2.6 the probabilities are
shown on the bottom and left axis, whereas the standard deviations are
shown on the top and right axis.

The curves are moved away from the lower left when performance is
high, making comparisons between different methods easier. It can also be
observed that if the distribution of error probabilities are Gaussian, then
the resulting trade-off curves are straight lines and the distance between
the curves depicts performance differences more meaningfully than the
ROC curves.

There are two important things to note about the DET curves. (1)
If the resulting curves are straight lines, then the underlying distribution
from the system are normal. (2) Each point on the DET curve represents
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Biometric System EER
FaceIt (face recognition) 0.68%
ID-3D (hand geometry) < 0.2%

Table 2.1: Equal Error Rate (EER) of two popular biometric systems.

a particular security threshold λ. In particular, the two ◦’s in Figure 2.6
indicate the λEER point for the two methods.

As is the case with all biometric systems, the False Accept Rate, False
Reject Rate, and Equal Error Rate heavily depend on the particular user
basis used for analysis. For a given system, a well trained and enthusiastic
user base will realise a much higher level of performance compared to a
group of disinterested users. In the latter case, this not only affects their
inherent capability to use the system correctly, but also their attitude
towards the system and eventually biometrics in general.

2.7 Principles of Human Locomotion

Gait is probably the most common of all human movements, see [Harris96].
It is difficult to learn, but once learned it becomes almost subconscious as
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Figure 2.6: Typical example of two DET curves from different methods.
Method 1 has a better performance.

long as it is not disturbed by an injury, disease (or alcohol ;-). Two abilities
are essential to walking. First, the ability to maintain the equilibrium,
and second locomotion, the ability to initiate and maintain a rhythmic
stepping motion. Although these two abilities are essential, there are many
contributing factors involved such as the skeletal system with the joints as
well as the neuro-muscular system.

The field of gait analysis has turned into a major tool in orthopedic
medicine and became widely used for diagnostic and rehabilitation track-
ing purposes. Therefore, physicians need accurate knowledge of gait so
that they can detect and interpret deviations from the normal gait pat-
tern. This research showed that each individual has certain superimposed
variations from the normal gait pattern that are normally ignored in or-
thopedic medicine. However, those minute deviations from the normal gait
pattern can be used to recognise people, as will be shown in this thesis. Of
course, humans can do this differentiation very well as has been shown by
Cutting in [Cutting77]. They can recognise friends and other close persons
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Classification FAR FRR
Weak > 5% > 7%
Moderate 5%− 1% 7%− 3%
Strong 1%− 0.3% 3%− 1%
Very strong < 0.3% < 1%

Table 2.2: Security classification of biometric systems according to their
FAR and FRR.

from their gait very easily, even if they do not know the rationales behind.

The following paragraphs explain the basic principles of human loco-
motion and the corresponding terminology. However, in this thesis only
bipedal walking in contrast to running is considered. In particular, the
foot of the supporting extremity remains in contact with the floor until
the opposite foot has made floor-contact.

The definition of the gait cycle is the time between two equal events in
the walking cycle, such as the heel strike of the right foot, see Figure 2.7.
The gait cycle of each individual foot can then be divided into two periods:
the stance and the swing period. Roughly 60% of the gait cycle the foot
is in the stance and in contact with the ground. The remaining time of
the gait cycle constitutes the swing period, where the foot is in the air.
The double support period, where both feet are in contact with the floor
occurs twice in the gait cycle. In contrast, single support is the period of
time where only one foot is in contact with the ground.

The gait cycle, consisting of the stance and swing periods, can be fur-
ther broken down into eight sub-phases; explained here for the right leg:

1. Initial Contact : the moment when the right foot, normally with the
heel, touches the floor.

2. Loading Response: the double support phase, where body weight is
transferred from the left to the right leg.

3. Mid Stance: the first half of the single limb support, that begins
with the lifting of the left foot and continues until the body weight
is aligned over the supporting right foot.

4. Terminal Stance: begins when the right heel rises and continues until
the heel of the left foot hits the ground.
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Figure 2.7: Diagram showing the different phases of the walking cycle.

5. Pre-Swing : the second double support phase in the gait cycle, that
begins with the initial contact of the left foot and ends with the right
foot toe-off.

6. Initial Swing : begins when the right foot is lifted and ends when the
swinging right foot is opposite the stance foot.

7. Mid Swing : follows the initial swing phase until the swinging right
limb is in front of the body and the lower limb is vertical.

8. Terminal Swing : begins when the lower limb is vertical and ends
when the foot, normally the heel, touches the floor.

Human gait can not only be characterised through the aforementioned
phases, but also through a handful of common parameters. The stride
length, cadence and velocity are three such interrelated parameters. Com-
monly misused, the term step length is not synonymous to the stride length.
The step length is the distance from a given floor contact point, e.g. left
heel, to the same floor contact point of the other foot, e.g. right heel. The
stride length, on the other hand, includes a left- and a right-step length
and thus is the distance covered in one gait cycle. The cadence refers to
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the number of steps taken per time. Finally, the velocity combines the
stride length and the cadence to express the distance covered in direction
of progression per unit of time.

While walking, both feet exert a certain force to the floor called the
Ground Reaction Force (GRF). The GRF is a three dimensional vector
as can be seen in Figure 2.8. All three force components, namely the
anterior/posterior Fx, the vertical Fy, and the lateral/medial Fz compo-
nent, can be measured with force plates such as the commercially available
Kistler plate5.

Walking

direction

F
x

F
z

F
y

GRF

Figure 2.8: The force plates are able to measure all three components of
the ground reaction force (GRF).

Figure 2.9 shows time series of the GRF in different directions. The
vertical component Fy has two bumps, hence its name, the camel-back
curve, both exceeding body weight. The first occurs after the heel strike
during the loading phase, and the second during the push off phase. The
anterior/posterior components Fx of the GRF shows posterior forces dur-
ing the first half of the stance phase and anterior forces during the second
half. There is a deceleration followed by an acceleration component. The
lateral/medial component is the smallest in absolute values. It is mostly
medial in direction and serves for balance purposes.

5Kistler Instrumente AG Winterthur, Switzerland, http://www.kistler.ch
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Chapter 3

Description of the System

This chapter describes the design and implementation of the laboratory
prototype biometric system using gait characteristics, built during the
course of this thesis. In order to minimise costs, the biometric system
is mainly composed of commercially available parts: namely, the sensors
and the processing unit, which are discussed in detail in the following sec-
tions. The design and component selection was directed towards a future
product taking into consideration reliability, cost effectiveness, and sim-
plicity.

3.1 System Overview

Figure 3.1 shows the schematic diagram of the experimental arrangement
used during the course of this thesis. The setup consists mainly of three
components: (1) the three force plates to measure the ground reaction
force, (2) the CCD-camera to capture the video sequence, and (3) the
data acquisition and processing hardware.

These three components are arranged around the measuring zone where
all the sensors are focused to. Whilst the subjects are passing the mea-
suring zone, the sensors acquire the biometric data. The zone occupies an
area of approximately 1 m×3 m and is depicted in Figure 3.2.
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CCD-

Camera

Force plates

A/DC

Computer

Frame-
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Figure 3.1: Experimental setup with (1) the three force plates (2) the CCD-
camera and (3) the processing hardware.

In order to use the biometric system, people have to pass this measuring
zone. This is also the place were all the sensors are focused to capture their
data.

To simplify the object/background segmentation for the video sensor,
the backside of the measuring zone is equipped with a white cardboard
wall. Although we are using this white wall its application does not restrict
the generality of the method.

3.2 Sensors

The system consists of two sensors measuring different physical properties
of the walking subjects. First, the force sensor measures the ground re-
action force Fy(t) perpendicular to the floor and second, the video sensor
captures a side view of the passing subject. For this thesis only the Fy(t)
component of the GRF was considered, since it has the strongest discrimi-
natory power, as can be seen in Figure 7.2(b) of the Results chapter. Both
sensors are connected to the I/O-board of a standard off-the-shelf personal
computer (Dell OptiPlex GXi). Although the force and video data is cap-
tured at the same time, the two data streams are not synchronised in any
way.
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Figure 3.2: Diagram of the measuring zone with the sensor arrangement.

3.2.1 Force Plate

In all biomechanical tests, the persons being tested must be unaware of
the measuring devices to ensure that the movements are not influenced by
the instrumentation. This is mandatory to guarantee reliable and repro-
ducible measurements. Thus, subjects should be able to walk in their own
natural way. Subjects should therefore be exempted from placing exactly
one foot on each of the three force plates and be free to walk with their
own accustomed stride length. Furthermore, the force plates should not
raise above the surrounding floor and hinder the subjects from walking
naturally.

To avoid all those problems, ample priority has been paid to integrate
the force plates flush with the surrounding floor. The force plates raise
only about 1 mm above the surrounding floor and are operated discreetly,
easily, and practically invisibly.

Although from the technical side, care has been taken to permit reliable
ground reaction force measurements, there is one problem that can not be



36 Chapter 3. Description of the System

F (t)x

F (t)z

F (t)y

Walking

Direction

Piezo Sensor

& Amplifier

Figure 3.3: Schematic of a force plate.

solved. It is not easy to deliberately walk naturally. During our tests,
several subjects felt awkward having to deliberately walk naturally.

Figure 3.3 depicts the schematic diagram of a force plate where Fx(t)
is the ground reaction force (GRF) in walking direction (anterior), Fy(t) is
the ground reaction force perpendicular to the floor (vertical), and Fz(t)
is the exerted force vertical to the walking direction and in the plane of
the floor (lateral). Although our investigation reported in [Bachmann99]
indicates that both Fx(t), as well as Fy(t) contain valuable subject specific
information, only the GRF perpendicular to the floor Fy(t) is used in the
course of this thesis; hereafter the Fy(t) component of the ground reaction
force will be abbreviated as either ground reaction force or simply Fy(t).
This simplification allows drastically straightening the construction of the
three force plates.

The double layered floor in our lab consists of an array of wooden tiles
(60 cm × 60 cm) on metal poles, see Figure 3.4(a). Three such tiles were
equipped with a piezo sensor in each corner (Figure 3.4(b)), giving a total
of twelve sensors. The force sensors were built with a piezo crystal PI
Ceramic 155 in an integrated package with the amplifier, see Appendix C
for the detailed amplifier scheme.
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(a) Double layered floor (b) Piezo sensor Integration

Figure 3.4: (a) Double layered floor with (b) the force sensors.

Four such sensor and amplifier pairs were integrated on one oddly
shaped PCB (see Figure 3.5) that snugly fits between the metal pole and
wooden tiles, as can be clearly seen in Figure 3.4(b).

Due to the piezo crystal’s capacitive property, this arrangement of mea-
suring amplifier and piezo crystal measures the temporal derivative, Ḟy(t),
of the ground reaction force, rather than the force itself. Figure 4.1(a) on
Page 43 illustrates a sample of the data provided by the sensors.

Sensor Quality: Although the construction costs of the force sensors
were very low (≈ 200 CHF) they seem perfectly adequate for this ap-
plication. A comparison in [Bachmann99] with force data acquired by
professionals1 in a specialised gait laboratory using Kistler force plates
(≈ 60, 000 CHF) did not show a significant difference in recognition qual-
ity.

1Dr. Peter Erhart, Rehaklinik Bellikon, Postfach, 5454 Bellikon, Switzerland
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3.2.2 Video Sensor

The CCD video camera is the system’s second sensor used to capture
characteristic gait data. To simplify the feature extraction and to increase
recognition quality the users are obliged to walk fronto-parallel to the
camera with a fixed white background, see Figure 3.2, and the body never
occluded. This situation can be easily realised by setting the camera in an
apt position.

The camera used is a standard interlaced CCD-camera with a resolu-
tion of 768 × 576 of 8-bit monochrome pixels, a framerate of 25 Hz, and
a motorised zoom lens (Computar H6Z0812M). To avoid the problem of
moving objects and interlaced cameras, only one half-frames was used per
picture, the effective resolution thus being 768 × 288. The camera was
mounted on the left hand side of the subject’s walking direction at a dis-
tance and height of approximately 4 m and 1.5 m, respectively. Figure 3.6
shows an example frame of the low vertical resolution grey-scale image.

3.3 Processing Unit

The basis of the processing unit is formed by a Personal Computer Dell
OptiPlex GXi with a Pentium II 200 MHz Processor, 160 MB of main
memory, and two PCI bus I/O expansion cards:

1. A Data Translation, Inc. Analog/Digital-Board DT301 with 16 sin-
gle ended or 8 differential analog input channels featuring 12 bit res-
olution each and a maximum sampling rate of 150 kSamples/s.

2. A Data Translation, Inc. Frame Grabber card DT3155 with a reso-
lution of up to 768 × 576 pixels with 8 bit monochrome pixels, and
a maximum sampling rate of 30 Frames/s.

Both the video sensor and the twelve force sensors are connected directly
to the appropriate I/O-cards.
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Figure 3.6: View from the CCD-camera.



Chapter 4

Feature Extraction

This chapter describes the extraction of individual features of the acquired
gait data. During the development, ample priority has been given to com-
putationally efficient algorithms.

