Diss. ETH No 13844

Analysis of refraction influences in geodesy using image

processing and turbulence models

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Technical Sciences

presented by

Philipp Flach
Dipl. Kulturingenieur ETH
born 30.05.1970

citizen of Dietlikon (Zurich)

accepted on the recommendation of
Prof. Dr. H. Ingensand, examiner
Prof. Dr. F.K. Brunner, co-examiner

Prof. Dr. M. Hennes, co-examiner

2000



P Rt
i £

i

§
i
2

AN A VAN A WIS AT N AL e A



To my Parents






[

Contents

. P 3 )
A DSETAC e evvereresesnsssssrssransssosssarssnsssarsssnsssssssnssnsossesssssassssostsestsssasssesssassenssnnsssesssssstssressscnvons

Kurzfassung (AbsStract in German ). it 10

- " 11

L1 COrTeCtiOn INEENOS .o ettt e e e e e b e e e st ereeraeea s e et e e sabs e e eneca e vnaie 11
1.2 Previous research work on turbulence models and refraction .........cc.ooooieeen 12
1.3 New developments and concepts of the presented research work..............ooo... 13

2 Wave propagation in refractive media ..o 15

2.1 RefTaCtiVe TNAEK coovieiiii ettt 15
2.2 Refraction influence on propagation pathi...........ceiv 16
2.3 RefTACHON ANELE 1ottt 20
2.4 Energy fluxes causing refractive index gradients in the atmosphere.................. 22
2.4.1 Energy balance and stratifiCation.......oocoiiiiiin 22
2.4.2  Sensible heat flux and temperature gradient.........ooooin 23
2.5 Relevance of refraction influences for geodetic applications ... 25
2.5.1 Refraction influences in the context of other thermal influences ............... 25
252 Precise 1eVellig oo 20
2.5.3  Vertical angle MeaSUIEIMENES (..ot 27
2.6 Conclusions.......coceeiinnen OO PR P P OO PP PRPUSSUPUROPPPPPPPY: 29

3 Atmospheric turbulence MOdel.....iiiciiicrsninnenssinsssisssssssscssesesssessasess 31

3.1 INEPOAUCTION ot eie ettt e 31
3.2 ENETZY SPECIITIN otttk s 33
3.2.1 Energy density function of turbulent Kinetic energy......ccocoeevereerennnnn. 33
3.2.2 Viscous subrange and dissipation Tate ...t 36
3.2.3  Inertial SUDTANZE. .covviiiiici i 36
3.2.4  ENErgy NPUL FANZE ooveiiiitiiiiiie it 38
3.2.5  Stationarity of @nergy SPeCIUIN .. .o 38
32,6 INNET SCALE oottt 38
3.2.7 Structure constants of velocity and temperature. ..., 40
3.3 Monin-Obukhov sSImilarity ... 41
33,1 Scaling Parameters ..o 41
3.3.2  Dimensionless profile functions for structure parameters and temperature 44
3.4 Calculation of refraction angle using Monin-Obukhov similarity.............c.o.... 45
3.5 Footprint conSIAEIAtiONS . oot 47

B DO S O IS e ettt e s et e e et e e et e e et e 49




4

Ut

Optical TUrbuUlenCe e eereeeeeeteteeenrerenceecnecssesssssanssnsssss s ssnnens R |
4.1 Phenomena of optical turbulence.........occoooiiiii 51
4.2 Modelling optical tUrbUleNCE .....evevveviiiiiiiiiiecccece e D3

421 Refractive INdeX SPECIIUI «..oviiviiiieriiiiiiiciei et D0

4.2.2  Light propagation in turbulent media ... 55
4.3 Angle-of-arrival tluctuations for determination of G e 58

43,1 PRENOMEION ..ttt 58
4.4 Intensity fluctuations for determination of inner scale ... 62

4. T PREINOMECIIA tiiitiieeitie ittt 62

442 MOAEIINZ . viiirit e 62
4.5 ANalysis OF QCCUTACY tovviiiiiiiiiii e 66

451 Random deVIAtIONS .iooiiiiie it 66

4,52 SysStematic deVIATIONS. . ievutrerite ittt 67
4.6 CONCIUSIONS 1ottt ettt s 71

MEASUTINE SYSTEINS vueeueruersvesersersessessessessussassussassssssssassssssessessossassssssssessassnessasssssasses 13

5.1 TEEOQUCTION 1ttt ettt et 73
5.2 IMAZING SYSTEIMS . 1tietiiitteieitit ettt ettt a e e a e 74
5201 COD SEISOIS 1ttt ittt ettt e e 74

5 2.2 Criteria for the Imaging SYSIEMIS .o..vviiiiiiiii s 75
5.2.3 0 Video theodolte oo 75
5.2:4  1LINE SCAN CAMICTA .vvvriieiriee ittt ee sttt e e e e e e aetene e ettt e e eete e e e e s e e 76
5.3 Reference measuring SYSTEITIS uutteeiiuirters it eeiiie e eeitireaanet e e e e e e esbatbaeeeesrineeeans 81
531 SeItiHOMEIET oo 81
5.3.2 Temperature gradient measuring SYSEM .ovivveirerieiiieeniiie e 83
5.4 Calibration Of IMAZe SENMSOIS.c...iiiiiiiieiit e et 84
541 Video theodolite. . ..oooviiiiiiiiii e 85
542 LINE SCAN CAMETA1etvvieiiieiri ettt ettt sttt st 87
5.4.3  Radiometric calibration.........occooiiiiiiiii i 88
5.5 TTATZEE ettt e 89
551 RETIECIOIS 1ottt 89
5.5.2 Coded levelling Staffs ..o 91
5.6 Data TECOTAINZ o eveiitiiit et ettt e s err e e e e entb e e e esbsbb e e e e e ebreeenns 93

g g E " I
IMage ProcessiNg. . iiiiiineesssssissnssssesessassssens 95

6.1 INOAUCTION ..ttt e e 95
6.2 Spectral @nalySIS.. oo e 96
0.2.1  INTTOQUCTION vttt et 96
6.2.2  Stochastic model for the image signal ..., 97
6.2.3  Estimation of power spectral density ..........oocoocooiiiiiiiiins 98
6.2.4  Outlook: Wavelet transtormation ... 101
6.3 Wiener filter for determination of intensity fluctuation.......ccoccocvvvveiiiiniiinnn 104
0.3. 1 TRETOAUCTION c..eeiiii e e e e 104
6.3.2  Noncausal Wiener filter ..o 106
6.3.3  Model of the power spectral density used for the Wiener filter ............... 108
6.3.4 Implementation using adaptive Wiener filter ..........coocovvinniiiiniinnn. 110

6.3.5  Conclusions and OUtloOK ... 114




6.4 Edge detection for determination of angle-of-arrival fluctuation..................... [15
6.4. 1 INrOAUCHION.....eiiiiiiiiiiiiii e 115
0.4.2  EdZe OPEIALOIS «eouviiiiiiiiiiii ittt 11
6.4.3  Comparison and evaluation..........coceciiii 123
6.4.4 Implementation of least squares template matching (LSM)..................... 125
6.4.5 Implementation of Canny OPerator .......occoovrieiiiiiieiiier i 128
6.4.6  Accuracy of edge deteCtion........ocoviiiiiiiiii 134
6.4.7  CONCIUSTONS oottt s 135

7 Measurements AN FeSUIES ..o iierereivessissseressssressssssssesssssnessssssassssssssssssrsusasse 137

7.1 Video theOdOIE . c.ooiiiiiiiiii i 137
711 Fleld @XPeriment oo o oot 137
7.1.2  Results and cONCIUSIONS .oovvviiiiiiiiiiie e 139

7.2 LNE SCAN CAMCTA .. .vevvvreeiariit ettt et ee e et e ea e e ee et e e e ssae e 143
7.2.1  Field eXPeriment ... 143
7.2.2  Results and conclusions ... 147

7.3 Temperature MeAsUIEINENES ..oiiiiiiite ittt 153

7.4 Temperature gradient profile ..o 157

7.5 Accuracy of temperature gradient and refraction angle.............oco 158
751 DEITVATION 1ttt s 158
7.5.2  CONCIUISIONS ottt 160

8 Conclusions ANd OULIOOK .eeeeeeeeeiiieiirereriierieiissiiisssesssssssssessssssssssesssssssssssessssssssssses 102

8.1 Determination of C,,Z ......................................................................................... 162
8.2 TNNET SCALE 1.t 163
8.3 Field eXPeriments.. .o 164
8.4 Disturbing influences on iIMAaging SYSIEIMS .oovvivviiiieiieie e 165
8.5 OUHOOK it 165

Appendix A: Fractals .iiinnininininiissiiensessssessssssssesens 107
List of SYMDOIS..ccciniiiiiniiiiiniicineiineinnmisniesesiissiesmeesersssesssssssssassessasssssassess 17 1
References....ccouueerninneieniinnees R rreartesiisresssa e s braessssbasessabbesees cessessesssnsessessas 175
ACKNOWIEAZIMENLS «.ecovviiiiiiiiiiiiiniiitniniisinisniiesssnessssssssssssssssssssssssssssssssnssassssnass 187

CUTTICUIIIN VIAC ceeiririiririrerereerneresseeiiiesisiorserosersssssssesssssssssssssssssssssssssssssarnasassssssssnsnsscss L OO







9

Abstract

The propagation path of light in the atmosphere is influenced by inhomogenities of the
refractive index. These refraction effects deteriorate the accuracy of the direction and
distance measurements in geodetic applications. As illustrated by two examples in this
report, the refraction effects cannot be accurately corrected up to now and, therefore,
solutions must be provided which can be implemented into geodetic instruments. The
presented approach is based on the determination of the temperature gradient being the
decisive influential parameter for angular refraction effects

In the atmosphere, temperature gradients are related to turbulent thermal exchange pro-
cesses such as the turbulent sensible heat flux. In order to describe atmospheric turbu-
lence, the applied statistical approach uses the method of spectral analysis which states
that the atmospheric turbulent velocity field can be thought to consist of many eddies of
different densities. This energy spectrum of turbulence can be modelled using the
structure constant of refractive index C,” and the inner scale Iy of turbulence. If these
two structure parameters are measured, the temperature gradient is derived from dimen-
sionless profile functions using the so-called Monin-Obukhov similarity description.
Hereby, the fact should be kept in mind, that the Monin-Obukhov similarity description
and the energy spectrum of turbulence are only valid for vertical temperature gradient
profiles in the atmospheric boundary layer.

This research work investigates the determination of the required structure parameter
C,? and I by means of image sensors which can be built into geodetic instruments. To
derive the structure parameters C,” and /o from the acquired image data, the application
of appropriate image processing techniques is examined. The evaluation concept is
based on angle-of-arrival fluctuations and intensity fluctuations. Angle-of-arrival fluc-
tuations are perceived as high-frequency motions of image patterns grabbed by the sen-
sor, and intensity {luctuations are related to the temporal variation of the gray values of
the pixels. As presented in this report, thexe two effects of optical turbulence can be
used to determine the structure parameter C,” and /. For this purpose, image processing
techniques must parameterize both angle-of-arrival fluctuations and intensity fluctua-
tions. Within this research work, the angle-of-arrival fluctuations are modelled by the
variance Gy~ characterizing the shifting of image patterns which are located using edge
detection algorithms. The intensity fluctuations are modelled by the variance oy char-
acterizing the temporal intensity spectrum of the incoming light beam. In the scope of
this research work, the variance " is provided using digital filter techniques such as
the Wiener filter or least-squares template matching.

In order to validate this concept. the video theodolite Leica TM3000V and a digital line
scan camera Basler [.120 are used as two different imaging systems to acquire image
data during various practical field experiments. These field experiments revealed a par-
tial good agreement between the structure parameter C,” and Iy obtained by the image
sensors and the ones obtained by a reference system (scintillometer). Basically, the
method presented here is appropriate to reduce the refraction influence. A decisive ad-
vantage of this method is based on the fact that additional sensors are not necessary (ex-
cept for the image sensors which are built into the mstrument). However, as the
exemplary comparison of temperature gradients shows at the end of the report, further
research work in the scope of the atmospheric boundary layer is still necessary.
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Kurzfassung

Die Ausbreitung von Licht in der Atmosphire wird durch Inhomogenititen des Bre-
chungsindex beeinflusst. Diese Refraktionseinfliisse verschlechtern die Genauigkeit von
Richtungs- und Distanzmessungen in geoditischen Anwendungen. Wie in zwei Bei-
spielen dieses Berichts dargelegt wird, konnen Refraktionseinfliisse bis heute nicht voll-
stiindig korrigiert werden, und deshalb miissen Losungen gefunden werden, welche in
den geoditischen Instrumenten implementiert werden konnen. Der vorgelegte Ansatz
basiert auf der Bestimmung des Temperaturgradienten, da dieser den entscheidenden
Einflussparameter des Refraktionseintlusses auf Winkelmessungen darstellt.

In der Atmosphire stehen Temperaturgradienten in Beziehung mit turbulenten Wiir-
meaustauschprozessen wie zum Beispiel dem turbulenten Fluss der fithlbaren Wiirme.
Um die atmosphiirische Turbulenz beschreiben zu konnen, verwendet der untersuchte
Ansatz die Methode der Spektralanalyse, welche auf der Vorstellung beruht, dass das
turbulente atmosphirische Geschwindigkeitsfeld aus vielen Wirbeln unterschiedlicher
Grosse besteht. Dieses turbulente Energiespektrum kann mit Hilfe der Strukturkonstante
C,,?‘ des Brechungsindexes und der inneren Skalenlinge /, modelliert werden. Sind C”?"
und /y gemessen, so lédsst sich der Temperaturgradient von dimensionslosen Profilfunk-
tionen unter Berticksichtigung der sogenannten Monin-Obukhov Similaritit ableiten,
wobei beachtet werden muss, dass diese Theorie nur fiir vertikale Temperaturgradienten
in der atmosphiirischen Grenzschicht giiltig ist

Diese Forschungsarbeit untersucht die Bestimmung der erforderlichen Strukturparame-
ter C,f und /y mittels Bildsensoren, welche in geodiitischen Instrumenten cingebaut wer-
den konnen. Um diese Strukturparameter von den erfassten Bilddaten ableiten zu
konnen, wird die Anwendung von Bildverarbeitungstechniken untersucht. Dazu beniitzt
das Auswertekonzept Winkel- und Intensititstluktuationen. Winkelfluktuationen kon-
nen als hochfrequente Bewegungen von Bildmustern. die der Bildsensor erfasst, wahr-
genommen werden, und Intensititsfluktuationen stehen in Beziehung mit der zeitlichen
Grauwert-Variation der Pixel. Wie in diesem Bericht dargelegt, konnen diese zwei Ef-
fekte der optischen Turbulenz fiir die Bestimmung der Strukturparameter C 2 und 1o
verwendet werden. Zu diesem Zweck miissen Bildverarbeitungstechniken sowohl die
Winkel- als auch die Intensitiitstluktuationen mit Parametern beschreiben. Im Rahmen
dieser Forschungsarbeit werden die Winkelfluktuationen mittels der Varianz 01\; mo-
delliert, welche das Verschieben von Bildmustern charakterisiert, die mit Hilfe von
Kantendetektionsalgorithmen lokalisiert werden. Die Modellierung der Intensititsfluk-
tuationen erfolgt durch die Varianz 6,°, welche mittels digitaler Filtertechniken wie das
Wiener Filter oder das Least-squares template matching Verfahren berechnet wird.

Um diese Konzept zu validieren, werden als zwei unterschiedliche Bilderfassungssy-
steme der Videotheodolit Leica TM3000V und die digitale Zeilenkamera Basler 1120
verwendet, um Bilder withrend verschiedener praktischer Feldexperimente zu erfassen.
Diese Feldexperimente ergaben zum Teil eine gute Ubereinstimmung zwischen den aus
den Bildsensoren gewonnen Strukturparametern und denjenigen, die aus einem Refe-
renzmesssystem (Scintillometer) erhalten wurden. Grundsiitzlich ermoglicht die vorge-
stellte Methode eine Reduktion der Refraktionseinfliisse. Thr entscheidender Vorteil
besteht darin, dass nebst den im Instrument vorhandenen Bildsensoren keine zusiitzliche
Sensoren benotigt werden. Wie jedoch am Ende des Berichts anhand der exemplari-
schen Berechnung von Temperaturgradienten gezeigt wird, sind noch weitere For-
schungsarbeiten im Bereich der atmosphiirischen Grenzschicht notwendig.
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1 Introduction

For the last two hundred years, the precision of geodetic instruments has made enor-
mous progress. Although advancing instrument technology allows a high degree of pre-
cision and automation, the accuracy and reliability of geodetic measurements is still
limited due to atmospheric influences, especially refraction. Up-to-now, refraction is
still one of the unsolved problems in numerous applications of surveying. Though re-
fractive effects arise in several fields of surveying such as photogrammetry and satellite
based positioning, the following investigations concentrate on applications of close-
range photogrammetry and terrestrial geodesy, especially on direction transfer and lev-
elling since the refractive influences of the atmosphere are especially crucial for these
applications, e.g., [WITTE, 1990].

As shown below (section 1.1), various approaches using additional measuring equip-
ment have been investigated to correct the refractive influences. In contrast to these ap-
proaches, the approach of this thesis investigates the direct analysis of the measured
signal of the geodetic instruments needed for the 1D-, 2D-, or 3D-positioning. This ap-
proach is particularly suitable for geodetic applications using image signals, since these
signals contain additional information which is not required for the positioning.

Due to progress in instrument technology. imaging sensors are widely applied in nu-
merous geodetic nstruments. For instance, tracking tacheometers and digital levels use
CCD sensors 1n order to automate tasks in terrestrial geodesy. Using image processing
techniques which estimate the amount of refraction influences, an improvement of accu-
racy can be expected. Therefore, the following research work investigates the potential
of imaging techniques to achieve refraction-reduced measurements.

1.1 Correction methods

When considering direction transfer and levelling in terrestrial geodesy, correction
methods for refraction aim at the determination of the refraction angle. The refraction
angle is caused by the curvature of the light ray due to varying density and defined as
the angular deviation between the refracted incident ray and the undisturbed ray. Sev-
eral correction methods can be applied:

i. Measurement of the temperature gradient which is the main influential factor for

the refraction angle, using high-precision temperature sensors, e.g., [GOTT-
WALD, 1985], [WILHELM, 1993], [HENNES er al.. 1999].
This method can provide accurate results if the selected measuring points are rep-
resentative for the refraction influences on the geodetic observations. However, the
instrumental equipment is extensive and the setup for field measurements is de-
manding (e.g., time-consuming on-site calibrations are required).

ii.  Special measuring procedures such as mutual-simultaneous observations or sym-
metrical observation configurations in order to reduce the effects of refraction,
e.g., [JORDAN eral., 1956], [BAHNERT. 1986].

The drawback of this method is that the real conditions do not always agree with
the assumptions underlying this method such as uniform stratification of air layers.

iil.  Incorporation of atmospheric effects into the adjustment process of geodetic net-
works, e.g., [ELMIGER, WUNDERLICH, 1983], [BRUNNER, 1984].
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This method is reasonable if the number of measurements is high cnough and al-
lows a confident estimation of the additional parameters. But as in method i1., er-
rors may occur if the parameters and the model are not representative for the real
conditions.

iv. Dual-wavelength methods utilizing atmospheric dispersion to derive the refraction
angle from the dispersion angle: This method was investigated in the scope of as-
tronomy by [HERTZSPRUNG., 1912]. A first feasibility study about the dispersion
effect for applications in geodesy was presented by [HUISER, GAECHTER 1989].
Further experiments using the dispersion effect were done for a rapid precision
levelling system as reported in [INGENSAND, 1990a]. These experiments re-
vealed various difficulties in respect of measuring the dispersion angle, but they
were the starting-point for the further development of a dispersometer theodolite.
In this regard, the updated concept was presented in [INGENSAND, BOECKEM,
1997}; furthermore, first results of system tests and new technological aspects are
discussed in [BOECKEM, 2000].

The method using the dispersion effect is the most accurate method since it allows
the determination of integral corrections holding for the whole lie of sight. How-
ever, up to now it also needs a considerable instrumental effort.

v. Turbulent transfer model using the upward sensible heat flux for derivation of the

temperature gradient [BRUNNER, FRASER. 1977]. The required parameters fol-
low from the measurement of scintillation effects such as amplitude fluctuations or
phase fluctuations of the incoming waves [HILL, OCHS, 1978], [BRUNNER
1979].
The following investigations focus on this method because it determines the tem-
perature gradient as an integral value along the whole optical path and, therefore,
can be effectively utilized to model correction values for refraction influences. In
doing so, the structure parameter needed for the Monin-Obukhov similarity model
(section 3.3) and for the determination of the temperature gradient are derived di-
rectly from the measured signal. As an advantage to other approaches, the turbu-
lent transfer model in combination with image processing techniques needs less in-
strumental efforts than other methods such as dual-wavelength methods.

1.2 Previous research work on turbulence models and refraction

The significance of the atmospheric turbulence for the determination of refraction influ-
ences has already been investigated in previous research work. In the field of geometric
levelling, the phenomena caused by refraction influences can be visualized as the
movements of scale lines of the leveling rods as seen through the level telescope. A
practical experiment during 48 hours showed quite a good correlation between these
movements and the temperature gradient [KUKKAMAKI, 1950]. But quantitative for-
mulae for the correction of refraction influences basing on turbulence models were not
available at that time. Only the research work of MONIN and OBUKHOV [1954] pro-
posing a new model for the turbulent exchange processes in the atmospheric boundary
layer enabled the determination of temperature gradients basing on similarity relations.