4.1 Introduction

Numerous different ways of extracting discriminative features from gait se-
quences have been proposed. Despite the broad variability of the methods
they can be devided into two distinct groups: (1) systems that need to
locate one step or a complete gait cycle and (2) systems that do not need
to locate the gait cycle within the acquired data.

(1) The biometric method proposed in this thesis as well as the sys-
tems proposed in [Orr00, Little98, Huang98b] need to locate one complete
gait cycle in the data stream in order to extract the characteristic feature
vectors. These feature vectors are subsequently projected into a lower-
dimensional feature-space, where each gait sequence is represented by one
single point. The main advantage of this approach lies on the one hand in
the relatively easy classification. On the other hand it might prove difficult
to locate the gait cycle.

(2) In contrast, the methods of the second kind [Huang98f, Huang98c,
Huang98d], need not to isolate the gait cycle. Conversely, their features
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vary over time and thus form a trajectory in feature-space. Each gait
sequence is thus projected to a hopefully periodic trajectory in the low-
dimensional feature-space. Those systems generally use a HMM to recog-
nise and differentiate people from their trajectories. The main advantage
of this method lies in the fact, that it is possible the recognise people
without a complete gait cycle, but the final classification is slightly more
difficult compared to the previous approach.

Neither of the two approaches is per se better than the other, it is
merely a way to classify the various methods.

4.2 What Features Should be Used?

In order to achieve a high recognition rate, discriminative features must
be extracted from the available data. From a naive point of view, it would
seem obvious to try to recognise people through their stride length, walk-
ing cadence, body weight, body height, and so forth. However tempting
the aforementioned features might be, they are not ideal for a biometric
system. In fact, they are highly insecure due to their static nature, that
allows an impostor to easily mimic them; e.g. an impostor can easily adjust
his body weight, stride length, and cadence to match that of a legitimate
user and try to gain access to a restricted area.

Conversely, the dynamic properties of human gait are far more difficult
to imitate, since they depend on physiological properties of the user’s body,
such as bone structure. The use of dynamic properties of human gait is
therefore considered in this thesis.

4.3 Force Features

As already described in the preceding chapter, the piezo force sensors
measure only the derivative ground reaction force perpendicular to the
floor Ḟy(t), see Figure 4.1(a). With a simple numerical integration one can
determine the ground reaction force Fy(t). Figure 4.1(b) shows an example
of the ground reaction force with its well-known camel-back shape.
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Figure 4.1: Sample profile of (a) the vertical derivative GRF and (b) the
vertical GRF of three consecutive steps.

It is obvious from the phase plane graphs1 depicted in Figure 4.2 that
the ground reaction force Fy(t) contains characteristics that could be used
as a biometric. In particular, the phase plane plots show large similarities
among the same subject but differ substantially for separate subjects.

In our research reported in [Bosshard98] many different methods to
extract characteristic features from the acquired GRF data have been tried.
First, geometric properties extracted from the vertical GRF component
were investigated, see Figure 4.1(b). In particular the area under the
camel-back curve, the average body weight, the amplitudes of the heal
strike and the toe-off peak, the elapsed time between the heal strike and
toe-off peak, the number of local minimas of the camel-back curve, and
the elapsed time for one step. Similar parameters were also proposed
by Orr and Abowd in their publication [Orr00]. However, the extracted
characteristics had only a very limited discriminatory power and the class
separability was poor. Second, geometric parameters extracted from the
phase plane graphs as depicted in Figure 4.2 were examined. Namely,
the area within the curve, the position and area of the small loop, the
maxima/minima in x- and y-direction, the center of gravity, as well as the
shape of the parametric plot approximated with fourier descriptors. But

1The ground reaction force Fy(t) plotted against its derivative Ḟy(t)
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Figure 4.2: The parametric phase plane graphs of the ground reaction force
(Fy(t), Ḟy(t)) suggests that the GRF contains substantial individual char-
acteristics.

it proved very difficult to reliably extract parameters from the phase plane
graphs. In [Bachmann99] we proposed the Power Spectral Density (PSD)
of Ḟy(t) as the characteristic feature, see Figure 4.3 for an example.

The empirical investigation of the different feature extraction methods
showed the best performance for the windowed2 Power Spectral Density
(PSD) of the derivative ground reaction force Ḟy(t). In particular, the
0− 20 Hz frequency band is utilised to characterise subjects

zforce = PSD0−20Hz(Ḟy(t)). (4.1)

Analysis of the ground reaction force, from gait data acquired at the
Gait Laboratory in Bellikon, showed a slightly inferior discriminatory
power for the Fx(t) and the Fy(t) component. Refer to Section 7.2 on
Page 82 and Figure 7.2(b) for more details.

2Hanning window
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reaction force Ḟy(t).

4.4 Video Features

As mentioned earlier, the video camera is the second sensor used to capture
characteristic gait data. It acquires for each gait sequence a 2 second video
clip at a frame rate of 25 frames/s, i.e. fifty images I1...I50. Additionally,
the image I0 of the static background is grabbed, that subsequently eases
body/background segmentation.

In order to efficiently extract characteristics based on the subject’s
silhouette and its variation in time it is essential to eliminate irrelevant
background from each image. Thus, preprocessing of the image data is
necessary. Figure 4.4 shows the preprocessing steps as required to extract
the distinctive features of the human outline.

4.4.1 Image Segmentation

The first step of video feature extraction is the image segmentation, where
the subject’s body is separated from the background by eliminating unre-
lated information. This is crucial for computationally efficient and accu-
rate feature extraction.
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Figure 4.4: Outline of the video feature extraction subprocesses.

First the static background I0 is subtracted from every image I1...I50.
This already eliminates a major part of insignificant image data. Subse-
quently, these image differences are binarised with the iterative Markov
thresholding method described in [Li95]. After locating the silhouette in
the binarised images, they are cropped and scaled to a standard height of
200 pixels resulting in I∗1 ...I

∗
50. The aspect ratio is kept constant when the

height is normalised. Figure 4.5(a) shows the binarised and scaled image
of the sample image shown in Figure 3.6.

4.4.2 Stride Extraction

In order to get reliable, stable and distinctive features the intra-personal
variations of the features should be minimised. This can be achieved by
ensuring that all gait features are always extracted from a complete gait
cycle for every individual gait sequence; thus a left-right-step or a right-
left-step sequence respectively.
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(a) (b)

Figure 4.5: (a) Segmented sample image I∗i with the corresponding (b) hor-
izontal pixel histogram Hi.

To locate this gait cycle in the image sequence I∗1 ...I
∗
50 the horizontal

pixel histogram Hi (∀ i = 1...50) is calculated3 for all the segmented and
binarised images; see Figure 4.5(b) for a histogram example.

Since human gait is per se a periodic movement, the time series of
histograms H1...H50 must be periodic as well. It is thus possible to locate
the beginning and end of the gait cycle by least square fitting a periodic
function4 at a particular height, such as the hip or knee, into the histogram
series. This yields a sequence of n histograms Hk...Hk+n−1 containing the
complete gait cycle.

4.4.3 Histogram Features

Once the gait cycle is located, three different types of features (v1, v2, v3)
are extracted from this subsequence Hk...Hk+n−1 of histograms. Namely
the average histogram vector

v1 : µ̄ =
1
n

k+n−1∑
j=k

Hj (4.2)

3The number of white pixels in each of the 200 rows of the image.
4The sine function was chosen for the course of this thesis.
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with a size of 200 dimensions. The histogram variance vector

v2 : σ2 =
1
n

k+n−1∑
j=k

(Hj − µ̄)2 (4.3)

with a size of 200 dimensions and finally the two-dimensional Fast Fourier
Transform (FFT)

v3 : H̃ = FFT2([ ~Hk, ..., ~Hk+n−1]). (4.4)

with a size of 1, 000 dimensions. Together the three feature vectors span a
hyper-space with 200 + 200 + 1000 = 1, 400 dimensions.

4.4.4 Temporal-Template Features

Davis et al. proposed in [Davis97, Davis99] a method to recognise human
actions and gestures using two different variants of temporal-templates:
(1) a binary motion-energy image (MEI) which represents where motion
has occurred in an image sequence and (2) a motion-history image (MHI)
which is a scalar-valued image where intensity is a function of recency of
motion.

The temporal-template feature used in the course of this thesis is a
representation of how the person moves during one complete gait cycle,
see Figure 4.6 for a sample. The pixel intensity in this temporal-template
represents the number of pixels set in the binarised image sequence I∗i .
The temporal-template can thus be calculated by summing up all the
segmented images I∗i of the gait cycle i = k...k + n− 1

A =
k+n−1∑
i=k

I∗i . (4.5)

As has been explained in Section 4.2, it is not recommended to try to
recognise subjects through their stride length or their height directly. The
recognition can be achieved in a better way by normalising the temporal-
templates to a standard width and height, the normalised temporal-
template size thus being 256×768 pixels respectively. Figure 4.6(a) shows
an example of such a normalised temporal-template. To further reduce



4.5 Summary 49

200 400 600

50

100

150

200

250

(a)

20 40 60 80

5

10

15

20

25

30

(b)

Figure 4.6: (a) Example temporal-template of a complete gait cycle and
(b) it’s 8× 8 subsampled version.

data dimensionality the temporal-template is 8 × 8 subsampled, see Fig-
ure 4.6(b)

v4 : SUBSAMPLE8×8(A) = SUBSAMPLE8×8

(
k+n−1∑
i=k

I∗i

)
. (4.6)

Thus the resulting feature vector v4 will have a size of 256
8

768
8 = 32 ×

96 = 3072 dimensions.

4.5 Summary

In this chapter the extraction of individual features of the acquired gait
data was shown. The first section explains the advantages and disadvan-
tages of the two different methods to extract characteristic features. The
second section details why dynamic features are of particular interest for
a biometric system. The third section describes the extraction of the FFT
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Feature Type Captured Data Extracted Features
Force plate fp 6 kB 128 Reals
Histogram-mean v1 10 MB 200 Reals
Histogram-variance v2 ” 200 Reals
Histogram-FFT v3 ” 1000 Reals
Temporal-template v4 ” 3072 Reals
Total 10 MB 4600 Reals

Table 4.1: Size of the captured input data and the number of extracted
features thereof.

features from the force plates, whereas the fourth section illustrates the
extraction of the various features from the video sensor.

The force feature extraction method uses the Power Spectral Density
of the derivative ground reaction force. Investigations showed the best
classification of the subjects in the frequency range of 0− 20 Hz.

For the extraction of the video features three different characteristics of
the changing subject silhouette were used. The fourth temporal-template
characteristic combines the changing silhouette as well as its forward mo-
tion.

Table 4.1 summarises the amount of captured input data and the num-
ber of extracted features from this data. The original data size of more
than 10 MB was reduced to 4600 Reals with 8 Bytes each. Thus, the five
feature types span a hyper-space with 4600 dimensions.



Chapter 5

Transformation

5.1 Introduction

As seen in the previous chapter, several feature types are extracted from
the ground reaction force and video data of every gait sequence with a
total of 4, 600 dimensions. In principle it is possible to directly classify the
different subjects within this high dimensional feature-space. However,
large feature vectors are difficult to handle, computationally inefficient,
and impractical for storage. Besides, not all of the previously extracted
features have the same discriminatory power, some even contain random
values. Since not all of them are equally relevant for the recognition task
the less relevant ones can be safely neglected. Thus, it is possible to
reduce data dimensionality without losing or, even better, improving class
separability.

One well known general method to perform such a transformation is
the Principal Component Analysis (PCA) [Jolliffe86]. However, in this
chapter a novel variant of the Generalised Principal Component Analysis
(GPCA), developed in the framework of this thesis, is proposed to project
the feature vectors into a lower dimensional feature-space. Typically, the
first few dimensions (< 10) are sufficient for classification.
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5.2 Linear Transformation

Each one of the next three sections describes a different approach to trans-
form the high dimensional feature-space to a lower dimensional feature-
space without losing class separability.

Assume there are c training classes, i.e. persons, to be learned. Each
class represents various training sequences of a single person, where ~wi,j is
the j-th training sequence of class i each with p features. Ni is the number
of training sequences in class i. The total number of training sequences is
then given by

N = N1 +N2 + ...+Nc =
c∑
i=1

Ni. (5.1)

The whole training set is represented by

W = [~w1,1, ..., ~w1,N1 , ~w2,1, ..., ~w2,N2 , ~wc,1, ..., ~wc,Nc
]′ (5.2)

where ~wi,j is a vector of n features.