In order to use the Monin-Obukhov similarity theory for geodetic applications such as
levelling or direction transfer, information must be derived from the behavior of the
light waves propagating through air layers of randomly varying refractive indices. In
this regard, the fundamental theories of optical propagation in a turbulent medium were
mainly developed in Russia [TATARSKIIL, 1961]. Practical experiments for geodetic
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applications were reported from [GURVICH et al., 1974] and [VINOGRADOV er al.,
1985]. Despite the simple visual methods, they achieved a reduction of the systematic
distortions up to about 80%. In doing so, the theoretical formulations were not applied
rigorously but were partially replaced by semi-empirical modeling. As a drawback,
these methods need experienced operators and are not suited for automation.

In respect of geodetic refraction problems, a theory for the determination of the vertical
refraction angle using the variance of the angle-of-arrival fluctuations and profile shape
functions has been presented by BRUNNER [1979]. In this regard, the vertical tem-
perature profile along the line of sight is combined with the movements of the target as
seen through the telescope and this model can be used for instance to determine the re-
fraction effects in geodetic levelling [BRUNNER. 1980]. This mostly theoretical re-
search work showed that refraction detection using image fluctuations is possible in
principle. For the last twenty vears, several research work aiming at the derivation of
turbulence parameters from geodetic observations have been carried out thanks to the
progressing developments of geodetic systems in terrestrial geodesy. In doing so, sev-
eral experimental setups have been developed using a modified distance meter [HEN-
NES, 1995] or a CCD area scan camera with 100 x 100 pixels as described in [CA-
SOTT, 1999] and [DEUSSEN, 2000].

Although the experiments using an area scan camera are quite promising, the applica-
tion of area scan camera make great demands on the hardware such as data transfer and
data storage. Therefore, the following research work investigates both area scan cam-
eras (built into video theodolites) and line scan sensors. The hardware requirements of
line scan sensors are less demanding than the ones of area scan camera. Line scan sen-
sors are especially suited for digital levelling whereby refraction influences can cause
systematic deviations which still cannot be eliminated by other methods. Additionally,
alternative methods are presented to derive the turbulence parameters reliably using
adapted image processing algorithms (cf. section 6.3.4).

1.3 New developments and concepts of the presented research work

The following research work aims at the development of a precise elevation angle

measurement system using image processing techniques and turbulence models. As

mentioned at the beginning of section 1, the concept states that the analysis of the meas-
ured signal (image signal) is sufficient and no additional measuring system is required
except image sensors. In this regard several innovations are introduced:

e Determination of inner scale /, by means of intensity fluctuations derived from im-
age processing techniques.

e Development and experimental validation of an image acquisition system which is
capable of determining refraction influences using a CCD line scan sensor and im-
age processing techniques.

e Practical field experiments comparing the results of the levelling system with those
of a reference system (scintillometer) providing the parameters of optical turbulence
(C,” and Ip) and with the results of a temperature gradient measurement system. Ad-
ditionally, the results are compared with a field experiment using a video theodolite
as a representative of a commercially available geodetic instrument.

e Optimization of image processing techniques in respect of refraction analysis for
geodetic applications.
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Figure 1.1 presents an overview of the research work and the structure of the report:
Obviously, the report is mainly focused on the investigation and development of image
processing algorithms which can be used for processing the image data provided by the
imaging systems, which are presented in section 5. In section 5, other systems are also
described which provide measuring data for comparison with the data obtained by im-
age processing. The image processing techniques make available quantities which de-
termine the intensity fluctuations and angle-of-arrival fluctuations of the incoming wave
fronts and intensity variations. Consequently, the intensity fluctuations and angle-of-
arrival fluctuations can be used to determine the structure constant C,~ (section 4.1) and
the inner scale /y (section 3.4) as described in section 4. These two structure parameter
C,” and Iy obtained by image processing can be compared with the parameters C,~ and
lo derived from the measurements using a scintillometer. The comparison is shown in
section 7.1 and 7.2. Furthermore, the parameters C,Z3 and [y provide the temperature
gradient by means of turbulence models, Monin-Obukhov similarity, and dimensionless
profile functions as presented in section 3. The modelled gradient is compared with
measurements obtained by temperature sensors in section 7.3. Furthermore, section 2
presents the fundamen-
tals used to derive the
refraction angle from the

temperature gradl@nt- ‘C—: Temperature E Imaging sensors
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Figure 1.1: Scope of presented research work: Overview



2 Wave propagation in refractive media

2.1 Refractive index

The refractive index 1s a physical property of the medium and is defined as the ratio of
the wave propagation velocity in the medium and the wave propagation velocity in a
vacuum.

If the electromagnetic conductivity of the medium can be neglected, the refractive index
n and its spatial distribution in the medium describe the propagation of the wave which
propagates through the medium. The refractive index for the atmosphere can be ex-
pressed for optical and infrared wavelengths as [OWENS, 1967]:

n—1= (xkf;l‘in% a—]l- (2.1)
T 1
with  Ox  Dry-air wavelength-dependence function for wavelength A
O, Water vapor wavelength-dependence function for wavelength A
Da Partial pressure for dry air [hPa]
pw  Partial pressure for water vapor [hPa]
T Temperature [K]

For most applications in the atmosphere, the dry-air term dominates [BELAND, 1993],
thus, moisture effects of the air are neglected and the refractive index n of air can be
expressed as a function of the wavelength A, the temperature 7 and the pressure p
[GOTTWALD 1985}:

n—1=0o, L (2.2)
T
with oy Dry-air wavelength-dependence function for wavelength A
oy, = 78.83-10° K/hPa for A = 590 nm, cf. e.g., [BELAND, 1993]
P Total pressure (p = py + p,) [hPa]

T Temperature [K]

The refractive index of air is subject to spatial variations depending on the temperature,
pressure and moisture. Due to the influence of, e.g., energy fluxes and thermal gradi-
ents, the distribution of the refractive index changes decisively in the atmospheric air
layers.

The spatial inhomogeneity of the distribution of the refractive index leads to refractive
index gradients. Assuming a constant pressure gradient and neglecting moisture effects,
the refractive index gradient 1s given by [GOTTWALD 1985]:

O O G ’ Bl .
dn __7883-107p 0.0342 + ar (2.3)

2

dz T \ dz
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with  dn/dz Refractive index gradient [m“‘]
z Height [m]
dT/dz  Temperature gradient [K/m]

(2.3) is valid for visible light (A = 590 nm). The refractive index gradient is subject to
considerable changes in the atmosphere due to the spatial variations of temperature,
temperature gradient and pressure which are the main influence parameters.

2.2 Refraction influence on propagation path

The refractive index gradient as introduced in (2.3) is the dominant parameter for the
calculation of refraction influences on the propagation path of electromagnetic waves.
In general, the path of electromagnetic waves propagating through a medium of varying
refractive index is curved because the wave seeks a propagation path which leads to a
minimal transit time. This so-called Fermat principle can be interpreted geometrically as
follows. If the wave passes a boundary between a medium of refractive index n and an-
other medium of refractive index n+dn the angle of incidence B is bent according to the
Snellius law:

n+dn _ sin(0+dB) 2.4)
no sin(®) l
with  dn  Infinitesimal change of refractive index
O Angle between refractive index gradient and propagation path

dz

Figure 2.1: Refraction of wave according the SNELLIUS law

Using the trigonometrical addition theorem

sin(O+df) = sin(¥) cos(dP) +cos(¥) sin(df) (2.3)
and

d _ cos(®) (2.6)

ds

sin(dB) = df ; cos(df) =1 (2.7a.b)

with  ds Infinitesimal change of path length
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equation (2.4) can be written as:

ldn . . d " v )
——sin(V) = 8 =K, (for vy, =0) (2.8)
n dz ds '
with K.y Curvature of propagation path
Vi Angle between the refractive index gradient and vertical z-axis (see be-

low in Figure 2.2)

Instead of ., the traditional geodetic derivation of refraction influences often uses the
coefficient of refraction K./, which is introduced as follows:

Ko = RE-Kpep (2.9)

with Ry  Radius of earth

The application of K,/ is an alternative way to express the refraction influences but
gives no further information when dealing with refraction influences in geodesy. The
following derivation uses the curvature ¥, to describe the wave propagation in refrac-
tive media. Assuming that the curvature of the propagation path is given by (2.8), the
computation of the propagation path z = z(x) is possible in principle. This computation
is briefly explained in the following.

propagation path of light ~8Target
i

Instrument B@

Figure 2.2: Coordinate svstem

To facilitate the explanation without Joss of universality. the computation can be per-
formed in a Cartesian coordinate system where the z-axis runs vertically through the
instrument point with the foot-point of the instrument as zero point (Figure 2.2). The
propagation path starts at the height of instrument z;. The x-axis is perpendicular to the
z-axis and runs in the direction of the target. The result of the computation is a function
z = z(x) which expresses the position 7 of the light ray for each coordinate x of the axis
defined by the instrument and target (Figure 2.2).

It is possible that the refractive index gradient is not parallel to the z-axis at every point
along the propagation path. In this case. the angle ¥y, between the refractive index gradi-
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ent and vertical z-axis is not zero and dn/dz has to be teplaced by dn/dz, where z, runs
parallel to the refractive index gradient:

. . d
K =%, (52 =L ) singoy = P (2.10)
! ' ndz, ds

For a computation using (2.8) [or (2.10), respectively] it is necessary to relate the cur-
vature df/ds to the Cartesian coordinate system as introduced in Figure 2.2. Since the

angle of incidence B at the instrument is given by

tan(B)= 4 7 (2.11)
©odx

it follows

B = arctan(z") (2.12)
dB = T+ dv (2.13)

Using the relation

ds =dv' +d:z" = \/],+ v (2.14)
equation (2.8) yields to the following second-order differential equation:
]2:, ” V2 %) -

If the height of instrument z; and the angle of incidence B of the wave at the instrument
are inserted as the initial values, the solution of the ordinary second-order differential
equation (2.15) is determined, i.e., the solution is the propagation path z(x) as a function
of x. An analytical solution for (2.15) is not possible since the differential equation 1is
not linear and since K, depends also on the position (x, z) of the light ray in space.

But a numerical solution for (2.15) can be achieved if the second-order differential

equation is transformed into a system of two first-order differential equations as fol-
lows:

J d=z M
1:; =K, (1,+ ~> - (2.16)

The variable z, substitutes for the first derivation of = (x).
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With the mnitial values

z(0): Height of instrument z;

2(0): Angle of incidence 8

the system of differential equations (2.16) can be solved. In doing so, the algorithm ap-
plied in the following calculations uses the explicit Runge-Kutta (4.5) formula as pub-
lished in [DORMAND. PRINCE, 1980]. This algorithm is a one-step solver, that means
it needs only the solution at the immediately preceding space point z(x;y) for the solu-
tion of z(xy). The advantage of this algorithm is its high accuracy under the assumption
that the problem is non-stiff. This assumption is normally fulfilled in (2.16).