At first, all feature vectors of the training set ~wi,j are z-transformed1

with

~xi,j =
~wi,j − ~µ

~s
, ∀ i, j (5.3)

where the mean feature vector of the set is defined by

~µ =
1
N

c∑
i=1

Ni∑
j=1

~wi,j (5.4)

and the standard deviation respectively

~s =

√√√√ 1
N

c∑
i=1

Ni∑
j=1

(~wi,j − ~µ)2. (5.5)

1A z-transformed distribution has a mean of 0 and a standard deviation of 1
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Thus, the new z-transformed training set can be rewritten as

X = [~x1,1, ..., ~x1,N1 , ~x2,1, ..., ~x2,N2 , ~xc,1, ..., ~xc,Nc ]
′. (5.6)

5.2.1 Principal Component Analysis

The Principal Component Analysis2 (PCA) is based on statistical proper-
ties of the vector representations and is a means to extract a few charac-
teristic features from a high-dimensional example data set. This quality
makes it an interesting tool for this application. It is basically a system-
atic method to reduce data dimensionality of the input space by projecting
the data from a correlated high-dimensional space to an uncorrelated low-
dimensional space. PCA uses the eigenvalues and eigenvectors generated
by the correlation matrix to rotate the original data coordinates along the
direction of maximum variance. When ordering the eigenvalues and their
corresponding eigenvectors, or Principal Components (PC), in decreasing
order of magnitude, the first Principal Component (PC1) accounts for the
largest variance in the original data set3, the second orthogonal Principal
Component (PC2) for the largest remaining variance and so forth.

Over the years, several techniques from numerical analysis have been
suggested to efficiently compute Principal Components (see Chapter 3.5 in
[Jolliffe86]). Probably the most popular method is based on results from
matrix theory, namely the Singular Value Decomposition (SVD), which is
relevant to PCA in several aspects. Given the training set matrix X, of
dimension N × p, and rank r, it can be rewritten using SVD as

X = U ∗ S ∗ V ′ (5.7)

where U is an orthogonalN×r matrix, V is an orthogonal p×r matrix with
the eigenvectors4 [e1, ..., er], and S is a r × r diagonal matrix containing
the square roots of the eigenvalues of the correlation matrix X ′X, and
hence the variances of the Principal Components.

The r eigenvectors, i.e. Principal Components of matrix V , form an or-
thogonal basis that spans a new vector space, called feature-space. Thus,

2This transform also is commonly referred to as Eigenvector, Hotelling, or discrete
Karhunen-Loève transform.

3I.e. it points in the direction of the largest variance in the original data set.
4In PCA theory commonly referred to as Principal Component or PC respectively.
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each vector ~xi,j can be projected to a single point in this r-dimensional
feature-space. However, according to the theory of PCA for highly corre-
lated data, each training set vector can be approximated by taking only
the first few k, where k ≤ r, Principal Components e1, ..., ek. This partial
set of k PCs span a lower-dimensional eigenspace in which ~yi,j are the
projections of the original feature vectors ~xi,j given by

~yi,j = [e1, ..., ek]′~xi,j . (5.8)
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Figure 5.1: (a) Sample feature-space of the first three Principal Compo-
nents after the PCA transformation of a histogram-mean video feature set.
(b) Eigenvalues of the correlation matrix.

Figure 5.1(a) shows an example feature-space with the first three PCs
and in Figure 5.1(b) the eigenvalues of the corresponding correlation ma-
trix. Each class in the feature-space is represented with a different symbol.
Preferably the different training sequences for each class form a cluster.

However easy and efficient PCA might seem, one big disadvantage re-
mains. Namely, the “a priori” known class membership is not considered
when computing the transformation. Useful information is thus neglected
which subsequently results in lower class discrimination. The following
two sections describe two different enhancements that use the information
available at the training stage to gain better class separability.



5.2 Linear Transformation 55

5.2.2 Canonical Space Transformation

Huang et al. proposed in [Huang98c] to extend the PCA with a subsequent
Canonical Space Transformation that incorporates the class membership
information to increase class separability.

Given the PCA transformed vectors described in the preceding section,
thus ~yi,j is the j-th vector in class i with k features, then the mean vector
of the entire set can be calculated with

~µy =
1
N

c∑
i=1

Ni∑
j=1

~yi,j (5.9)

and the mean vector of class i is represented by

~µi =
1
Ni

Ni∑
j=1

~yi,j . (5.10)

Let the correlation matrix Cw denote the within-class scatter matrix
and the correlation matrix Cb denote the between-class scatter matrix,
thus

Cw =
1
N

c∑
i=1

Ni∑
j=1

(~yi,j − ~µi)(~yi,j − ~µi)T (5.11)

Cb =
1
N

c∑
i=1

Ni(~µi − ~µy)(~µi − ~µy)T (5.12)

where Cw represents the mean of within-class vectors distance and Cb
represents the mean of between-class vectors distance. The objective is
to minimise the within-class scattering Cw and maximise between-class
scattering Cb simultaneously, that is to maximise the criterion function
known as the generalised Fisher linear discriminant function [Devroye96]
and given by

J(W ) =
WTCbW

WTCwW
. (5.13)
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The ratio is maximised by the selection of features W if

∂J

∂W
= 0. (5.14)

According to [Fukunaga72], Equation 5.14 can be solved and repre-
sented as

Cbw
∗
i = λiCww

∗
i (5.15)

and thus we get

C−1
w Cbw

∗
i = λiw

∗
i (5.16)

where λi and w∗i are the eigenvalue and eigenvector of C−1
w Cb. The Canon-

ical Space Transformation can be realised by solving the generalised eigen-
value Equation 5.16. The eigenvectors w∗i form an orthogonal basis that
spans a new vector space, called canonical space. Thus, each vector ~yi,j
can be projected to a single point in this canonical space. As in PCA,
each training set vector can be approximated by taking only the first few
k eigenvectors w∗1 , ..., w

∗
k. This partial set spans a lower-dimensional space

in which ~zi,j are the projections of the original feature vectors ~yi,j given
by

~zi,j = [w∗1 , ..., w
∗
k]
′~yi,j . (5.17)

By merging the two linear transformations of Equation 5.8 and Equa-
tion 5.17 each image can be directly projected into one point in the low-
dimensional canonical space by

~zi,j = [w∗1 , ..., w
∗
k]
′[e1, ..., ek]′~xi,j . (5.18)

Figure 5.2(a) shows an example feature-space with the first three di-
mensions, i.e. k = 3, and Figure 5.2(b) depicts the eigenvalues of the
corresponding matrix C−1

w Cb.

The Principal Component Analysis is useful to reduce the dimension-
ality of each gait template by projecting it from a highly correlated high-
dimensional space to an uncorrelated low-dimensional space. However,
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Figure 5.2: (a) Sample feature-space of the first three (k = 3) Principal
Components after the CST transformation. (b) Eigenvalues of the corre-
lation matrix.

PCA is not sensitive to class structure in the gait data. Thus, PCA is
used to reduce the template dimension in the first stage. In the subsequent
second stage, CST then improves the class separability by maximising the
between-class variations whilst minimising the within-class variations. It
can be clearly seen in Figure 5.2(a) that all the gait sequences of each class
form a nice cluster. Thus, CST has drastically improved class separability.

The first data reduction with the PCA is essential to circumvent the
singularity problem that occurs in the CST, when the number of elements
p in the feature vectors is higher, than the number N of feature vectors in
the training set.

5.2.3 Generalised Principal Component Analysis

The basic technique of the Principal Component Analysis has been adapted
in many different ways. One such extension is the Generalised Principal
Component Analysis (GPCA). This section describes the novel GPCA vari-
ant developed in the framework of this thesis which is equal to a PCA but
with an additional weighting term ~ψ for every feature. In the special case
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where the weighting term equals ~ψ = ~1 the GPCA is equivalent to the
PCA.

Similar to the definition of the Principal Component Analysis in Equa-
tion 5.7, the base equation of the Generalised Principal Component Anal-
ysis can be written as

X ∗ diag(~ψ) = U ∗ S ∗ V ′ (5.19)
Xψ = U ∗ S ∗ V ′ (5.20)

where X is the matrix with the training set feature vectors and ~ψ the
weighting vector. The left hand side of Equation 5.19 is known; the equa-
tion can be solved with a Singular Value Decomposition (SVD), where V
contains the eigenvectors, i.e. the Principal Components, and the diagonal
matrix S contains the square roots of the eigenvalues of the correlation
matrix XψX

′
ψ, and hence the variances of the Principal Components.

But how to choose the weighting term ~ψ? On the one hand, it is
obvious that individuals can be best recognised with features that remain
virtually constant for every trial of the individual. On the other hand,
class separability increases, if the feature varies a lot within the group of
individuals. Translated into a more mathematical formulation: features
having a small variance within the class, i.e. person, but with a large
variance among the different classes should be amplified. In practice, the
“a priori” knowledge of the class membership can be used to calculate
the weighting vector ~ψ. As will be shown, including this knowledge is
computationally efficient and greatly improves classification performance.

Let ~µi be the mean feature vector of the i-th class defined by

~µi =
1
Ni

Ni∑
j=1

~xi,j (5.21)

and the mean µ of all ~µi is defined by

µ =
1
c

c∑
i=1

~µi (5.22)
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then a measure for the between-class scattering, strictly speaking the vari-
ance, can be written as

~vb =

(
1

c− 1

c∑
i=1

(~µi − µ)2
) 3

2

(5.23)

and the within-class scattering respectively

~vw =
c∑
i=1

Ni∑
j=1

(~xi,j − ~µi)2. (5.24)

Since all features with a small scattering within the class, but a large
scattering between the classes, should be amplified, the weighting vector
~ψ can be calculated as the ratio of Equation 5.23 and Equation 5.24

~ψ =
~vb
~vw

=

(
1
c−1

c∑
i=1

(~µi − µ)2
) 3

2

c∑
i=1

Ni∑
j=1

(~xi,j − ~µi)2
(5.25)

where the numerator is a measure for the scattering between the classes
and the denominator is a measure for the scattering within the classes, i.e.
persons

Xψ = X ∗ diag(~ψ) =


~µ′1
~µ′2
...
~µ′c

 ∗ diag(~ψ). (5.26)

To further reduce the computational load, only the weighted class
means ~µi are used in Equation 5.26 to calculate the transformation.

Similar to the theory of PCA, Equation 5.19 can be rewritten and
solved with the Singular Value Decomposition of Xψ

Xψ = U ∗ S ∗ V ′ (5.27)
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where V represents the new orthogonal basis, called the feature-space
transformation matrix. Figure 5.3(a) depicts the first three (and most
significant) dimensions of a sample feature-space of a set of histogram-
mean µ̄ feature vectors. Each cluster in the feature-space represents one
class, i.e. person.
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Figure 5.3: (a) Sample feature-space of the first three Principal Compo-
nents after the GPCA transformation of video feature set. (b) Eigenvalues
of the correlation matrix.

5.3 How Many Principal Components?

The major goal for using the Principal Component Analysis was to re-
place the p-dimensional feature-space with a much smaller m-dimensional
feature-space, which nevertheless discards only little information. For most
empirical data, a large part of the total variance can be sufficiently approx-
imated with the first few Principal Components only. But how many Prin-
cipal Components are needed? In literature, several “rules of thumb” have
been proposed, see Chapter 6 in [Jolliffe86] or Section 15.4 in [Bortz93] for
good compilations of the various methods.
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Kaiser-Guttman (KG): The idea behind the Kaiser-Guttman rule,
see Chapter 15.4 in [Bortz93], is that if all p variables of the feature-space
are independent, then the PCs are the same as the original variables and
all have unit variances5. Thus any PC with a variance of less than one
contains less information than the original variables and is therefore not
worth retaining.

Factor k 1 2 3 4 5 6 7 8 9 10
Eigenvalue 87.2 29.2 13.3 8.2 6.5 6 3.7 3 2.3 0.0

Table 5.1: Eigenvalues, i.e. variances, of the Principal Components de-
picted in Figure 5.3.

In other words the KG-rule retains only those PCs whose variances,
i.e. eigenvalues, are ≥ 1. For the example in Table 5.1 it would thus retain
9 Principal Components.

For large variable spaces p, the KG-rule usually retains too many PCs.
It is nevertheless a useful and simple rule to derive an upper limit of PCs
to be retained.

Cumulative Variance: Probably the most obvious criterion for choos-
ing m is to select a cumulative variance threshold t, say t = 90%, of the
total variance that the first m PCs should account for. The required num-
ber of PCs is then the smallest value of m for which the chosen percentage
is exceeded.

From PCA theory, follows that the variance of the i-th PC, i.e. eigen-
vector, is equal to its corresponding eigenvalue λi. The total variance Tp
can thus be calculated with

Tp =
p∑
i=1

λi. (5.28)

5Because they were initially z-transformed, see Equation 5.3
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Since PCs are successively chosen to have the largest possible variance,
the obvious definition of the cumulative variance accounted for by the first
k PCs is therefore

tk =
1
Tp

k∑
i=1

λi (5.29)

and m is the smallest value k for which tk > t.
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Figure 5.4: Cumulative variance graph.

Figure 5.4 depicts the cumulative variance of the example in Figure 5.3.
The dotted line represents a threshold t of 90%. Thus, only the first k = 5
PCs are needed to account for more than 90% of the total variance. This
in contrast to the recommended nine Principal Components of the KG-rule
described in the previous paragraph.

Scree Test: The Scree Test which was described and named by Cattell
(1966) involves looking at the plot of the eigenvalues λi against the factor
number k, see Figure 5.3(b) for an example. The Scree Test involves a
certain degree of subjectivity, because there is no formal numerical cut-off
based on the λi.