Depending on the kind of refraction problem which will be simulated either the angle of

of the target must be given. In the latter case. the angle of incidence P is not known
exactly and the propagation path must be calculated by means of iterations. In this case,
a first approximation for B is derived from the refraction-free direction By, which is
determined using the coordinates of the instrument and the target (Figure 2.3).

Target

Inst >
nstrument ZA -
. wwea b e X e s ey s g . -~
Z J;(X‘Yargei)
B(o‘; Bﬂ) B Propagation path
— First iteration
Nl 3 3 mex Socond iteration
} s [ 3 3 G S0 1Ution
0 X
XTargei

~

Figure 2.3: Iterative calculation of the propagation path

As illustrated in Figure 2.3, the exact solution of the propagation path z(x) is calculated
using iterations zi(x). z(x), ... as follows:

1. (2.17)
2. Solving (2.16) using 7 (0) = z;and z2(0)= B, = Zp (x)

. TN e ) ™ 2o X
3. B, =B,,, +arctan ——1 T )W (2.18)

i

'\‘7117‘&71 )
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4. Solving (2.16) using z (0) = z;and z2(0)= Py, = 70, (%)
./*(,\:. Yz, )
5. B =B+ al‘ctant e L W 2.19)
'\.Tm'gu! /]
6. Solving (2.16) using 2 (0) = z;and z(0)= B =z (%)

The algorithm terminates as soon as the absolute error of convergence lzy (x) = z(x)l can

&

be neglected.

&

2.3 Refraction angle

In most of the applications in geodesy, not all of the information about the run of the
propagation path is required. Instead, the refraction influences are characterized by a
few parameters such as the refraction angle 8 or the deviation d, between the real posi-
tion of the target and the apparent position. d and d, are defined as shown in Figure 2.4
and are related by

d, = Rsin(8)= RS (2.20)

with R Length of propagation path

oy Target (apparent)
i 7= 2(X) dq 9

~ [ — g
i B é)\ T i !

Instrument Y /m— Target (real)

I
z,|
;
|

1

Figure 2.4: Refraction angle

A simple method to calculate the refraction angle is the direct derivation of this angle
from the propagation path of the light. If the function z = z(x) of the propagation path is
given, the refraction angle d follows from:

< dz(x) :(-"nm; )- z(0) ” At
O = arctan| ——— = |=arctan| —2S A0 (2.21)
dx =0 Ap et

Alternatively to the calculation of § using (2.21) and the second-order differential equa-
tion (2.15). it is also possible to derive the refraction angle by means of integration




along the propagation path of the light ray. In doing so, the r-axis is introduced which
connects the mstrument with the target (Figure 2.4).

The refraction angle which is defined by the angle between the r-axis and the incoming
light beam at the instrument 1s very small (normally < I mgon). Hence, the refraction
angle can be calculated using the integration as given by [MORITZ, 1962]:

d ] T | ry i | i 1 dn ol
Om—L=— (r=RMPp=—|(r=R), . dr=—|—"—(~RX)r (2.22)
R 1{) ln.\‘lern,';;ni \)( B R IJ> ( - R :]> n (]:' ( )(
with R Length of propagation path

Hereby, the propagation path is assumed approximately perpendicular to the refractive
index gradient, i.e., sin(¥) = 1.

In the publication of MORITZ [1962]. the factor r instead of (r-R) is used in the inte-
gral. The factor (-R) is correct if the refraction angle is defined at the instrument point
(e.g., theodolite, level). If the refractive index gradient is symmetrically distributed
along the propagation path, the different formulae yield the same results. If the refrac-
tive index gradient is constant along the propagation path, the refraction angle is given

by

L dn R 5
§ = R for dn/dz = const. (2.23)
2n dz

Since the refraction angle is proportional to the length of propagation path, the deviation
between the real position of the target and the apparent position is quadratic to the
length of propagation path:

R ,
Sl J (r—R}r = L R*  for dn/dz = const. (2.24)

2n dr-

These formulae allow a useful interpretation of the refractive index gradient dn/dz by
means of the geometrical elements (6 or ) and, therefore, a quantification of refraction
influences in geodesy. But (2.23) and (2.24) only work under the assumption of a con-
stant refractive index gradient. However, this assumption does not strictly hold in prac-
tical field measurements, with other words, the refractive index gradient must be
determined as a function of the propagation path whereby dn/dz is mainly influenced by
the temperature gradient as mentioned in (2.3).

In order to obtain an overview over the relevant parameters influencing the temperature
gradient and. consequently. the refractive index gradient. the following section presents
some basics on modelling the thermal exchange processes which are responsible for
these gradients in nature.
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2.4 Energy fluxes causing refractive index gradients in the atmosphere

2.4.1 Energy balance and stratification

As shown in (2.3). the refractive index gradient mainly depends on the temperature gra-
dient, temperature, and pressure. When considering geodetic field measurements, these
quantities are related to thermal energy fluxes in the atmospheric boundary layer. These
energy fluxes fulfill the following equation according to the law of conservation of en-
ergy, e.g., [GEIGER er al.. 1995]:

R +L,+H+G =0 (2.25)

with R, Net radiation [Jm'zs“l]
Lypr  Latent heat flux [Jm':s“l]
H  Sensible heat flux [Tm™s™]
Gs  Geothermal heat flux of the soil [Jm':s"]

a) Unstable b) Stable

Figure 2.5: Energy balance at the ground surface (schematically)

The energy flux of net radiation can be modelled as follows: During a sunny day, the
short-wave radiation from the sun reaches the ground surface. A part of the incoming
radiation Rp,,, 1s reflected but the most of the incoming radiation is absorbed by the
ground surface. Due to Kirchoff's Taw, the ground surface sends out its own long-wave
radiation R,,, which warms up the air of the atmospheric boundary layer. Thus, the net
radiation R, is given by, ¢.g.. [GEIGER et al., 1995];

R, =Ry, (I-0,)-R, (2.26)

"

with o, Albedo
Rpown Incoming radiation (short-wave)
Ryp  Radiation emitted by the ground (long-wave)

According to the circumstances (such as daytime, sunset, clouds, exposition of the
ground, material properties of the soil, water content of the soil. vegetation) the value of
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the fluxes R,. Lpr, H, and Gg can change considerably. In this regard, three relevant
cases must be distinguished, e.g., [STULL, 1991]:

H>0 < Unstable stratification (usually during daytime, Figure 2.5a)
H <0 ¢ Stable stratification (inversion, night time, Figure 2.5b) (2.27)
H=0 <& Neutral stratification (transition)

During sunshine (cf. Figure 2.5a), the energy of R, is consumed by the evaporation, i.e.,
the latent heat flux Ly on the one hand. On the other hand, energy of R, is also put into
mass convection, which is expressed by the sensible heat flux H. In the atmosphere, the
sensible heat flux transports heat and energy by air parcels.

During daytime. these air parcels arise due to buoyancy. A minor part of the energy of
net radiation R, leads to the geothermal flux G which warms up the ground surface and
the underlying layers of the soil.

As shown schematically in Figure 2.5b, the net radiation is inverted during the night-
time and Gy transports heat to the surface from the underlying layers of the soil. The
latent flux Ly becomes smaller since less energy is available for evaporation during
nighttime. Often, the latent flux Lgr is inverted which means that water is condensed.
Additional, the nighttime is characterized by a descent of air parcels, i.e., the sensible
heat flux points in the direction of the soil.

At least, the neutral stratification implies a specific situation where no convection exists
and the sensible heat flux is zero. Normally. this stratification is present during the tran-
sition from unstable to stable stratification or vice versa.

2.4.2 Sensible heat flux and temperature gradient

During adiabatic processes. the temperature of the air changes only by pressure changes.
It is thus convenient to reference temperature to a given pressure by defining the poten-
tial temperature which does not change during adiabatic processes, including those
having large pressure changes. The temperature gradient d7/dz which is used to calcu-
late the refractive index gradient (2.3) is related to the potential temperature gradient
d0/dz as follows, e.g., [STULL. 19917:

(2.28)

with  T;  Dry-adiabatic temperature gradient: T';= 0.0098 K/m

The sensible heat flux is a decisive parameter for determination of the (dry-air) potential
temperature 0. This relationship becomes evident if the gradient of the sensible heat flux
is investigated: The gradient of the sensible heat flux H causes a loss or gain of potential
temperature. The correspondent continuity equation is given by, e.g., [BLACKADAR,
1996]:
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C})pfi@ __4H (2.29)
dt dz
with ¢, Constant-pressure heat capacity of air [J/kg/K]
P Density [kg/m’]
0 Potential temperature [K]
t Time [s]

The sensible heat flux can be measured using methods of scintillometry or sonic-
anemometry. When measuring f. the question may arise whether the latent heat flux
Lrr affects the measured value of H. The Bowen ratio is an appropriate criterion to de-
cide if the influence of moisture is relevant or not. This ratio is defined by, e.g.,
[BRUNNER, 1982}:

(2.30
p=1L )
Ly

Field measurements as reported in [WEISS er al., 1999] showed that the relative error
due to moisture is less than 10% if the measurements base on optical scintillation (infra-
red or visible waves) and the Bowen ratio is not smaller than 0.4. Further considerations
about the influence of moisture are made in [WESELY, DERZKO, 1975].

Back again, besides the gradient of sensible heat flux dH/dz, additional information is
required to derive the potential temperature since the problem (2.29) is under-
determined. The Monin-Obukhov similarity theory which will be introduced in section
3.4 is a possible method to overcome this problem and allows the determination of the
potential temperature and its gradient d6/d:.

As a consequence of these thermal exchange processes which are presented above, the
temperature gradient is subject to vast temporal and spatial changes. In order to analyze
the temperature profile in the lowest 100 m of the atmosphere, extensive temperature
measurements have been performed such as those documented in [BROCKS, 1948].
These measurements are valid for the unstable stratification and took place at different
locations and times. As a result of the investigations of [BROCKS, 1948], the parame-
ters ar and by have been determined which are part of the empirical formula modelling
the temperature gradient:

with  ay, by Parameters of temperature gradient model

This model is used in the following section where the influence of refraction on typical
geodetic measurements is quantified by means of mathematical simulations.
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2.5 Relevance of refraction influences for geodetic applications

2.5.1 Refraction influences in the context of other thermal influences

The influence of refraction deteriorating the accuracy of geodetic measurements is still a
crucial point for the positioning in geodesy. In particular, refraction influences direction
measurements, distance measurements, height differences, GPS measurements and
measurements using photogrammetry.

As shown in section 2.4, the refraction influences are always a function of the tempera-
ture gradient. Unfortunately. other systematic deviations of geodetic measuring proce-
dures also depend on the temperature, thus. these systematic deviations can combine
with refraction influences.

For example, variations of temperature can influence the line of vision of levels
equipped with an integrated compensator in the order of 0.15 mgon/°C [INGENSAND,
MEISSL, 1995]. Assuming that the variation of temperature is large enough (more than
5 °C) and the resulting deviation is not compensated otherwise, the systematic devia-
tions of geodetic instruments can exceed the refraction influences. As a further example,
changes of temperature can also produce systematic deviations by shifting and inclining
of measuring pillars on which the geodetic instrument is positioned.