The idea behind the Scree Test, is that important factors have a large
eigenvalue and as such also explain a large part of the total variance. If
the eigenvalues are plotted, they form a curve heading towards almost
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0% variance explained by the last dimension. Thus, the point at which
the curve levels out, sometimes referred to as the “elbow”, indicates the
number of useful PCs which are present in the data.

For the example, depicted in 5.3(b), the Scree Test suggests to retain
the first six Principal Components.

5.4 Comparison

Now that three different methods have been introduced to reduce the data
dimensionality of the feature vectors, the remaining problem is the quan-
tification of their performance. It is unquestionably difficult to get an
objective quality estimation by merely looking at the 3D cluster plots, e.g.
Figure 5.1.

The following section proposes a novel method to quantify the cluster
quality based on the Mahalanobis Norm and subsequently compares the
three different methods. Finally, the three transformations are compared
according to their computational expenses.

5.4.1 Cluster Quality Assessment

As has already been mentioned, the quality assessment for the three trans-
formations (PCA, CST, and GPCA) is not trivial. A similar problem oc-
curs in cluster analysis that attempts to assess the relationship among
patterns of the data set by organising the patterns into groups or clus-
ters such that the patterns within a cluster are more similar to each other
than are patterns belonging to different clusters. However, the engineering
literature has paid very little attention to cluster quality issues, limiting
the effort to present new clustering algorithms or dimensionality reducing
methods. This section suggests a simple yet effective method to quantify
the cluster quality.
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Figure 5.5: Sample feature-space with three well separated clusters, i.e.
classes (Y1, Y2, and Y3).

Idea: It is obvious from Figure 5.5 that classification works best if (1)
the clusters are well separated, and (2) the clusters are compact in size.
The quality measure Q should therefore quantify the distance between the
clusters with respect to their spreading. Additionally the quality measure
should be scale invariant.

The method proposes the average distance from all clusters to the other
data vectors as the quality measure Q. But what distance measure suits
the aforementioned prerequisites? Obviously the Euclidean norm does not,
since it neglects cluster spreading and depends on scale. Conversely, the
Mahalanobis norm6 removes all those limitations of the Euclidean metric
and easily matches the prerequisites for a suitable distance measure.

Rather than calculating the average distance, it is also possible to
graphically compare different methods by sorting all distances in ascend-
ing order and plotting them in a 2-dimensional graph, see Figure 5.6 for
an example.

Definition: Assume there are c training classes Y1, ..., Yc. Each class Yi
represents various training sequences of a single person, where ~yi,j is the
j-th vector of class i in the k-dimensional feature-space. Ni is the number

6See Appendix B for a detailed description of the Mahalanobis norm
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Method Quality Q
PCA 1.7 ∗ 103

CST 3.3 ∗ 103

GPCA 5.0 ∗ 103

Table 5.2: Mean mahalanobis distance of the three transformations pre-
sented in this section.

of training sequences in class i. The total number of training sequences is
thus given by

N =
c∑
i=1

Ni (5.30)

and the c cluster centres are given by

Ȳi =
1
Ni

Ni∑
j=1

~yi,j . (5.31)

The distance dm,yi,j
of the cluster centre Ȳm of class m to the training

sequence ~yi,j can thus be written as

dm,yi,j
= ||Ȳm, ~yi,j || ∀m,∀~yi 6=m,j . (5.32)

Note that ||, || is the Mahalanobis norm. The quality measure Q can
therefore be calculated with

Q =
1
N

∑
dm,yi,j

. (5.33)

Table 5.2 summarises the cluster quality Q for the three transforma-
tions presented in this thesis. The values were calculated with the data
acquired during the course of this work. According to the table, GPCA
shows the best performance. The superiority of GPCA over PCA and CST
can also be seen quantitatively in Figure 5.6.

The main drawback with the implementation of this cluster quality
measure is computational, since calculating Q becomes computationally
very expensive as N increases.
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Figure 5.6: Plot of all sorted mahalanobis distances for the three transfor-
mations presented in this section. The GPCA shows the best performance,
as it has larger mahalanobis distances than the other two methods. Addi-
tionally, it has the largest minimal distance.

5.4.2 Computational Aspects

At the very heart of all three transformations (PCA,CST, and GPCA) lies
a Singular Value Decomposition. If matrix A has a size of m×n, then the
computational complexity of the SVD is given by

SVD(A) : O(m× n2). (5.34)

Although all methods use the SVD, the matrix dimensions vary among
them. Table 5.3 summarises the computational complexity of the various
methods including a real world example. As can be seen in the last col-
umn, the GPCA method uses substantially less computational resources
compared to the other two methods. The difference is roughly a factor of
ν = N/c.

The number of MFlops given in the Sample Figure column of Table 5.3,
were used for the calculation of the corresponding sample images, i.e. Fig-
ure 5.1(a) for PCA, Figure 5.2(a) for CST, and Figure 5.3(a) for GPCA.



Method Computational Complexity Sample Figure
PCA O(N × p2) 390 MFlops
CST O(N × p2) + O(N × k2) 391 MFlops
GPCA O(c× p2) 80 MFlops

Table 5.3: Comparison of the computational complexity.





Chapter 6

Fusion

This chapter details the process of combining, i.e. fusing the different
modalities and the subsequent classification of the result to come up with
a decision.

6.1 Introduction

Fusing different biometric modalities results in a system that outperforms
the different individual modalities. This is particularly true if the various
modalities are not correlated.

In Chapter 4, five different methods to extract characteristic features,
i.e. biometric modalities, from the acquired gait data were presented.
Chapter 5 then detailed on how to reduce the data dimensionality of the
extracted feature vectors to a manageable size. However, the problem still
remains to fuse and classify the 10-dimensional feature-spaces of the dif-
ferent modalities to come up with a decision whether to accept or reject
the user.

Different strategies such as multi-layer perceptron and decision trees
have been proposed for analysing information obtained from multiple
sources. The simplest technique is to form an extended feature vector,
containing information from both the force and video sensors, and treat
this vector as the vector output of a single source. However, this approach

69
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is computationally expensive and it is successful only when all the modal-
ities have comparable statistical characteristics and similar discriminatory
powers.

A different approach is depicted in Figure 6.1 that shows the typical
architecture of a parallel multi-modal sensor fusion system, where a user
claims an identity by providing a new template of his biometric trait.
Each of the different N modalities has its own optimised local expert
that compares the new template to the stored template associated to the
claimed identity. All of them produce a match-score scorei that expresses
the opinion of the local expert based on the available information. In the
final stage, the global expert merges the local expert’s different opinions,
i.e. match-scores, and makes a final decision whether to accept or reject
that particular user.

Local
Expert 1

Local
Expert 2

Local
Expert N

Fusion

User
Template
Database

New Template

accept
reject

score1

score2

scoreN

Figure 6.1: Principle of a parallel multi-modal fusion scheme.

The parallel multi-modal sensor fusion approach as described in
[Ben-Yacoub99] and as depicted in Figure 6.1 has been chosen for this
work. Section 6.2 details the implementation of the local experts with the
Bayes Risk Criterion and Section 6.3 describes the technology behind the
global expert as used throughout this thesis.

6.2 Local Expert

To model the local experts, the Bayes Risk Criterion, see [Melsa78], has
been used as subsequently described.



6.2 Local Expert 71

To explain the principle of the Bayes Risk Criterion, this section starts
with the simplest class of decision problems: namely a binary decision
with a single observation. The term binary decision implies that there
are only two possible messages m1 and m2 in the message space and that
the decision space has also only two possible elements d1 and d2; thus if
message mi is present, then di is the correct decision. The problem is
to select a decision rule such that it maps the observation space Z into
the decision space in some optimal manner. Since it is a binary decision
problem, the observation space Z can be divided into two disjoint decision
regions Z1 and Z2 such that if the observation z ∈ Z1 decision d1 is taken
and if z ∈ Z2 decision d2 is chosen.

p(z m )1j
p(z m )2j

z

Z2Z1

Figure 6.2: Graphical representation of a binary decision rule.

This requires the knowledge of the two conditional probability density
functions p(z|m1) and p(z|m2) of the observations given each of the two
possible messages.

If the message is m1, then the probability of receiving an observation
in the range (z, z+dz) for sufficiently small dz is p(z|m1)dz. On the other
hand, if the message is m2, then the probability of receiving an observation
in the range (z, z + dz) is p(z|m2)dz.

Hence to select the more likely cause of an observation in the range
(z, z + dz), one could decide d1 if p(z|m1)dz > p(z|m2)dz or d2 if
p(z|m1)dz < p(z|m2)dz respectively. Cancelling the common dz yields
the following simple decision rule

d(z) =

{
d1 if p(z|m1) > p(z|m2)

d2 if p(z|m1) < p(z|m2).
(6.1)

Figure 6.2 illustrates this simple decision rule commonly known as the
Maximum Likelihood Decision Criterion.
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There are two types of possible errors in a binary decision problem. On
one hand, the type-one errors where d2 is decided when m1 is true. On the
other hand, the type-two errors where d1 is decided when m2 is true. The
type-one and type-two errors are also known from radar technology as the
false alarm and miss probability. Translated to the common terms used
in the field of biometrics a type-one error represents a person incorrectly
rejected, i.e. False Rejection, and the type-two error a person incorrectly
accepted by the system, thus False Acceptance.

In addition to the two errors, there are also two correct decisions in a
binary decision problem. One might decide d1 when m1 is present and d2

when m2 is present. In terms of the conditional probability densities these
four cases can be expressed as

P{d1|m1} = P{z ∈ Z1|m1} =
∫
Z1

p(z|m1)dz (correct) (6.2)

P{d1|m2} = P{z ∈ Z1|m2} =
∫
Z1

p(z|m2)dz (type-two) (6.3)

P{d2|m1} = P{z ∈ Z2|m1} =
∫
Z2

p(z|m1)dz (type-one) (6.4)

P{d2|m2} = P{z ∈ Z2|m2} =
∫
Z2

p(z|m2)dz. (correct) (6.5)

The basic idea behind the Bayes Risk Criterion method is to assign a
cost to each one of those correct, as well as incorrect, decisions. The Bayes
Risk Criterion then tries to minimise the average total cost. Let Cij be
the cost of making decision di when mj is true, then the binary decision
problem has four possible costs:

C11 = Cost of deciding d1 when m1 is true
C12 = Cost of deciding d1 when m2 is true
C21 = Cost of deciding d2 when m1 is true
C22 = Cost of deciding d2 when m2 is true.

C11 and C22 are costs associated with correct decisions whilst C12 and
C21 are costs assigned to incorrect decisions. Although it may seem strange
at first to assign a cost to a correct decision, there is nothing fundamentally
inconsistent in doing so.
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The expected average cost B is thus given by

B = C11P{d1,m1}+C12P{d1,m2}+C21P{d2,m1}+C22P{d2,m2}. (6.6)

Since

P{dj ,mk} = P{dj |mk}P{mk} (6.7)

Equation 6.6 can be rewritten and the average cost becomes

B =(C11P{d1|m1}+ C21P{d2|m1})P{m1}+
(C12P{d1|m2}+ C22P{d2|m2})P{m2}.

(6.8)

Since for every m1 or m2 a decision has to be taken, the following
equation hold

P{d1|m1}+ P{d2|m1} = 1
P{d1|m2}+ P{d2|m2} = 1

or

P{d1|m1} = 1− P{d2|m1}
P{d1|m2} = 1− P{d2|m2}.

Thus the average cost can be rewritten as

B =C11P{m1}+ (C21 − C11)P{d2|m1}P{m1}+
C12P{m2} − (C12 − C22)P{d2|m2}P{m2}

B =C11P{m1}+ C12P{m2}+

(C21 − C11)P{m1}
∫
z2

p(z|m1)dz − (C12 − C22)P{m2}
∫
z2

p(z|m2)dz.

(6.9)
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Combining the two integrals yields

B =C11P{m1}+ C12P{m2}+∫
z2

[(C21 − C11)P{m1}p(z|m1)− (C12 − C22)P{m2}p(z|m2)]dz.

(6.10)

The Bayes decision criterion requires the selection of region Z2 so that
the average cost B, as given in Equation 6.10 is minimal. Since the first
two terms of the right side of the equation are independent of Z2 they are
not relevant for the minimisation and can thus be neglected. The integral
becomes minimal, if all the values z for which the integrand is negative,
are assigned to Z2. Therefore

(C21 − C11)P{m1}p(z|m1)− (C12 − C22)P{m2}p(z|m2) < 0 (6.11)

and thus

(C12 − C22)P{m2}p(z|m2)
d2
≷
d1

(C21 − C11)P{m1}p(z|m1). (6.12)

Assuming that the cost for a correct decision is less than for an incorrect
decision, the following inequality holds

(C12 − C22) > 0 (6.13)

and the Bayes decision rule can be rewritten in the form of a likelihood-
ratio test

p(z|m2)
p(z|m1)

d2
≷
d1

(C21 − C11)P{m1}
(C12 − C22)P{m2}

. (6.14)
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6.3 Combination of Local Experts

Since, the extracted force and video features generated by the different
sensors are statistically independent, Equation 6.14 can be extended to

n∏
i=1

pi(zi|m2)
pi(zi|m1)

d2
≷
d1

(C21 − C11)P{m1}
(C12 − C22)P{m2}

. (6.15)

With the standard “0-1” cost function, described in [Melsa78], that
assigns 0 costs to a correct decision and 1 to an incorrect decision

C11 = C22 = 0
C12 = C21 = 1

and with the assumption that both events m1,m2 are equally likely
P{m1} = P{m2} = 1/2, Equation 6.15 can be further simplified to

n∏
i=1

pi(zi|m2)
pi(zi|m1)

d2
≷
d1

λ (6.16)

where λ = 1. Depending on the application’s security requirements, λ
can be tuned to meet a specific False Reject Rate, or False Accept Rate
respectively.