But the considerations in this section assume that these non-refractive effects are com-
pensated by adapted accompanying measures (e.g.. by means of calibration functions,
adapted design of the instruments and measurement configurations) and therefore can
be neglected in the following.

In order to demonstrate the effects and relevance of refraction, the following two exam-
ples of geodetic applications are calculated in the next subsections:

L. Precision levelling

2. Vertical angle measurements

These two applications are chosen for the following reasons: On the one hand, they are
applications which often make high demands on accuracy (sub-millimeter range). On
the other hand, the system and algorithms developed within the scope of this research
work are expected to increase the accuracy for those two applications, i.e., the following
simulation illustrates the requirements which must be met by any method correcting
refraction influences.

2.5.2 Precise levelling

The following simulation deals with refraction influences in precise levelling neglecting
other systematic deviations such as stability of the staffs. With a central position of the
levelling instrument between staff 1 and staff 2 (Figure 2.6), the total refraction effect
from one levelling setup will always be the difference of the refraction influences be-
tween the foresight measurement and the backsight measurement.

Thus, isothermal air layers which do not run parallel to the line of sight cause systematic
deviations due to unsymmetrical refraction effects. In other words, these circumstances
cause a systematic deviation &, which mounts up with increasing length of the levelling
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line. For example, the problem occurs when the levelling line consists of an extensive
slope. This situation 1s displayed in Figure 2.6 which characterizes the following simu-
lation.

In this simulation. a temperature of 300 K and a pressure of 1000 hPa are assumed and
the temperature gradient is a function of the height of the line of sight above ground.
Hereby. the temperature gradient model of (2.31) is applied with parameters ar = 0.34
and br = 0.99 [BROCI&S 1948]. Thereby, these parameters represent the temperature
profile of the first 100 m of the annosphuu bmmdan layer in the morning of a clear
day in summer.

Staff 2

Staff 1 Line of Propagation
Level sight  path of light

1.50m

Z;

Figure 2.6: Refraction influences in precise levelling: Configuration of simulation

By using the differential equation (2.15), the propagation path of light z(x) can be de-
termined. The results are shown in Figure 2.7 wherein the difference Az(x) between the
calculated value z(x) and the initial value z; are plotted. As shown in Figure 2.7, the
systematic deviation k, is about 0.044 mm for the stated input parameters.

Assuming 17 levelling setups along a levelling line of 1 km, the total systematic devia-
tion caused by refraction is 0.75 mm/km. For comparison: the standard deviation of
height differences obtained by precise levelling using digital levels is about 0.3 to
0.4 mm/km (double run levelling) as reported. e.g.. in [INGENSAND, 1995]. There-

&

i
fore, the refraction influences should be taken into conxlduatlon
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Figure 2.7: Precise levelling:

2.5.3 Vertical angle measurements

The second example investigates refraction influences on vertical angle measurements
used for trigonometric height determination. The instrument points to a target which is
positioned 60 m away. Target and instrument are assumed fo be at the same height z.
The simulation includes two cases characterized by different temperature gradient
fields. In both cases, a temperature of 300 K and a pressure of 1000 hPa are assumed.

e In case (a) the temperature gradient is assumed to be constant (d7/dz = 0.25 K/m)
along the line of sight. This case is typical. e.g.. for homogeneous ground surfaces

Simulation of propagation path z(x)

which are heated uniformly by the sun radiation.

e C(Case (b) investigates the wave propagation through the air wherein 3/4 of the
propagation path is not influenced by temperature gradients and 1/4 1s strongly
affected by a temperature gradient of 1 K/m. This situation may occut, e.g., when

the wave propagates near a heat source such as a warmed asphalt road.

The results of the simulations are displayed in Figure 2.8 for both cases.
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Figure 2.8: Direction measurement: Simulation of propagation path z(x)

The integrated contribution of the temperature gradient is equal in both cases, but the
distribution of the temperature gradient is different. As a consequence of the different
distribution of the temperature gradient. the angle of refraction is subject to considerable
variations as shown in Table 2.1.

Case Refraction angle [mgon]

Oy | o
(@:81=8=3 0.48 0.48
(b): 81 2 & 0.16 0.73

Table 2.1: Amount of refraction angle

These numerical examples and equations show that large temperature gradients are es-
pecially critical if they arise close to the instrument. Temperature gradients arising near
the target are less critical.

For example, if the measurements are performed as depicted in case (b), i.e.. if the in-
strument is in the range where no gradients occur. the refraction angle is only 20 % of
the refraction angle obtained by measurements where the instrument and the target are
positioned vice versa.

In case (a) the refraction angle causes a height deviation d, of about 0.45 mm. This de-

viation can be eliminated if ‘

e the vertical angle is measured reciprocally whereby the instrument and the target are
exchanged (reciprocal-simultaneous observations)

e the temperature gradients do not change between the two measurements

e the temperature gradient field is symmetrical
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Obviously, the last condition is not fulfilled in case (b). Although the instrument and the
target are exchanged. a considerable part of the refraction influence still remains. The
difference in case (b) is about 0.57 mgon which causes a deviation d,, of 0.54 mm for a
propagation path length of 60 m. Thus, d, does not disappear when measuring using
reciprocal-simultaneous configurations.

2.6 Conclusions

Refraction influences are a limiting factor in the accuracy of high-precision geodetic
measurement. As demonstrated by the example of precise levelling in section 2.5.2, the
amount of refraction influences is about twice the standard deviation of double run lev-
elling. The contribution of refraction influences depends to a large extent on the tem-
perature gradient and its spatial distribution. For example. the influence of the spatial
distribution 1s illustrated by the simulated case (b) in section 2.5.3. This example shows
that an appropriate choice of the place for the instrument can reduce the refraction angle
by more than 80%.

As it is shown in section 2.4.2, the temperature gradient is correlated with the sensible
heat flux. This flux can be described using the energy balance presented in section 2.4.1.
The fluxes of this energy balance are subject to considerable temporal and spatial
changes according to a variety of influence parameters as mentioned in section 2.4.1.
Hereby, the temperature gradient is the dominating influential parameter for the refrac-
tion effects when dealing with IR and light-wave. Up to now, the temperature gradient
needed for refraction analysis must be obtained by additional measurements and cannot
be derived from general thumb rules.

Refraction may occur simultaneously with other temperature-induced deviations of the
measuring setup as mentioned in section 2.5.1 which makes it difficult to separate re-
fraction influences from other influences. Traditional approaches in geodesy (such as
symmetrical observation configurations, reciprocal-simultaneous observation or redun-
dant observations by multiple aiming at targets positioned one above the other or at ref-
erence height marks) often eliminate refraction influences simultaneously together with
other systematic deviations. Hereby. these approaches base on certain assumptions con-
cerning the propagation path of light such as symmetry or circular shape which usually
are not strictly fulfilled when performing geodetic field measurements.

In order to obtain a hypothesis-free reduction of refraction influences, it is necessary to
determine the refraction influences integrally along the propagation path. In the scope of
this research work, the evaluation of the measured signal only is assumed to provide a
satistying estimation of the refraction influences. This estimation is based on image
processing techniques which use the image data from built-in geodetic image sensors.
Additionally, to estimate the refraction influences, the image processing techniques
must be combined with atmospheric turbulence models as presented in the following
sections.






3 Atmospheric turbulence model
3.1 Introduction

The goal of the atmospheric turbulence model presented in the following sections is to
model the turbulent exchange processes of momentum and sensible heat in the atmos-
pheric boundary layer. From the turbulent fluxes of momentum and sensible heat, the
temperature gradients can be derived, which are used to estimate refraction influences
as modelled by (2.3).

Turbulence 1s characterized by irregular fluctuations of the parameters (velocity, tem-
perature, concentration, etc.) of a gas or a fluid. The nature of turbulence is irregular and
rather unpredictable. The Navier-Stokes equation is regarded as a deterministic answer
to fluid dynamic and turbulence problems, e.g.. [TRITTON, 1977]. Assuming a con-
stant density, the conservation of momentum leads to the Navier-Stokes equation as
given by, e.g.. [DRACOS, 1990]:

Ju , . s -
p—=-pu-Yu- Vp +vp Vou [N/m’] (3.
Jt S e’ - e
Inertia force Pressure force Viscous force
with  u Velocity vector [m/s]
p Density [kg/m’)
2 Pressure [hPa]
v Kinematic viscosity [m™/s]

\% Nabla operator (gradient)

The Navier-Stokes equation describes the motion of all kinds of flows passing any sur-
face. They also describe the sensible heat flux H which is characterized by convective
mass transfer in the atmospheric boundary layers and which is related to the temperature
gradient as shown in (2.29). In order to distinguish turbulent flows from laminar (non-
turbulent) flows, the Reynolds number Re is the appropriate measure because turbulence
effects only arise when the inertia force exceceds a threshold given by the viscous prop-
erties of the fluid or gas. Thus. the Reynolds number defines the ratio of the inertia force
and the viscous force and is related to the Navier-Stokes equation as follows, e.g.,
[DRACOS, 1990]:

F. . u-Vu A
RE): NI I— " - | — L (32)
F oo }\V'V“u1 v
with U Characteristic velocity [m/s] of the fluid or of the gas
L Characteristic length [m]

Flows described by the same Reynolds number are similar in physical sense, where this
property can be utilized for experimental setups such as wind tunnels.

In laminar flows (i.e., absence of turbulence effects), the Navier-Stokes equation is ap-
proximately linear since u-Vul << IvV-ul. A turbulent flow is defined as a flow where
the Reynolds number exceeds a defined value (in general: > 2300). For turbulence oc-
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curring in atmospheric boundary layers, the Reynolds number is very large and lies in
the range of 10° to 10”. The choice for the characteristic len gth L used in (3.2) depends
on the application. For example, in hydraulic engineering the characteristic length L
may be the diameter of a tube. In the atmospheric boundary, the Obukhov length which
will be introduced in section 3.3.1 is an appropriate choice for the characteristic length.

Under turbulent conditions. the term pu-Vu cannot be neglected, therefore. the Navier-
Stokes equation becomes non-linear. Small perturbations draw energy from the laminar
trajectories of the flow. As a consequence of non-linearity, the energy is redistributed
into an increasing number of perturbations which become smaller and smaller. This
effect yields eddies building a cascade of the turbulent flow.

Laminar

Turbulent

I 1 Boundary

Figure 3.1: Cascade of turbulence

The perturbations of the turbulent flow have a transient chaotic behavior and therefore
cannot be described in a deterministic way. There are several approaches to deal with
turbulence. Hereby, the approach using fractal theory has to be mentioned which states
that several facets of fully developed turbulent flows are fractals, e.g., [MANDEL-
BROT, 1977]. Previous research work shows that several aspects of turbulence can be
described roughly by fractals, and that their fractal dimensions can be measured
[GROSSMANN, 1990]. These relationships are presented in Appendix A. However, it
1s not clear how, given the dimensions for several of the facets of turbulence. one can
solve up to a useful accuracy the inverse problem of reconstructing the original turbu-
lent flow itself [SREENIVASAN, MENEVEAU, 1996].