To model the likelihood functions pi(zi|m) a normal distribution was
assumed [Berger85] and its parameters µi and σi were estimated from the
training set.
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6.4 Estimation of the Method’s Potential

Although improving biometric technologies can advance performance, in-
herent limitations remain to every biometric that cannot be defeated, ex-
cept by combining multiple independent modalities. These limitations are
unique to each kind of biometric technology and are generally referred
to as the Biometric Complexity, i.e. the number of degrees-of-freedom of
variation in it’s metric across the human population. The Biometric Com-
plexity is crucial, as it limits the number of users that can be differentiated.
It can be informally approximated with the question:

How many distinguishable gaits are there?

However easy this question sounds, the biometric community, for ex-
ample, was according to [Phillips00] not yet able to establish an upper
limit for most biometric technologies. Nonetheless, Daugman et al. pro-
poses in [Daugman93] a method to estimate the Biometric Complexity for
his iris recognition system. His estimate of the complexity in a sample of
the human population reveals a variation corresponding to an entropy of
roughly 173 bits or n = 2173 ≈ 1052 distinguishable iris codes, respectively.

Although Murray suspects in [Murray67] that gait is a unique personal
characteristic, if all gait movements are considered, it is unclear whether
the gait movements can be measured with remote sensors and occluding
clothes with a precision high enough to differentiate all users. The follow-
ing paragraph tries to estimate the Biometric Complexity of the proposed
gait features.

How many distinguishable gaits are there? An upper limit of the
Biometric Complexity, for a given biometric system, can be estimated from
the acquired gait data. This is done by first estimating the number of dis-
tinguishable gaits for each feature-space dimension d = 1..10 individually
and then multiplying them.

The number of distinguishable gaits per feature-space dimension can be
estimated using the ratio of the between-class spreading and the average
within-class spreading, see Figure 6.3. The spreading itself is estimated
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Figure 6.3: The number of distinguishable gaits n(d) is estimated for each
feature-space dimension with the ratio of the standard deviation of all per-
sons s(d)b and the average standard deviation within the persons s(d)w .

with the standard deviation. The average “within-class spreading” can
thus be calculated with

s(d)w =
1
c

c∑
i=1

√√√√√ Ni∑
j=1

(y(d)
i,j − ȳ

(d)
i )2

Ni − 1
(6.17)

where ȳ(d)
i is the average feature for person i in the d-th dimension. The

“between-class spreading” is defined by

s
(d)
b =

√√√√√ N∑
∀i,j

(y(d)
i,j − ȳ(d))2

N − 1
(6.18)

where ȳ(d) is the average feature for all persons in the d-th dimension.
Consequently, the number of distinguishable gaits for the d-th feature-
space dimension can be calculated by

n(d) =
s
(d)
b

s
(d)
w

(6.19)
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Feature Type Number of Gaits
n log2(n)

Force plate fp 7.2 ∗ 103 13 bit
Hist.-mean v1 149 ∗ 106 27 bit
Hist.-variance v2 36 ∗ 103 15 bit
Hist.-FFT v3 46 ∗ 103 15 bit
Temp.-templ. v4 64 ∗ 103 16 bit
Fusion 1 ∗ 1026 < 86 bit

Table 6.1: Estimated number of gaits in the 10-dimensional feature-space
for the different feature types.

and the total number of distinguishable gaits for all 10 dimensions is finally
given by

n =
10∏
d=1

n(d). (6.20)

Table 6.1 summarises the number of distinguishable gaits n for all five
feature types investigated during the course of this thesis. Additionally, the
entropy of the biometric complexity is also given in number of significant
bits, that each feature type explains. The figures given in the table only
represent the number of distinguishable gaits inherent with the proposed
method and sample set. It is very well possible that, with other sensors or
feature extraction methods, better results can be achieved.

With an entropy of 27 bit, the histogram-mean feature explains the
largest entropy of all five modalities, whereas the remaining four modalities
explain an entropy of 13− 16 bit each. For the fused system an entropy
between 27 bit and 86 bit can be expected, depending on the statistical
independence of the five modalities.

6.5 Summary

In this chapter the principle of fusing several independent modalities was
explained. In a first step the modeling of the local experts with the Bayes
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Feature Type EER λ0 λ1 A
Hist.-mean 0.9% 10−43.8 10−4.4 1.05
Fusion 1.6% 10−187.2 10−14.9 5.01

Table 6.2: Performance comparison of the best modality (histogram-mean)
with the fusion of all five modalities.

Risk Criterion was illustrated. Then the fusion of the different local ex-
perts was mathematically described. Finally, an estimation of the Biomet-
ric Complexity of all five modalities as well as the fused modalities was
derived.

Multimodal identity verification is a promising approach. It combines
the advantages of the different modalities and has the potential to compen-
sate for weaknesses of some modalities. The fused system thus performs
better than any of the single modalities; in particular the robustness of the
biometric system can be drastically improved. To visualise the usefulness
of modality fusion, Table 6.2 compares the performance of the single best
modality (histogram-mean) with the performance of the fused modalities.
A detailed discussion of all results can be found in Chapter 7 starting on
Page 81.

Although sensor fusion slightly degrades the achieved Equal Error Rate
from 0.9% to 1.6%, sensor fusion improves the system robustness1 A by a
factor of ≈ 5. This is important, since it is often difficult to determine an
adequate security level λ in practical applications. For example, systems
with a week robustness A show substantial FAR and FRR deviations for
only small changes of the theoretically optimal λ. Furthermore, the exact
position of the optimal λ not only depends on security requirements but
also from the user group itself. Conversely, biometric methods with a
large A are more robust and as such less prone to minute changes in λ and
variations in the user group.

1Refer to Figure 2.3 on Page 24 for further details.





Chapter 7

Experimental Results

The following chapter first describes the results of a preliminary proof of
concept study. Subsequently it compares and discusses the performance
and robustness of the different modalities as well as their fusion. All results
are based on data acquired during the course of this work.

7.1 Introduction

The performance estimation of biometric systems is not a simple task, be-
cause the de facto standard performance measures (FAR, FRR, and EER)
are in general not enough to fully quantify the performance and robustness
of biometric systems. Additionally, they have various caveats. Firstly, a
prospective system operator must know precisely how the performance fig-
ures were calculated. For example: How many sample gaits were taken?
What was the size and profile of the user population and so forth. Sec-
ondly, none of the figures should be quoted out of context. A False Accept
Rate value on its own, is of limited use to understand the performance of
a biometric system. Ideally, it should be quoted together with FRR, EER,
and the security level λ.

It is thus very important to know the exact acquisition conditions of
the biometric data, as well as the calculation procedures in order to verify
the performance conditions or compare different biometric systems.

81
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Two completely different sets of gait data were acquired. On the one
hand, ground reaction force (GRF) data was collected at the gait labo-
ratory of the Rehabilitation Clinic in Bellikon1 for the proof of principle
study, see [Bachmann99]. On the other hand, GRF and video data was
collected in a subsequent step, under more realistic conditions, with the
system setup described in Chapter 3.

7.2 Proof of Principle

7.2.1 Data Set

The gait data for the proof of principle study was acquired in a professional
gait laboratory in the Rehabilitation Clinic in Bellikon. The data set
consists of GRF data of twenty different persons with non-pathological
gait. The subjects’ gender and age is unknown. For each one of the twenty
subjects, eight sequences of a complete gait cycle, i.e. two steps, four
starting with the left and four starting with the right foot, were recorded.
Subjects were walking bare foot and had to place one foot on each of
the two Kistler force plates. The distance between the two force plates
was adjusted according the subjects step length. The walking rhythm
was dictated by a metronome. The two force plates were integrated flush
with the surrounding floor but although they were covered with a piece of
carpet, they were clearly visible to the subjects. All three components of
the GRF, namely the anterior/posterior, vertical, and the lateral/medial
force were recorded with a sample frequency of fs = 300 Hz.

7.2.2 Performance Analysis

As has been explained in Section “Principles of Human Locomotion”2,
the anterior/posterior Fx and the vertical force component Fy are large
in value, whilst the remaining lateral/medial force component Fz is the
smallest in value and serves for balance purpose mainly. It is also known
that the anterior/posterior force, for example, is the accelerating and de-
celerating force in walking direction and as such depends on the muscle
and bone structure of the person. But it is not clear whether those three

1Dr. Peter Erhart, Rehaklinik Bellikon, Postfach, 5454 Bellikon, Switzerland
2Section 2.7 on Page 27
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Figure 7.1: GRF feature vectors of the anterior/posterior Fx component
for three persons with two sample vectors each.

ground reaction forces can be measured accurately enough to be used as
a characteristic personal feature.

A first and promising indication showing that gait can indeed be used
as a biometric, is depicted in Figure 7.1. It shows feature vectors3 of
the anterior/posterior force component of three different persons with two
sample gaits each. It is clearly visible, that feature vectors of the same per-
son (subplot a+d, b+e, c+f) show great similarities, whereas the feature
vectors of the three persons differ substantially.

Figure 7.2(a) depicts the first three Principal Components of the
feature-space after reducing the feature vector dimensionality with the
GPCA. This plot further substantiates the applicability of gait as a bio-
metric trait as it shows distinctly separated clusters for all seven persons
in the data set. The corresponding DET curves plotted in Figure 7.2(b)

3The Power Spectral Density of the time series.
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Figure 7.2: (a) Fy feature-space of the first three Principal Components
after the GPCA transformation of a Bellikon gait laboratory feature set.
(b) Comparison of the DET curves for the different GRF components mea-
sured with Kistler force plates.

discloses that the vertical force component Fy has the strongest discrimi-
natory power4 with an EER of 5.3 %. The lateral/medial component Fz
has a slightly inferior discriminatory power and an EER of 6.6 %. Finally,
the anterior/posterior force component Fx has an EER of 10.5 %.

Transferring these results to data acquired with the system setup de-
scribed in Chapter 3 proved difficult. The reason being, that some subjects
had compact clusters, see Figure 7.3, whereas other subjects’ clusters were
spread over a large part of the feature-space.

Closer investigation revealed, that only tall subjects with long stride
lengths had widely spread clusters. The reason for the poor clustering
lies in the fact that all subjects were forced to place one foot on each
of the three force plates, see Figure 7.4(a). This restriction required tall
people to shorten their stride length significantly and therefore prevented
them from walking in their natural and accustomed way. This resulted in

4The discriminatory power is stronger for curves closer to the lower left corner (see
Chapter 2).
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Figure 7.3: 3D force plate feature-space. Data was recorded in a sampling,
where subjects had to place one foot on each of the three force plates. The
first subject “C” has a step length that is significantly longer than the
force plate distance, whereas the second subject’s “·” step length matches
the force plate distance.

inconsistent and volatile force feature vectors. After exempting subjects
from this restriction, see Figure 7.4(b), and covering the three force plates
with an opaque and thin foam carpet the extracted features improved
significantly.

7.3 Five Modalities System

Based on the know-how of the preliminary concept study, the system was
enhanced with an additional CCD video sensor. On the other hand the
GRF measurement was simplified to measure only the vertical compo-
nents Fy. This simplification is reasonable, as the concept study empiri-
cally showed, that the vertical component has the strongest discriminatory
power of all three force components. See Chapter 3 for a detailed descrip-
tion of the sensor setup.

As described in Chapter 4, five different modalities, namely the
force plate, histogram-mean, histogram-variance, histogram-FFT, and
temporal-template feature, are extracted from the two sensors. The sta-
tistical analysis of those five modalities is important to get an idea of their
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(a)

(b)

Figure 7.4: (a) Subjects have to place exactly one foot on each plate.
(b) Subjects are free to walk over the force plate.

discriminatory power on the one hand and of their complementarity on
the other hand.

7.3.1 Data Set

The gait data was collected with the sensor setup described in Chapter 3.
To ensure an uncluttered video background, subjects walked in front of a
white cardboard wall. To further conceal the force plates, the floor was
covered with a thin opaque foam carpet. Subjects were therefore unaware
of the exact force plate location.

Sample gait data was collected from sixteen subjects of different ages5

and gender6. Subjects were waiting at the starting line, approximately
1 m in front of the first force plate, for a beep indicating the beginning of
the measurement. A basic set of ten gait sequences was acquired in short
succession, for every subject. In particular, five gait sequences starting
with the right and five starting with the left foot were collected. For some
subjects additional gait sequences with different shoes, backpacks, and

5The age range was between 22 and 63 years
6Two female and fourteen male subjects
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bags were acquired. For some subjects supplementary gait sequences were
recorded a week later.

All users showed great acceptance of the system, noting the ease of use
and needed only a few instructions. Some subjects felt awkward having
to deliberately walk in a natural way. However, this effect could not be
correlated with a bad recognition quality of those users.

Six walking sequences of each person were used for training. The re-
maining four sequences were then taken for testing.

7.3.2 Performance Analysis

In the performance analysis, the eigenvalues of the GPCA transformation,
the minimum number of required Principal Components, the DET curve
and the robustness of each individual modality, as well as the fused system
are investigated. To determine the reported results, the GPCA transfor-
mation was used as the only method to reduce data dimensionality.

Number of Principal Components

As described in Section 5.3, the eigenvalues, i.e. variances of the GPCA
are a good indication of the dimensionality of the input data. They can
be used to determine the number of useful Principal Components in the
data, that should be retained.

Since the Kaiser-Guttman rule, as described in the previously men-
tioned section, requires all variables of the feature-space to have unit vari-
ance, it is not applicable together with the GPCA transformation. The
reason being, that the GPCA scales the variance of all variables accord-
ing to their importance to recognition. On the other side, the Cumulative
Variance Criterion and the Scree Test both provide useful results on how
many PCs to retain.

In Figure 7.5(a), the eigenvalues of the orthogonal eigenvectors of the
force plate feature are plotted in decreasing order of magnitude. Fig-
ure 7.5(b) shows the corresponding cumulative variance. The decrease
in magnitude for successive eigenvalues suggests, that a large part of the
original data’s variance can be approximated by the first few principal
components only. On the one hand, the subjective Scree Test, described
on Page 62, suggests the first 8 PCs as a reasonably good approximation of
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Figure 7.5: (a) Percentage of the total variance accounted by each eigen-
value for the force plate features (b) Cumulative variance (t = 90%).

the original data set. On the other hand, the Cumulative Variance Crite-
rion, described on Page 61, suggests with a threshold of t = 90% to retain
the first 9 PCs.

Figure 7.6(a) and Figure 7.6(b) depict the eigenvalues of the histogram-
mean feature and their cumulative variance. The first eigenvalue is very
dominant and accounts for slightly more than 50% of the total variance.
Since the eigenvalues decrease significantly faster than for the previous
force plate features, less PCs are needed to approximate the original data.
Therefore, both the Cumulative Variance Criterion as well as the Scree
Test propose that 7 PCs are enough to represent a large part of the variance
of the original data set.

The histogram-variance eigenvalues are depicted in Figure 7.7(a) and
the cumulative variance in Figure 7.7(b). The Cumulative Variance Crite-
rion suggests to retain the first 11 PCs, whilst the Scree Test would retain
only the first 5 Principal Components accounting for only 67% of the total
variance.

Figure 7.8(a) shows the histogram-FFT eigenvalues and the corre-
sponding cumulative variance can be found in Figure 7.8(b). There is no
dominant eigenvalue present, but the first three PCs represent more than
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(a) Hist.-mean feature
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(b) Hist.-mean feature

Figure 7.6: (a) Percentage of the total variance accounted by each eigen-
value for histogram-mean features v1 (b) Cumulative variance (t = 90%).

10% of the total variance each. The “elbow” of the Scree Test is around
the 5th Principal Component, whereas the cumulative variance threshold is
only reached after the 12th PC. The missing dominant eigenvalue indicates
a weak discriminatory power of the histogram-FFT feature.

The graph of the temporal-template feature eigenvalues depicted in
Figure 7.9(a) shows a very dominant first eigenvalue. This eigenvalue alone
represents slightly less than 40% of the total variance. The eigenvalues then
immediately drop to 10% and slowly level off. Due to the very dominant
first eigenvalue, the Scree Test suggests retaining the first 6 PCs, whereas
the cumulative variance threshold t = 90% is reached only after the 9th

Principal Component.

Table 7.1 summarises the number of useful Principal Components to
retain, determined with the Cumulative Variance Criterion and the Scree
Test. According to these results, it seems reasonable to retain the first 10
Principal Components for each modality.
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(a) Hist.-variance feature
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(b) Hist.-variance feature

Figure 7.7: (a) Percentage of the total variance accounted by each eigen-
value for histogram-variance features v2 (b) Cumulative variance (t =
90%).

Discriminatory Power and Robustness

To establish the discriminatory power of the different biometric modalities,
two different performance measures were estimated from the sample data
set: Firstly the Detection Error Trade-off (DET) curves and secondly the
Equal Error Rate (EER).

Figure 7.10 depicts the DET curve of all five modalities. As has been
explained in Section 2.6, the discriminatory power of a modality is higher
the closer it is to the lower left corner. Thus, the discriminatory power of
the histogram-mean v1 feature is the highest, followed by the histogram-
variance feature v2, the histogram-FFT feature v3, the force plate feature
fp, and finally the temporal-template feature v4. This sequence is also
reflected in Equal Error Rate achieved by each modality, see Table 7.2.

Compared to the DET curve, Figure 7.2(b), acquired in the gait labo-
ratory, the force plate feature showed only a slightly inferior discriminatory
power under more realistic conditions. The cheap force sensors thus ade-
quately represent the dynamic behaviour of gait.
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(a) Hist.-FFT feature
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(b) Hist.-FFT feature

Figure 7.8: (a) Percentage of the total variance accounted by each eigen-
value for histogram-FFT features v3 (b) Cumulative variance (t = 90%).

Figure 7.11 shows the DET curve for the fused modalities. Compared
to the best single modality so far (histogram-mean), the fused system
possesses a somewhat better False Accept Rate for low False Reject Rates.
Conversely it has a slightly higher False Reject Rate for low False Accept
Rates and the Equal Error Rate is also higher. However, with sensor fusion
the necessary system robustness can be achieved as will be shown below.

As has been shown in Section 2.6 all biometric recognition methods
share the dilemma of the right choice for the security level λ. On the one

Feature Type Cum. Var. Crit. Scree Test
Force plate fp 9 8
Histogram-mean v1 7 7
Histogram-variance v2 11 5
Histogram-FFT v3 12 5
Temporal-template v4 9 6

Table 7.1: Recommended number of Principal Components to retain, de-
termined with the “Cumulative Variance Criterion” (threshold t = 90%)
and the “Scree Test”.
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(a) Temp.-templ. feature
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(b) Temp.-templ. feature

Figure 7.9: (a) Percentage of the total variance accounted by each eigen-
value for temporal-template features v4 (b) Cumulative variance (t = 90%).

hand, authorised persons should not be rejected, i.e. a low False Reject
Rate is desired. On the other hand, impostors should be prevented from
getting access and thus, the False Accept Rate should also be low. It
mainly depends on the particular application, whether the minimisation
of the FAR or FRR has priority. For high security applications, it is
important to prevent any unauthorised access, i.e. the security level λ is
shifted to a lower FAR value. Conversely, in customer service applications
it is desirable to tune the security level λ to lower FRR values. The
EER value is thus only one parameter that provides information about

Feature Type EER
Force plate fp 9.4%
Hist.-mean v1 0.9%
Hist.-variance v2 4.3%
Hist.-FFT v3 7.8%
Temp.-templ. v4 10.9%
Fusion fp,v1,v2,v3,v4 1.6%

Table 7.2: “Equal Error Rate” for the different modalities as well as of the
fused system.
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Figure 7.10: Detection Error Trade-off curves for the force plate fp,
histogram-mean v1, histogram-variance v2, histogram-FFT v3, and the
temporal-template v4 gait features. The circles mark the EER points.

the quality of a biometric system. However, this information alone is not
sufficient; closer information can be obtained by looking how fast the two
error rates increase in the vicinity of the EER point.

The search for the optimal security level is difficult for practical ap-
plications. Thus, in biometric systems with a large area A, it is easier
to achieve a system performance that is close to the theoretical optimal
performance. The factor A can therefore be seen as a measure for the
robustness of a biometric system. Table 7.3 summarises the robustness
factors A, for the different modalities and their fusion. It is important
to note, that the Equal Error Rate for the fused modalities is slightly
higher than the best single modality; sensor fusion improved the system
robustness by a factor of ≈ 5 compared to the best single modality.

7.4 Backpacks, Bags, and Shoes

Although one can assume a certain cooperation of the users of a biomet-
ric authentication system, one can not demand users to always wear the
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Figure 7.11: Plot of DET curve for the fused modalities. The circle marks
the EER point. The curves in light colour are included for reference and
correspond to the curves in Figure 7.10.

same clothes and shoes. The biometric system should therefore have toler-
ance with regards to changing clothing. This includes insensitivity to the
carrying of bags or backpacks and change of shoes.

Three different approaches are possible to achieve this goal:

1. make the system insensitive,

2. train the special cases, or

Feature Type λ0 λ1 A
Force plate fp 10−5.1 10−1.6 0.11
Hist.-mean v1 10−43.8 10−4.4 1.05
Hist.-variance v2 10−10.9 10−4.4 0.19
Hist.-FFT v3 10−9.8 10−1.7 0.21
Temp.-templ. v4 10−21.7 10−8.9 0.37
Fusion fp,v1,v2,v3,v4 10−187.2 10−14.9 5.01

Table 7.3: Robustness of the different modalities as well as of their fusion.
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3. add additional equipment to avoid such situations.

The first approach implies additions to the feature extraction algorithms
in order to make them insensitive for certain changes of the users outfit.
Possible examples include adaptive image segmentation algorithms that
are insensitive to changes in clothing colour or lighting conditions.

The second proposition is a very pragmatic approach. As will be shown
in the following sections, it is possible to train the system with, for exam-
ple different pairs of shoes, and thus make the recognition more tolerant.
Although it is feasible, this approach should be avoided, as it significantly
increases the number of training gait sequences required and therefore re-
duces user friendliness.

The third and last approach uses additional equipment to improve
recognition quality. A possible scenario is it to eliminate the colour and,
to a large extent, shadow sensitivity in image segmentation by using back-
light illumination. The increased person/background contrast almost com-
pletely eliminates segmentation difficulties. Another possible scenario is
to provide a conveyor belt, similar to metal detectors in airports, where
users can put their backpacks or bags before passing the measuring area.

Shoes: Figure 7.12 shows the influence of different shoes on the perfor-
mance of the system. To visualise the effect of different shoes during the
training and challenging phase, Figure 7.12(a) depicts the first three Prin-
cipal Components of the force plate feature-space of a single person. It can
be clearly seen, that the five training gaits, marked by a dot, and the three
test gaits � with the same pair of shoes7 form a compact cluster, whereas
the five test gaits � wearing a different pair of shoes8 form a detached but
distinct cluster.

To quantify the influence of different shoes on the feature types, the
mean cartesian distance of the training cluster centre to the test gaits
was calculated for the class of the same shoes and the class of different
shoes. Figure 7.12(b) depicts the mean distance for all five features types
as well as their standard deviation. Data from tests using the same and
different pair of shoes in the training and challenging phase is denoted by
a circle and a square, respectively. The vertical bars indicate the standard

7flat soled shoes
8sandals
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Figure 7.12: (a) Force plate feature-space with a detached cluster of test
gaits wearing different shoes. (b) Mean cartesian distance and standard
deviation in 3D feature-space from the centre of the training cluster to the
test gaits for gait sequences © using the same shoes as in training and for
a different pair of shoes �.

deviation. As one would expect the choice of shoes increases the mean
cartesian distance for the force plate features, whilst the video features
show no significant change.

Although the force plate features seem to depend on the choice of
shoes, the problem can be alleviated by incorporating several pair of shoes
during the training. Figure 7.13 shows exactly the same gait sequences
as in Figure 7.12(a) with the difference, that two gait sequences with a
different pair of shoes were added to the training gaits. It is thus possible
to learn different pairs of shoes and improve recognition performance.

The graphs and diagrams in this paragraph were calculated based on
a sample set of ten persons and five training gaits each. Additionally, gait
sequences of five persons wearing different shoes were used. Shoes ranging
from slippers to gym shoes, flat soled shoes and heavy hiking boots were
used.
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Figure 7.13: After using sequences with both shoes for training the cluster
forms a compact unit again.

Backpacks and Bags: The same analysis as in the previous paragraph
can also be applied to persons wearing a backpack or carrying a bag.
Figure 7.14(a) illustrates the influence of backpacks and bags on the first
three Principal Components of the histogram-mean v1 feature-space. As
can be seen, the training gaits, marked with a dot, form a nice cluster
together with the challenging gait sequences � wearing the same clothes
as in training. However, the four test gait sequences of the same subject
wearing a backpack (6kg) form a separate cluster, see symbol �.

Figure 7.14(b) shows the mean cartesian distance and standard devi-
ation of the test gaits © and the test gaits with a backpack � for the
different feature types. The backpack has virtually no influence on the
force plate feature, whilst all vision modalities are heavily perturbed. In
particular, the modalities v2, and v4 are substantially degraded in their
recognition quality. The modalities v1, and v3 depart from the training
cluster, but the small standard deviation suggests, that they form a cluster
that might be trained to the system.