For this reason. the following turbulence model uses the statistical properties of turbu-
lence as introduced by KOLMOGOROV [1941]. His approach advances a hypothesis
for high (Re > 10°-10") Reynolds numbers. This model explains why the scale size of
the finest turbulence structures becomes smaller and smaller with increasing Re, and
should allow the treatment the finest details in a homogeneous way. It cannot explain
why certain structures form and not others. but it describes the average flow of energy
across the scale sizes of turbulence.

The spectrum of kinetic energy as introduced in section 3.2 is a key point of the statisti-
cal approach by Kolmogorov. As will be explained in greater detail in section 3.2, ki-
netic energy enters the medium on large scales, in the form of convection or friction on
an obstacle (energy range). The energy is transferred towards smaller scale sizes over
eddy fragmentation, while the Reynolds number decreases (inertia range). The smallest
eddies have sub-critical Reynolds numbers, they dissipate heat, and are stable (viscous
range).
R

The energy spectrum (section 3.2) mainly depends on the following two parameters: the

~

structure constant of temperature Cr~ (cf. (3.62)) and the inner scale [y (cf. (3.19)). Both
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parameters can be determined using appropriate methods such as methods of scintil-
lometry, sonic-anemometry, or image processing. Hereby, the applied measurement
methods and algorithms are described in sections 4 to 6.

Cy” and /, can be used to determine the temperature gradient since they allow the de-
termination of the sensible heat flux by means of dimensionless profile functions as
presented in section 3.3.2. This procedure is valid so long as the quantities described by
the profile function are Monin-Obukhov similar as postulated in section 3.3.

In the following, a more detailed explanation of the relevant elements of this procedure
is given, which allows the determination of temperature gradients by means of atmos-
pheric turbulence.

3.2 Energy spectrum

3.2.1 Energy density function of turbulent kinetic energy
Turbulence can only be maintained by continuous inflow of kinetic energy because vis-
cous forces dissipate the kinetic energy into thermal energy. Therefore, the kinetic en-
ergy production and dissipation characterize the turbulent flow.

The determination of the kinetic energy and the dissipation energy requires the knowl-
edge of the velocity « of the molecules of the fluid or gas which obeys the Navier-
Stokes equation. Because this equation is non-linear, the Navier-Stokes equation still
cannot be solved exactly [FEFFERMAN, 2000].

As a trade-off, the Reynolds approach to turbulence implicates that modelled parameters

such as the velocity u (= lul), the turbulent kinetic energy Ly, , the density p. etc., can

be split into

e an average part denoted by an overline, e.g., it . E,, , etc., and

o a random fluctuation part denoted by an apostrophe. e.g., ', F, etc. whereby the
random fluctuations are much smaller than the average part:

Consequently, the Reynolds approach can be written as:

u(t) =1 +u'(1) (3.3)
E.,(1y=E, +E'() (3.4)

In (3.4), E represents the turbulent kinetic energy of the turbulent motion per unit mass.
E’ 1s related to the random fluctuations of the velocity by:

N

E =" m~s

]

3
m~
9]
L
Z

The apostrophe indicates that the turbulent kinetic energy is the total kinetic energy
(time-averaged) minus the kinetic energy of the mean motion. E’ is generated by im-
posed shear, transported by various mechanisms, and dissipated by viscosity [PANOF-
SKY. DUTTON, 1984].
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In turbulent flows, a direct measurement of u” is possible by means of high-resolution
anemometers, e.g., [OHMURA, ROTACH, 1997]. However, due to the random fluc-
tuations of E’(¢) the direct interpretation of the time series E'(f) does not reveal the pa-
rameters ('~ and /y which are needed for refraction detection. For this purpose, the
spectral analysis of the time series of E’(¢) is brought into play. Hereby, the Fourier
transform of E'(r) characterizes the turbulent kinetic energy by means of energy density
distribution E’(®) which is a function of the frequency @ [TATARSKII, 1971]:

Elw)= [e™" E'(ndr (3.6)
The energy density distribution described by (3.6) can be measured as a (temporal)
spectrum. Whereas the temporal spectrum is measured during a given length of time,
the application of the energy density distribution for the determination of the inner scale
(which is a spatial quantity as shown in section 3.2.6) requires the determination of the
spatial structure of turbulence at a specified point of time. In order to obtain a relation-
ship between temporal and spatial structure of turbulence, Taylor's frozen turbulence
hypothesis can be used. This hypothesis states that the temporal series of turbulent
movements can be converted to the spatial one whereby the temporal and the spatial
series are related by the covariance tensor R;; as follows, e.g., [PANOFSKY, DUTTON,
1984]:

R(1) =R, (2n/K) fori=1.2,..57=12,.. (3.7)
. 2 ,
with K= (3.8)
u, 1
K Spatial wave number of the turbulence [ﬁ]’l']]

iy Velocity of crosswind [m/s]

The frozen turbulence hypothesis can only be applied to those cases where the turbulent
eddies evolve with a timescale longer than the time it takes the eddy to be advected past
a sensor. In other words, the frozen turbulence hypothesis holds if the local wind veloc-
ity 1s high in comparison to the change of the shape of the turbulent eddies. When con-
sidering scintillation measurements using imaging sensors or scintillometers, only the
wind component which is perpendicular to the line of sight is relevant because the wind
parallel to the line of sight does not deliver a relevant contribution to the temporal sta-
tistics. ¢.g.. [HUFNAGEL. 1978].

Measurements presented by POWELL and ELDERKIN [1974] show that the frozen
turbulence hypothesis is valid in the atmospheric boundary layer and under near-neutral

conditions if the crosswind i, and the wave number x fulfill the following equation:
K-, 2 d—> (3.9)

Thus, the energy spectrum makes it possible to describe the scales of the eddies in the
turbulent continuum. This means the spectral analysis allows the description of the
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transport of energy from large eddies (low frequency) to small eddies (high frequency).
Using the spatial frequency spectrum, the density distribution of turbulent energy £'(x)
is a function of the wave number ¥ instead of the frequency . This energy density dis-
tribution is also known as turbulence spectrum describing the amount of turbulent ki-
netic energy which is contributed by eddies of the correspondent wave number K = 21t/(
(¢: Eddy size). The eddy sizes Ly and /[y denote the limits of the ranges of energy injec-
tion, energy transfer and energy dissipation as schematically shown in Figure 3.2,

Energy
injection

Energy
transfer

Dissipation

Figure 3.2: Energy transfer and turbulence spectrum E'(x), see also (3.16)

Herein, turbulent Kinetic energy is generated and injected at the lower wave numbers,
i.e., at large eddy sizes. Then, a process of eddy fragmentation transfers the energy
through the spectrum. Hence, the energy put in at low wave numbers is transformed to
the higher wave numbers and, therefore. the eddies lose their anisotropic configuration
form and become more and more isotropic and smaller until they are dissipated.

E{x)
* " i 3 B N
! Energy inputt  Inertial Viscous
| subrange subrange subrange
|

2n o T T
SN

K

Figure 3.3: Energv spectrum E” and spectral density of dissipation rate €,
adapted from [TATARSKII, 1971]
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Based on this energy transfer process, the spectral energy density of the kinetic energy
E'(K) and the corresponding spectral density of the energy dissipation rate €'(K) is
shown schematically in Figure 3.3. Figure 3.3 shows that the run of the function of
E’(K) can be split into an energy input subrange, an inertial subrange and a viscous
subrange whereby these ranges are separated by the parameters Ly (outer scale) and /o
(inner scale). The properties of £'(K) in these subranges are presented in the following
sections.

3.2.2 Viscous subrange and dissipation rate

As plotted in Figure 3.3, the spectral density of the energy dissipation rate €'(K) is
dominant in the viscous subrange. €'(k) can be derived from the viscous force term of
the Navier-Stokes equation (3.1) using the definition of the turbulent energy E” (3.5) and
Taylor's frozen turbulence hypothesis. Thus the spectral density of the dissipation rate is

given by [TATARSKIIL, 1971]:

£'(K) = v E'(K) [m'/s'] (3.10)

When €/(x) is integrated over all scales, the rate of loss of turbulent energy, denoted by
the dissipation rate € is calculated by
£= 2\’J K E(K)dx [m™/s']

(

(3.11)

The kinematic viscosity v used in (3.11) is specific to each medium. Moreover, in the
case of the air, the kinematic viscosity can also be influenced slightly by the density and
the temperature of the air [PRUPPACHER, KLETT, 1978]:

i

ja—y

1
—

V= L7184+ 0.0049 (T - 273.15)
P

107 [m¥s] (3.

with T Temperature [K]
p Density [kg/m]

The K-term of equation (3.10) causes a peak of €'(k) in the regions of high frequency x
(Figure 3.3). In other words, the dissipation of kinetic energy takes place mainly at high
frequencies, 1i.e., in the viscous subrange. Thus, the viscous forces dominate the inertia
forces of (3.1) and turbulence effects only arises in the range where x < 21t//y. This cri-
terion gives the limit between the viscous subrange and the inertial subrange which is

~

described in section 3.2.3.

3.2.3 Inertial subrange

In the inertial range, the kinetic energy associated with the large anisotropic eddies is
transformed without loss of energy €/(x) to successively smaller and smaller eddies until
finally the diameter is smaller than /,. As shown in Figure 3.3, the inertial subrange is a
nearly dissipationless subrange of the spectrum. This subrange corresponds to spatial
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dimensions of some meters to 2-3 kilometers in the atmospheric boundary, e.g.,
[BREMER, 19991].

The energy distribution function characterizing the inertial subrange is part of classical
turbulence theory [KOLMOGOROV, 1941]. This theory is based on the assumption
that on the convection scales denoted as inertial subrange, the constant mean dissipation
rate € 1s the only relevant parameter. In comparison with the viscous subrange, the
spectrum E” (k) of turbulent energy is independent of the viscosity parameter v in the
inertial subrange.