As was noted before in connection with the shoe test, the system can be
trained for the user challenging the system with or without a backpack or
bag. Figure 7.15(a) was calculated with the same training gait sequences
as in Figure 7.14(a) and two additional training gait sequences with the
person wearing a bag over the left shoulder. However, the approach of
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Figure 7.14: (a) First three PCs of the v1 feature-space with a detached
cluster of test gaits wearing a backpack: � (b) Mean cartesian distance and
standard deviation to the training cluster in the 3D feature-space without
a backpack © and with wearing a backpack �.

including additional training gaits to improve recognition quality does not
always produce the desired results as can be seen in Figure 7.15(b). Al-
though two supplementary training gaits with a backpack were added to
the training set, there are still two clearly distinguishable clusters visible.

The graphs and diagrams in this paragraph were calculated based on
a sample set of ten persons and five training gaits each. Additional gait
sequences of three persons wearing either a backpack or carrying a bag
over one shoulder were used.

In contrast to the shoes, backpacks and bags influence not just one but
several modalities. In fact, all vision features are distorted. In this case
sensor fusion does not help. However, for real world applications a con-
veyor belt, similar to the ones used by airport security, could be provided.
Backpacks and bags would then bypass the biometric authentication sys-
tem.
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Figure 7.15: First three PCs of the v1 feature-space of two subjects after
having been trained with (a) bag over the left shoulder and (b) a backpack.

7.5 Summary

In the first section of this chapter, the proof of principle with ground re-
action force data acquired in a professional gait laboratory was described.
The strongest discriminatory power was achieved by the vertical force
component Fy with an EER of 5.3 %, followed by an EER of 6.6 % for
the lateral/medial force component Fz, and finally the anterior/posterior
component Fx with an EER of 10.5 %. Based on the promising prelimi-
nary study, a multi-modal biometric system with five different modalities
was developed.

The second section starts with a detailed description of the data set
used for the five modality system. According to the analysis it seemed
reasonable to retain the first 10 Principal Components for each of the five
modalities. To establish the discriminatory power for all modalities, the
Equal Error Rate (EER) and the Detection Error Trade-off (DET) curves
were estimated from the sample data set. The discriminatory power of
the histogram-mean feature was the highest, whereas the histogram-FFT
feature had the lowest discriminatory power. For the fused modalities
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an EER of 1.6 % was achieved. Robustness analysis revealed that sensor
fusion increased the overall system robustness by a factor of 5.

Finally, the influence of backpacks, bags, and different pairs of shoes
on the recognition quality were investigated. Alternatives to circumvent
problems with backpacks, bags and shoes were provided as well.



Chapter 8

Ethics and Privacy

This chapter sheds some light on privacy legislation closely related to the
application of biometric technology. The information presented does not
only apply to the biometric system presented in this thesis, but is of a
more general nature and is relevant for all biometric techniques.

8.1 Introduction

David L. Sobel, General Counsel at the Electronic Privacy Information
Center1, once stated:

”Biometric technology is definitely a double-edged sword”

And indeed it is a double-edged sword. On the one hand, biometric
technology is a great tool for computer security and user authentication
which will enhance user privacy, but on the other hand it also poses a
substantial risk to privacy rights. The issue of privacy plays a central role

1http://www.epic.org/epic/staff/sobel/
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in biometrics. But what does privacy entail in the context of biometrics?
Woodward summarised the various aspects in [Woodward97] as follows:

• “control we have over information about ourselves”

• “control over who can sense us”

• “control over the intimacies of personal identity”

In other words, the control over information about ourselves and its
confidentiality lies at the heart of the concerns raised by this new technol-
ogy. People have an interest in who stores what, when, and why and to
whom this information is disclosed.

The biometric technology presented in this thesis adds a new twist to
the privacy problem in the sense that people can be remotely identified
without their explicit consent, this in stark contrast to most other bio-
metric methods where at least some user-machine interaction is required.
People might not even be aware of an ongoing scanning process.

Today’s technological reality of biometrics is not yet optimally reflected
in the law. The law and policy concerns raised by biometric technology
are important and the politicians, engineers and scientists should explore
what is required to safeguard public interest and to ensure optimal results
for society.

In the following three examples, reports from the media are given,
where the aforementioned three rules of privacy have been unquestionably
violated.

Genetic Screening: The Times Newspaper reported in [Kite01] that
one of Britan’s biggest insurance companies Norwich Union Life admitted
using unapproved genetic tests for potentially fatal diseases when assessing
whether to offer life cover. They have been using experimental genetic tests
for breast and ovarian cancer and for Alzheimer’s disease.

Super Bowl 2001: The Los Angeles Times reported in [Sahagun01]
about a secret field test of the Tampa Police in Florida at the 2001 Super
Bowl. Unknown to the 100’000 people attending the event, hidden cameras
scanned each of their faces and compared them to mug shots of known
terrorists and criminals. The undisclosed test of the technology2 at this

2Graphco Technologies Inc.
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major sporting event raised arguments about privacy vs. security and
questions about the future of such spying. Cryptographer, security and
privacy expert Bruce Schneier3 warned of the increasing intrusion on civil
liberties.

Newham England: The borough of Newham, outside London, England,
uses face recognition technology4 for crime-fighting, using a closed-circle
of more than 200 cameras. The cameras monitor strategic locations in
Newham and match all captured faces against a precompiled database of
suspects and known criminals. Police are automatically alerted when a
match is positive. Although crime rate dropped by more than 40% in
the Newham area, the implications on personal privacy remain a major
concern, not only for privacy activists.

Even though it is not easy to draw a clear line between the rights of
privacy and public security, regulations are needed considering the rather
high potential of abuse.

8.2 What Information is Revealed?

To enrol a user in a biometric authentication system, one is required to
interact with it in a particular manner, thus supplying biometric traits.
Hence information about the body is given away and out of personal con-
trol. One therefore has to trust the system operator that this information
is treated properly, protected against theft and not traded to an unautho-
rised party.

To increase transparency it is important that the users know exactly
what information is stored about them, in what database and who has
access to this information.

However, this is difficult to achieve since sometimes there is more in-
formation hidden in the acquired biometric data than one might expect.
In particular, some biometrics might capture more than just mere iden-
tification information. Information about a person’s health and medical

3Bruce Schneier is founder and chief technical officer (CTO) of Counterpane Internet
Security Inc. and author of the book Secrets & Lies: Digital Security in a Networked
World

4Visionics’ FaceIt, http://www.visionics.com/
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history might also be incidentally obtained. Research in the field of der-
matoglyphics [Bartsocas81] shows that fingerprint, finger and palm imag-
ing might disclose a host of medical information about a person. For
example, Dr. Harold Chen, in his work on dermatoglyphics [Chen88], or
the study of the patterns of the ridges of the skin on parts of the hands and
feet, notes that “certain chromosomal disorders are known to be associated
with characteristic dermatoglyphic abnormalities” specifically citing Down
syndrome (1 child in 700), Turner’s syndrome (1 woman out of 2000), and
Klinefelter’s syndrome (1 man in about 800), as chromosomal disorders
that cause unusual fingerprint patterns in a person. In [Orczykowska85],
Orczukowska and Krajewska presented a method of paternity probability
analysis based on dermatoglyphic features. And in [Rodewald86], Rode-
wald et al. showed a strong association between the X-linked mental re-
tardation (fragile X syndrome) and dermatoglyphic features observed in
male patients and also in female carriers hence heterozygotes. Ahuja et
al. showed in [Ahuja82] a considerable decrease in the ridge count for con-
genital heart disease (CHD)5 patients. Even nonchromosomal disorders,
such as chronic intestinal pseudoobstruction (CIP), leukemia, breast can-
cer, and Rubella syndrome, have also been implicated [Chen88] by certain
unusual fingerprint patterns.

From examining the retina and iris, an expert can determine that a
patient may be suffering from common afflictions like diabetes, arterioscle-
rosis, and hypertension; furthermore, unique diseases of the iris and the
retina can also be detected by a medical professional.

In [Schmidt00] mentions the possibility of diagnosing Parkinson from
examining a patients gait pattern.

8.3 Privacy Interest Groups

There are a handful of independent international groups and organisa-
tions particularly concerned with privacy and privacy legislation. Namely
the London, England, based Privacy International6 (PI) a human rights
group formed in 1990 as an independent watchdog on surveillance by gov-
ernments and corporations. PI has conducted campaigns throughout the
world on issues ranging from wiretapping and national security activities,

5The group included tetralogy of Fallot (TF), patent ductus arteriosus (PDA), pul-
monic stenosis (PS), atrial septal defect (ASD) and ventricular septal defect (VSD)

6http://www.privacyinternational.org/
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to ID cards, video surveillance, data matching, police information systems,
medical privacy.

The Electronic Privacy Information Center7 (EPIC) is a public interest
research centre located in Washington, D.C. It was established in 1994
to focus public attention on emerging civil liberty issues and to protect
privacy. EPIC works in association with PI and other international human
rights groups.

The International Biometric Industry Association (IBIA)8 is a trade
association founded in September 1998 in Washington, D.C., to advance,
advocate, defend and support the collective international interests of the
biometric industry. IBIA is governed by biometric developers, manufac-
turers and integrators, and is impartially dedicated to serve all biometric
technologies in all applications. As a condition of IBIA membership, mem-
bers adopt and pledge to observe several principles and codes of ethics:
Namely, the members adhere to the principle that biometric technologies
should be used solely for legal, ethical, and non discriminatory purposes.

8.4 Legislation in Switzerland

9 Biometrics is a young technology and therefore not yet regulated in
special laws to protect privacy. However, a large part of the population
is sceptical and worried about the consequences and dangers coming from
this new technology. However, for the successful application of biometric
technology in society, broad acceptance is essential. The near future will
show whether the existing laws are sufficient, or whether additions are
needed.

The protection of privacy is regulated in Switzerland through various
laws and guaranteed by independent surveillance authorities, namely:

• Federal Constitution, Art. 13

• Federal Law on Data Protection

• Decree for the Federal Law on Data Protection
7http://www.epic.org/
8http://www.ibia.org/
9The german translation of this section can be found in the appendix.
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• Council of Europe, Convention 108

• Federal Data Protection Commissioner

• Federal Data Protection Commission

8.4.1 Legal Regulations

Since all biometric systems are databases with personal information, in the
narrower sense, they are subject to the Federal Law on Data Protection
(FLDP), which is based on Article 13 of the Federal Constitution:

Federal Constitution Article 13, Right to Privacy

1. All persons have the right to receive respect for their private and
family life, home, and secrecy of the mails and telecommunications.

2. All persons have the right to be protected against the abuse of per-
sonal data.

Of particular interest, with respect to biometric technology, is Para-
graph 2 that protects persons from the abuse of their personal data. This
Federal Constitution Article is statutorily regulated in the Federal Law on
Data Protection10 and in incremental detail in the Decree for the Federal
Law on Data Protection11.

The FLDP, as it stands today, is suitable to protect peoples privacy
with respect to biometric systems. For example Art. 4, Para. 3 of the
FLDP regulates that the personal data should only be processed for the
purpose for which it was collected, pursuant to legal provisions or circum-
stances. Additionally, personal data must be protected from unauthorised
processing using appropriate organisational and technical means (FLDP
Art. 7) and no-one has the right to transfer the data to a third party with-
out justification (FLDP Art. 12, Para. 2c). The biggest problem, however,
will be to reliably verify the abidance of the FLDP.

On October 2nd, 1997 the Swiss Government ratified the Council of
Europe’s Convention 108, that protects individuals privacy with regard to
automatic processing of personal data. The purpose of this convention

10SR# 235.1, http://www.admin.ch/ch/d/sr/c235 1.html
11SR# 235.11, http://www.admin.ch/ch/d/sr/c235 11.html
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is to secure the rights and fundamental freedom, in particular the right
to privacy, with regards to automatic processing of personal data. At
the same time the Convention reaffirms the commitment to freedom of
information flow regardless of frontiers.

8.4.2 Surveillance and Arbitration Bodies

Besides the legal basis to protect privacy, there are two independent
surveillance and arbitration bodies, namely the Federal Data Protection
Commissioner and the Federal Data Protection Commission. Their field
of duty is regulated in the FLDP.

The Federal Data Protection Commissioner12 performs his tasks au-
tonomously but is administratively attached to the Federal Department of
Justice and Police. He supervises the application of the law and other
regulations concerning data protection and clarifies facts either on his own
or upon the request of a third party. Furthermore, the commissioner can
advise private individuals on the issue of data protection.

The Federal Data Protection Commission13 is an independent arbi-
tration and appeal body. It makes decisions on recommendations of the
Commissioner and appeals against decisions made by Federal bodies in
the data protection field.

8.4.3 The New Swiss Passport

During the consultation for the new Swiss Passport14 the integration of bio-
metric technology was discussed intensively. Biometric features would be a
helpful tool in fighting “Impostors” or “Look-a-likes”. Illegal immigration
has increased in recent years and could be successfully prevented with bio-
metric technology. There is an international trend towards the integration
of such machine readable features. However, since the responsible working-
group of the International Civil Aviation Organization (ICAO) has not yet
released generally binding standards, the integration of biometric features
into the new Swiss Passport seems precipitated. Nevertheless, a broad
discussion is vital, whilst the necessary legal regulations are worked out.