Using Buckingham's Pi theorem which states that physical laws are independent of the
form of the units, the energy density spectrum £ is given by

E'=FE'(e.x) =" k"1, (3.13)
The factor I, is a dimensionless numerical coefficient which must be determined by the

use of physical experiments. The unknown parameters o and o can be derived from
(3.13) by use of the analysis of the dimensions:

[m* s = [m7s % m™™ (3.14)
[m]: 3 =—0h + 204 (3.15)
[sl]: -2 = — 30

The unknown parameters can be calculated from (3.15). From the solution ¢ = — 5/3
and o = 2/3 it follows:

E =", for 2n/Lg < x < 21/l (3.16)
The 2/3-relation which was first introduced by KOLMOGOROV [1941] has been con-
firmed by numerous investigations. An overview is given in [GROSSMANN, 1990] and
[BATCHELOR, 1993]. Hereby. the dimensionless constant []z in (3.16) appears to be a
universal constant with a value close to 1.5 [MONIN, YAGLOM, 1975].
In order to obtain a function of £'(x) which is valid for both viscous subrange and iner-

tial subrange, an additional term fo(K) is introduced which describes the decay of the
upper end of the turbulent energy spectrum:

E() =117k f,(x) for x > 21/Lq (3.17)

A number of authors have given forms of the spectrum with these properties, such as

fo ) = exp| = e g7 [PAO. 1965] (3.18)
2 )

Further forms of fp(x) are discussed in section 4.2.
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3.2.4 Energy input range

A turbulent medium can be maintained in the turbulent state only if energy is continu-
ously fed into the system so that the energy injection rate equals the rate of dissipation.
The energy input occurs at the low frequency end of the curve with size scales on the
order of 10 to 10,000 m, e.g.., [PANOFSKY, DUTTON, 1984]. The largest eddies are
therefore several orders of magnitude larger than the smallest, energy containing eddies.
This fundamental physical property of turbulent flow makes it extremely difficult to
describe a turbulent flow completely. Additionally, large eddies become more and more
anisotropic since obstacles in the boundary layer such as hills, wood, etc., have an in-
creasing influence on the shape of the large eddies. Therefore, the run of £'(x) is uncer-
tain in the range where K < 27/Ly. For that reason, the definition of structure constants
which are derived from the turbulent energy spectrum must be limited to the inertial

subrange (cf. section 3.2.7).

3.2.5 Stationarity of energy spectrum

The studies of the energy transfer process described in the preceding sections is based
on the assumption that production and dissipation are often slightly out of balance and
the energy spectrum is either statistically stationary or the decay of the energy spectrum
is only slow during the observation time. This implies a so-called "equilibrium of tur-
bulence". The equilibrium of turbulence requires that the dissipated energy is compen-
sated by the same amount of energy which the undisturbed laminar flow supplies to the
turbulent flow at the limits between laminar and turbulent flow.

If nearly stationary turbulence can be assumed, the classical turbulence theory of Kol-
mogorov is valid, otherwise the energy transfer process changes. Up to now, little is
known about non-equilibrium energy transfer. but further investigations [LUND et al.
1998] have shown that the energy transfer process is not fundamentally changed under
non-equilibrium conditions. Therefore, the assumption that the energy spectrum closely
follows the k™ scaling is quite reasonable within the range of 21t/Lg < k < 27/l

3.2.6 Innerscale

As mentioned in section 3.2.1. the crossover from the inertial subrange to the dissipation
range is expected to happen at a scale denoted as /. On smaller scales (i.e., on higher
spatial frequencies) of the energy density spectrum, viscosity is effective explicitly. In
order to separate the inertial subrange from the viscous range, the Reynolds number is
the decisive criterion because turbulence does not occur in the dissipation subrange. The
Reynolds number in the inertial subrange is in practice in the range of Re > 10° — 107,
whereas the dissipation range vields a Reynolds number smaller than 1.

Hence, the Reynolds number is used to separate the inertial subrange from the dissipa-
tion range whereby Re = | at the crossover. The characteristic length of Re at which the
Reynolds number is about | defines the inner scale /:

U,

iy - ) . . v . . - \

Re = —— =1 & Crossover inertial subrange to dissipation range (3.19)
Y
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The characteristic velocity U, can be obtained as a function of the kinematic viscosity
2 . . 2.3 . . . N i e
[m/s] and the dissipation rate [m“s™]. By applying the Pi theorem again, the desired

function of the characteristic velocity is given by

U, = f(v.ey=v7e™Il, (3.20)

The unknown parameters oy and o> can be obtained by the analysis of the dimensions:

s =™ [mis™™ (3.21)
[m]: o= 20 + ;(XZ (3.22)
[s]: —1 =0y - 300

From (3.22) it follows o = o> = 1/4 and

[]f‘i} = WE 11 A ( b

S
J
|9}
N

If (3.23) is applied to (3.19), the inner scale [y can be written as
=11, 3ve” (3.24)

The constant 11, 1s derived in [OBUHKOV, 1949], [TATASRKIIL, 1971] and [HILL,
CLIFFORD. 1978}:

- - Loﬁgr(yg}_}” . (3.25)
" Pr
with  Pr Prandtl's number for air: Pr = 0.72
By Obukhov-Corrsin constant of one-dimensional scalar spectrum:
By=043
T Gamma function: I'(1/3) = 2.679

The Obukhov-Corrsin constant was first derived by CORRSIN [1951]. Measurements
for this constant are given in, e.g., [HILL, 1978]. (There are two definitions of (B, de-
pending on the definition of the dissipation rate (3.11). These definitions deviate by the
factor 2 from each other. Following the formulae of, ¢.g.. [THIERMANN, GRASSL,
1992], B, = 0.86 is applied, cf. (3.65)).

Hence, the inner scale follows from (3.24) and (3.25), thus, /y is given by:

I, =74 e =74n (3.26)

where 1 Kolmogorov microscale
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Regarding the turbulent motions of eddies, the inner scale /; has the following meaning:
Eddies the scale of which is shorter than /o are dissipated by viscosity. For the atmos-
pheric boundary layer, the inner scale is typically /o = 3 mm ~ 10 mm [THIERMANN,
1990].

3.2.7 Structure constants of velocity and temperature

Besides the inner scale /. the 2/3 power law of (3.16) can also be used to define so-
called structure constants such as the structure constant of temperature C7~ which are
needed to determine the temperature gradient by means of dimensionless profile func-
tions (cf. section 3.4). Whereas the turbulent energy spectrum E’(x) describes the be-
havior of the velocity fluctuations in the one-dimensional Fourier space, the calculations
using the structure constants are performed in real space (cf. section 3.4). Thus, the in-
verse Fourier transform must be applied whereby this transform provides the structure
function of velocity fluctuations D, (r) as follows. e.g.. [CLIFFORD, 1978]:

D, (ry = 2[R, (0) — R, (1] (3.27)
with R ()= J E'(x)exp(=ikrdx = E[u(x) - ulx+ ] (3.28)
R, Autocorrelation of u
X Coordinate
r Distance (lag)
(3.28) and (3.28) introduce D, (r) which i1s defined by the following statistical quantity:
D, (r)= <lu(i,\‘) —1(x+ 7'){:> [m s~ (3.29)

The angular brackets in (3.29) denote a time average. The definition of D,(r) as pre-
sented in (3.29) is based on the assumption of a homogeneous and locally isotropic,
random process whereby D, (r) is independent of x.

Within the inertial subrange (section 3.2.3). the dissipation rate € is the only influence
coefficient on E'(x), Therefore, due to the integration in (3.28). the structure function
D,(ry of the velocity field only depends on € and . Thus, (3.31) can be derived by
means of the following dimensional analysis:

[m* 71 = [ [m'] (3.30)
D, (n=TLe"r" (3.31)

T'he structure constant C,” resumes the constant coefficients of (3.31), thus the structure
function and the structure constant can be expressed as

D,(n=C-r" for Lo>r> 1 (3.2
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- - 2 g . . .. ;
The structure constant of temperature C;~ can be derived in a similar manner. Hereby,
the power spectrum @ with the property

573

D, (K) < K for 2n/Ly < x <271/l (3.34)
is introduced which states that fluctuations of the temperature associated with the same
turbulent flow as used in (3.16) inherit also the same power spectrum. Therefore, the
structure constant of temperature C7~ can be obtained from (3.34) and yields:

(,7]‘2 =D (r) P21 for Lo > 1> Io (3.35)
with ¢/ Structure constant of temperature  [K™-m™]
D, (r)= <]9('}\‘) —B(x+ r',)]‘"‘» [KZ] (3.36)
/

0 Potential temperature [K]

. - . . 2
As presented in the following sections, the structure constant of temperature Cy~ is
Monin-Obukhov similar and is applied therefore to the determination of temperature
gradients by means of the Monin-Obukhov similarity.

3.3 Monin-Obukhov similarity

3.3.1 Scaling parameters

As mentioned in section 2.4. the description of turbulent transport processes is impor-
tant for refraction detection since these processes are related to gradients of tempera-
tures, pressures and moistures wherein the gradient of temperature is predominant. As
described in section 2.4.2, the temperature gradient is mainly determined by the sensible
heat flux, cf. equation (2.29). However, (2.29) is not sufficient for the determination of
the temperature gradient. In order to overcome this problem, the theory of Monin-
Obukhov similarity can be utilized which was introduced by MONIN and OBUKHOV
[1954]. This similarity theory uses scaling quantities such as the Obukhov length to de-
termine the temperature gradient and to characterize stable. unstable and neutral stratifi-
cation whereby these types of stratification have already been introduced in section
24.1.

The Obukhov length is related to the turbulent energy transport, which is modelled as
follows: Atmospheric turbulence consists of mechanical turbulence, driven by vertical
shear and the wind. dissipation, and thermal turbulence such as heat convection, gener-
ally driven by sensible heat flux. Thus, an equilibrium of energy is given by [e.g., OH-
MURA, ROTACH. 1997]:

dE dit deo,
=L g - = (3.37)
dr \_‘(j_:/ Dissipation dt
Windshearing Gravitation

with 1, =—pu'n’ (3.38)
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“=—gpW = —g= (3.39
dt Tc
P
N Y ey
with T Shearing stress or momentum flux [N/m~]
u’ Randomly fluctuating wind component in horizontal direction
[m/s]

w’”  Randomly fluctuating wind component in vertical direction [m/s]
0y Gravitation potential [T]

p”  Randomly fluctuating density [ke/m’]

H Sensible heat flux [Jm™s™']

cp Constant-pressure heat capacity of air I ke K"

The solution of (3.39) requires an approximate model of the vertical distribution of
mean wind. The phenomenological theory of PRANDTL [1932] assumes a logarithmic
profile given by:

dii .
A ks (3.40)
-
1
. T 5 e
with W, = |~ = N {u'w > (3.41)
p
kr Von Karman constant: &, = 0.4
U I'riction velocity [m/s]

The product /p, with
I =k, Z (3.42)

is known as the Prandtl "mixing length” which can be interpreted as follows: The mean
velocity of a gas molecule is assumed to run in the horizontal direction. However, when
a random fluctuation of velocity displaces the gas molecule in the z-direction, the mole-
cule covers the mixing length /p, until it has been mixed within its neighborhood, i.c.,
the molecule has delivered the impulse in z-direction to neighboring molecules. The
concept of the Prandtl mixing length assumes that the turbulence is stationary (section
3.2.5). Moreover it assumes the ground to be horizontal and flat which can only be ful-
filled approximately in geodetic practice.

u(z) ler(2)