12FLDP Art. 26-32
13FLDP Art. 33
14Introduced approximately 2003
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Despite the decision not to integrate biometric data into the new Swiss
Passport in 2003, the Swiss Border Control corps will be equipped with
Automatic fingerprint identification systems (Afis) in 2002 [NZZ01]. Afis
will be applied in cases where persons have no documents at all or fake
documents.
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Conclusions

There’s no doubt that security applications play an important role in the
future and biometric technology is one component of an overall security
solution. Although 100% protection can never be achieved it is important
to determine the right biometric technology for each application. This
thesis is a contribution to the development of a new generation of com-
fortable and easy to use secure biometric systems, that open up a new field
of possible applications.

9.1 Contributions

A novel biometric system using human gait as the discriminatory feature
was described that allows to authenticate people with an Equal Error
Rate of 1.6 %. This is achieved by fusing five modalities extracted from
a force plate and a video sensor. The main advantage of the biometric
system presented here is that it requires no direct interaction of the subject
with the system other than walking by. Conversely, most other biometric
systems for example require the subject to touch a sensor, look into a
camera or iris scanner, or interact in some other way with the sensor.

Three different methods to reduce data dimensionality were described;
the Principle Component Analysis (PCA), the Canonical Space Transfor-
mation (CST), and a novel variant of the Generalised Principal Component
Analysis (GPCA) developed in the framework of this thesis. Furthermore,

109
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a simple yet effective method was proposed to assess and compare the
cluster quality of the three aforementioned transformations.

An estimation of the Biometric Complexity, i.e. number of degrees-
of-freedom, for all five modalities suggests a complexity of ≈ 86 bit for
the fused modalities. This in contrast to the estimated 173 bit for an iris
recognition system.

The achievements can be summarised as follows:

• The theoretical background for the development of a biometric sys-
tem using human gait as the discriminatory feature has been pre-
sented.

• A practical implementation of such a biometric system has been de-
tailed and tested.

• A method to fuse multiple biometric modalities has been shown.

• A novel and computationally efficient variant of the Generalised
Principal Component Analysis (GPCA) was developed to reduce
data dimensionality without losing class separability.

• A novel method, based on the Mahalanobis metric, has been pro-
posed to assess the performance of clustering algorithms.

• An estimation of the Biometric Complexity of all five modalities is
given.

9.2 Open Issues and Possible Improvements

In the course of the present work, a great deal of knowledge in the field of
biometrics has been gathered. Although the basic phenomena are under-
stood and could be successfully demonstrated, some important problems
remain.

• Adaptive Classification: Since human gait is a behavioural bio-
metric, it is subject to small changes in the gait pattern over
time. The classification should automatically correct for such small
changes.
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• Camera Setup: With a tilted flat mirror positioned right above
the measuring zone, as used in [Murray67], the video camera gets
an additional top-view of the walking person. This additional infor-
mation source could be used to further improve the recognition rate.
Of particular interest is the shoulder-rolling that is of great value for
identity verification.

• Large Scale Test: The performance and discriminatory power
(FAR, FRR, EER, and DET curves) of the biometric features have
only been estimated based on a relatively small number of subjects;
17 subjects with a total of approximately 200 gait sequences. The
performance estimations should be refined with a prototype system
using more subjects and more gait sequences.

For a desired significance level, the needed sample set size can be
calculated using a formula from [Lassmann98]

nτ =
(
Zτ
δ

)2

h(1− h) (9.1)

where nτ is the sample set size, τ is the level of significance, h the
expected EER, δ the maximum tolerance from the expected EER,
and Zτ the two-sided normal distributed random variable1. Thus,
with a significance level τ = 95 %, an expected EER of h = 1 %, and
a maximum tolerance δ = 0.5 % the data set must contain at least
1522 data sets.

• Long Time Test: The time frame of the aforementioned large scale
test should be long enough to incorporate possible longtime changes
in human gait and the classification should be modified accordingly.

• Backpacks/Bags/Shoes: As has been shown in the results chap-
ter, backpacks, bags and shoes pose a problem in certain situations.
Methods should be developed to reduce their influence on the ex-
tracted features.

• Biometric Complexity: The Biometric Complexity, i.e. number
of degrees-of-freedom, is unique to every kind of biometric technol-
ogy. The number of degrees-of-freedom of variation in it’s metric
across the human population is crucial, as it limits the number of
users that can be differentiated. In Section 6.4 an estimation of the

1According to [Lassmann98]: Z95% = 1.96,Z99% = 2.5758
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Biometric Complexity was given for all modalities by answering the
question “How many distinguishable gaits are there?”. However, this
estimation bases on the assumption that all gaits are equally likely.
Since this is not true, the question

“What is the probability that two people’s gait are the
same?”

would be a more accurate estimation of the Biometric Complexity.

• Sensor Fusion: The fusion of the local experts, see Figure 6.1,
could be further improved with a feedback scheme, that allows to
compensate for more specific deficiencies of the various modalities
and user groups.

Present knowledge of gait as a biometric indicates that successful appli-
cation of a system, as described in the present work, seems feasible. Gait
opens up a whole new generation of user friendly and easy to operate
biometric authentication systems.
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Appendix A

Gesetzgebung in der
Schweiz

Die Biometrie ist eine junge Technologie und ist daher noch nicht in eige-
nen Gesetzen zum Schutz der Privatsphäre geregelt. Breite Bevölkerungs-
schichten sind aber skeptisch und besorgt über die möglichen Konsequen-
zen und Gefahren, welche von diesen neuen Technologien ausgehen. Für
eine erfolgreiche Integration der biometrischen Systeme in der Gesellschaft
ist aber eine breite Aktepanz Voraussetzung. In naher Zukunft muss sich
desshalb zeigen, ob die bestehende Gesetzgebung ausreichend ist, oder ob
Ergänzungen vonnöten sind.

Der Schutz der Privatsphäre wird in der Schweiz durch mehrere Gesetze
und Überwachungsinstanzen gewährleistet:

• Bundesverfassung Art. 13

• Bundesgesetz über den Datenschutz (DSG)

• Verordnung zum Bundesgesetz über den Datenschutz (VDSG)

• Europarat Konvention 108

• Eidg. Datenschutzverantwortlicher

• Eidg. Datenschutzkommission (Schieds- und Rekurskommission)
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A.1 Gesetzliche Grundlagen

Da die biometrischen Systeme im engeren Sinn eine Datenbank mit
persönlichen Informationen darstellen, unterliegen sie automatisch dem
Datenschutzgesetz, welches auf Art. 13 der Bundesverfassung basiert:

Bundesverfassung Art. 13 Abs. 2 Schutz der Privatsphäre

1. Jede Person hat Anspruch auf Achtung ihres Privat- und Familien-
lebens, ihrer Wohnung sowie ihres Brief-, Post- und Fernmeldever-
kehrs.

2. Jede Person hat Anspruch auf Schutz vor Missbrauch ihrer persön-
lichen Daten.

Im Speziellen interessiert hier der Abs. 2 zum Schutz vor Missbrauch
der persönlichen Daten. Dieser BV Artikel ist im Bundesgesetz über den
Datenschutz 1 (DSG) gesetzlich verankert und in der entsprechenden Ver-
ordnung zum Bundesgesetz über den Datenschutz 2 (VDSG) noch genauer
geregelt.

Das DSG wie es zur Zeit vorliegt ist gut geeignet den Schutz der Pri-
vatsphäre im Zusammenhang mit biometrischen Systemen zu garantieren.
So ist z.B. in DSG Art. 4 Abs. 3 festgehalten, dass die Personendaten nur
für den vorgesehenen Zweck, der bei der Beschaffung angegeben wurde,
verwendet werden dürfen. Auch müssen die Datensammlungen durch an-
gemessene technische und organisatorische Massnahmen vor unbefugtem
Zugriff geschützt werden (DSG Art. 7) und dürfen auch nicht an Dritte
weitergegeben werden (DSG Art. 12 Abs. 2c). Das wohl grösste Problem
wird es aber sein die Einhaltung dieser Gesetze zuverlässig zu überwachen.

Am 2. Oktober 1997 hat die Schweiz die Europarat Konvention 108
zum Schutz der Privatsphäre ratifiziert. Seit 1. Februar 1998 ist sie
für die Schweiz in Kraft getreten. Die Konvention 108 ist ein Länder
übergreifendes Übereinkommen zum Schutz des Menschen bei der au-
tomatischen Verarbeitung personenbezogener Daten. Ziel ist es eine en-
gere Verbindung zwischen seinen Mitgliedern herbeizuführen, die vor al-
lem auf der Achtung des Vorranges des Rechts sowie der Menschenrech-
te und Grundfreiheiten beruht. Der grenzüberschreitende Verkehr auto-
matisch verarbeiteter personenbezogener Daten soll dabei erleichtert und

1SR# 235.1, http://www.admin.ch/ch/d/sr/c235 1.html
2SR# 235.11, http://www.admin.ch/ch/d/sr/c235 11.html
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vereinheitlicht werden, unter Berücksichtigung des Rechts auf Achtung des
Persönlichkeitsbereichs.

A.2 Kontrollinstanzen

Neben den gesetzlichen Grundlagen zum Schutz der Privatsphäre gibt es
auch noch unabhängige Kontrollinstanzen, den Eidg. Datenschutzverant-
wortlichen sowie eine Schieds- und Rekurskommission, die Eidg. Daten-
schutzkommission. Die Aufgabenbereiche und Verantwortlichkeiten beider
Instanzen sind im Datenschutzgesetz (DSG) geregelt.

Der Eidg. Datenschutzbeauftrage3 erfüllt seine Aufgaben unabängig, ist
aber administrativ der Bundeskanzlei zugeordnet. Seine Aufgabe besteht
darin die Einhaltung der gesetzlichen Richtlinien durch die Bundesorgane
zu überwachen und gegebenenfalls Empfehlungen abzugeben. Im weiteren
berät er private Personen, Organe der Kantone sowie des Bundes in Fragen
des Datenschutzes.

Die Eidg. Datenschutzkommission4 ist eine Schieds- und Rekurskom-
mission. Sie entscheidet über Empfehlungen des Datenschutzbeauftragten
und Beschwerden gegen Verfügungen des Datenschutzbeauftragten.

A.3 Der neue Schweizer Pass

Im Rahmen der Vernehmlassung zum neuen Schweizer Pass5 wurde die
Integration von biometrischen Merkmalen im Pass intensiv diskutiert. Bio-
metrische Merkmale wären ein äusserst wirksames Hilfsmittel im Kampf
gegen die sogenannten ”Imposters” oder ”Look-a-likes”. Die so praktizier-
te illegale Immigration hat in den letzten Jahren zugenommen und könnte
durch biometrische Merkmale erfolgreich verhindert werden. International
zeichnet sich denn auch die Entwicklung ab, dass solche Daten in ma-
schinenlesbare Reisedokumente aufgenommen werden sollen. Da aber die
verantwortliche Fachgruppe der ICAO6 noch keine allgemeinverbindliche
Standards vorgeschlagen hat, scheint eine Integration von biometrischen

3DSG Art. 26-32
4DSG Art. 33
5Einführung ca. 2003
6International Civil Aviation Organization
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Merkmalen in den neuen Schweizer Pass als verfrüht. Dennoch darf man
die Augen davor nicht verschliessen. Eine breite Diskussion darüber wird
notwendig, wenn die für die Einführung biometrischer Daten notwendigen
gesetzlichen Grundlagen erarbeitet werden müssen.

Trotz der Entscheidung biometrische Daten im Schweizer Pass von 2003
noch nicht zu integrieren, wird ab 2002 das Schweizer Grenzwachkorps
an allen grösseren Grenzübergängen mit der nötigen Infrastruktur eines
Automatischen Fingerabdruck Identifikations Systems (Afis) ausgerüstet
[NZZ01]. Afis soll demgemäss an der Grenze bei Personen ohne oder mit
gefälschten Dokumenten zur Anwendung gelangen.
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Mahalanobis Norm

Consider one feature x. Suppose that it has n examples of patterns that
all belong to the same class. Let the different values for the feature x be
x1, x2,..., xn. x can be characterised with the mean µ and its standard
deviation s. If x is multiplied by a scale factor a, then both the mean and
the standard deviation are multiplied by a.

But when measuring distances it is often desirable to measure it relative
to the standard deviation. Thus the distance r can be written as

r =
∣∣∣∣x− µ

s

∣∣∣∣ .
Note that r is now invariant to translation and invariant to scale. This

suggests an important generalisation of the Euclidean norm. The equation
above can be rewritten as

r2 = (x− µ)
1
s2

(x− µ)

and the matrix generalisation of this scalar expressen turns out to be

r2 = (~x− ~µ)′C−1(~x− ~µ)
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where C is the covariance matrix. The quantity r in the equation above
is called the Mahalanobis distance. It can be shown that the surfaces on
which r is constant are ellipsoids that are centred about the mean ~µ. In
the special case where the features are uncorrelated and the variances in all
directions are the same, these surfaces are spheres, and the Mahalanobis
distance becomes equivalent to the Euclidean distance.
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Amplifier Scheme
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