Figure 5.4: Logarithmic velocity profile and
the Prandtl mixing length (schematically)
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The logarithmic profile defined by (3.40) is only valid under neutral conditions of the
atmospheric boundary layer, i.e., the sensible heat flux H is zero. Moreover, (3.40) as-
sumes that turbulence is generated mechanically and the gradients of wind are linear to
the friction velocity. Thus, equation (3.40) must be generalized with the use of (3.37).
From (3.37), (3.39), and (3.40) follows

0ty )

dt koo Te,
" : ,

(3.43) depends on the height z. The Obukhov length Ly is defined as Lyo = z if the
equilibrium of (3.43) is in steady state, lL.e.. dE'/dt = 0 [OBUKHOV, 1941]. Neglecting
the dissipation rate €, the Obukhov length can be derived from (3.41) and (3.43), thus
Lo 1s given by:

L wTe (3.44)

Mo k,gH

The sensible heat flux H depends on the difference between surface temperature and
temperature aloft. If the effects of humidity on buoyvancy are neglected, the Obukhov
length becomes:

7 L TW (3.45)
“MO I ¢ T
wih g TV (3.46)
I . pc,
T Temperature scale

The Obukhov length is independent of height and is therefore suited for a length scale to
model turbulent structures in a way simtlar the scale factor A used in fractal theory (cf.
Appendix A). As presented in (3.44), the Obukhov length depends on the sensible heat
flow H which defines the stratification of the atmospheric boundary layer (section
2.4.1). For this reason. the Obukhov length is also used as a criterion to distinguish sta-
ble stratification from unstable stratification:

Lyo <0 & Unstable stratification (usually during daytime)
Ly >0 = Stable stratification (inversion. night time) (3.47)
Lyo=0 = Neutral stratification (transition)

But the classification of (3.47) should be applied with caution because the original defi-
nition of stratification used to classify atmospheric boundary layers is characterized by
the sensible heat flux H as described in (2.27).

The derivation of the Obukhov length neglects the influence of dissipation as shown in
(3.43). Moreover, the assumption of (3.40) is only an approximation valid for neutral
stratification. For these reasons. [WYNGAARD er al., 1971] introduced the flux-
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Richardson number Ry as a more suitable stability criterion for flux-profile relationships
in the atmospheric surface layer. The flux-Richardson number Ry is defined by
[RICHARDSON, 1920]:

i (—/r{ I, (3.48)
R =~g g d:
Tu »(\P{(_h:{‘ ] Tu ( du \[
dz Ldz )

Thus the stability criterion using the flux-Richardson number Ryis given by:

Ri< 0 &> Unstable stratification (day time)
R>0 = Stable stratification (inversion, night time) (3.49)
Ri=0 > Neutral stratification (transition)

For example, during day time the temperature gradient 7/dz 1s normally negative.
Thus, the flux-Richardson number is also negative. Normally, the exact value of the
flux-Richardson number Ryhas no importance to the user in geodesy with the exception
discussed in section 3.6. The decisive criterion is only the sign of Ry The reason is that,
depending on the stratification (unstable or stable). different dimensionless profile
functions for structure parameters and temperature must be applied (cf. section 3.3.2).
Using the Obukhov length as a scale factor, these profile functions allow the determina-
tion of the effective temperature gradient and therefore a correction of refraction influ-
ences.

3.3.2 Dimensionless profile functions for structure parameters and temperature
MONIN and OBUKHOV [1954] based the Monin-Obukhov similarity theory on the
assumption that the dimensionless ratio { given by

(=2t (3.50)

defines the surface-laver stability. which expresses the relative efficacy of buoyancy and
shear in producing turbulence. In this case, Monin-Obukhov similarity theory implies
that the wind shear di/dz becomes a universal function @({) of {, if the momentum
flux is scaled with a typical scale parameter .

kyz du 0. (0)
S S0, (C ,,
u, dz e (

(a2
[
pa——

with @y  Dimensionless profile function of wind shearing

With respect to (3.40). the dimensionless profile function for neutral stratification is
defined by:

¢, (0)=1 (3.

19,1
b



The Monin-Obukhov similarity theory can be extended to other quantities under the
assumption that a dimensionless profile function ¢({) is determinable and sufficiently
models the quantity. In doing so, the similarity theory offers a description of the com-
mon-behavior of the desired quantity (e.g.. temperature gradient) by an universal func-
tion which 1s empirically determined. This function is universally valid, if the quantity
is properly scaled. In the scope of refraction detection, the mean potential temperature
gradient d6/dz can be derived using the dimensionless function for the sensible heat flux
[MONIN, OBUKHOV, 1954]:

ko do ¢, (0) : )
T do "7 (

—

(']
(Jy
5
—

With ¢,  Dimensionless profile function of sensible heat flux

[n order to obtain @y, it is common to expand the universal function in powers of £ and
fitting the results to observations. Since the direction of the flux depends on the stratifi-
cation (stable / unstable), different profile functions are usually given and are distin-
guished into the two cases Lyo < 0 and Ly > 0. BUSINGER er al. [1971] suggested for
the wind profile similarity:

o= (1-160)"" Luo <0 (3.54)
Qu= 1450 Lo >0

DYER [1974] and BRUNNER [1979] suggested tor the temperature profile similarity:

¢
oo

o = Q= (1-160)"" Lyo <0
¢p = Oy = l+5k: Ly >0

The investigation on the profile functions is not yet finished. The re-evaluation of
HOGSTROM [1988] showed that ¢, should be slightly modified as follows:

12

1l

(Pli

ey )
(P/ (1 l.-g) L;WO < O (3.56)
!

1 +7.8L: Lyo>0 ) ‘

it

The differences of the profile functions arose because the amount of the von Karman
constant k; was not known exactly. Using A; = 0.4, (3.56) can be expected to confiden-
tially determine the temperature gradient in the scope of this research work. In order to
validate this statement, a comparison between (3.55) and (3.56) is discussed in section
7.3, whereby this comparison is based on the temperature gradient measurements in the
field experiments of section 7.2. If the temperature profile function and the Obukhov
length Ly are given, the corresponding gradient ¢0/dz of potential temperature can be
calculated using (3.45) and (3.53) (cf. section 3.4). In this regard. the determination of
Ly is required using the dimensionless profile functions of the dissipation rate ¢ (L)
(3.60) and the temperature structure constant @c (&) (3.65) as explained in section 3.4,

3.4 Calculation of refraction angle using Monin-Obukhov similarity
As presented in section 2.1 the temperature gradient d7/dz is the decisive parameter for
the calculation of the refractive index gradient and the refraction angle. Assuming the
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Monin-Obukhov similarity theory is valid, the mean temperature gradient follows from
(2.28), (3.45), (3.46), (3.51), and (3.53) as follows:

aT_ 1T = It (3.57)
- S i o

d: /\z; < \L’\m /

with  T.=——it (3.58)

Ky Ly

The friction velocity u. and the Obukhov length Lyo must be derived from quantities
which can be measured using field instruments. Hereby, . (3.41) and the temperature
scale T. (3.46) can be determined, e.g., by use of a sonic-anemometer which determines
the variances of the wind components and of the temperature. Thus, Lyo can be calcu-
lated using (3.43) if the temperature scale 7. is determined. But in geodetic practice,
neither values for us nor Ly are available. In order to express the friction velocity by
another equation, the dissipation rate is used. because the dissipation rate can be deter-
mined by means of the inner scale (3.26) which can be derived from image processing
algorithms (section 4 and 6). Assuming the dissipation rate is Monin-Obukhov similar,
the dimensionless profile function of the dissipation rate ¢, is given by [WYNGAARD,
CLIFFORD, 1978]:

R
0, (()=—e (3.59)

.

In (3.59) the dimensionless profile function is scaled by the friction velocity u.. In other
words, @. only depends on the ratio { = z/Lyp. In doing so, @ can be expressed by a
semi-empirical profile function @¢() whereby numerous profile functions differing
slightly from each other are known in the literature. In this research work, the following
functions are applied which have been determined from tower measurements and scin-
tillation data [THIERMANN, GRASSL., 1992]:

pe = (1=307 -¢ wo <t (3.60)
@ = (1444160 Lyo>0

The dissipation rate derived from (3.26) is given by
e=74" v (3.61)

where the inner scale 1s assumed as known with use of a scintillometer (cf. section 5.2)
or of other methods based on optical turbulence (cf. section 4).

Thus the problem of calculation of refraction angle is reduced to the determination of
the Obukhov length needed as scale parameter in (3.57). Since the Obukhov length de-
pends on the temperature scale 7. as shown in (3.45), an additional profile function is
required which contains 7. For this reason, the structure constant of temperature Cy
can be used which is defined by:
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D, (r)y=C, r" for Lo > r> I (3.62)
with  Dy(r)= <19(’x) —0(x+ 1/‘)‘2> (3.63)

~ . ~ - .
Dy Structure function of temperature [K-]
0 Potential temperature [K]

Here, the structure function of (3.62) is considered in the inertial subrange and the tem-
perature field 8(x) of (3.63) is assumed to be locally isotropic and homogeneous. Since
the structure constant of temperature C»j—: can be assumed to be Monin-Obukhov similar,
the following profile function can be used [WYNGAARD et al., 1971]:

Py (‘;> = “_”-‘“ """"" ' C'/’_ (3.64)

The same experimental investigations as in (3.60) vield the following semi-empirical
scaling functions [THIERMANN, GRASSL. 1992]:

Qo= 4Py (1=-7C+750) " Ly <0
Ocr= 4B (1+2.507)" Lyo>0
with Obukhov-Corrsin constant with 3 = 0.86

—
oY
™
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Z

Using (3.58). (3.59), (3.61). and (3.64), the following nonlinear equation for { = /Lyo
can be formulated [WEISS, 1998]:

(kk;j)4/3 S s 5 i .
““"‘“-7‘:“7:7“s C =0y, Qo (07 =0 (3.66)
virr L

[O

The inner scale [, and the structure constant of temperature (LTZ are determined using
measurements of optical turbulence as described in sections 4 where the measuring path
runs horizontally in a height of z above ground. If an approximation of Ly 1s provided,
(3.66) can be solved, e.g., with use of the method of generalized reduced gradients
(GRG).

Attention should be paid to the sign of Lo since the profile functions are different for
Lyo > 0 (stable stratification) and Lyp < O (unstable stratification). If the Monin-
Obukhov length is determined after a few iterations of (3.66), the scale is known for all
profile functions based on Monin-Obukhov similarity theory and, thus, the temperature

gradient needed for calculation of refraction angle can be determined using (3.57).

3.5 Footprint considerations

The determination of temperature gradients using Monin-Obukhov similarity theory
should be interpreted by a quantitative criterion for the representativeness of the flux
measurements since the dimensionless profile functions are only valid for locally ho-
mogeneous areas. Footprint considerations can provide this criterion. In doing so, foot-
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print considerations assume that measurements at a given height in the surface layer are
related to the spatial distribution of surface sources which is defined by the source area
of the influence of the sensor. This so-called footprint includes an area which is respon-
sible for a specified contribution to the value measured by the sensor. The determination
of footprints is useful if the surface is inhomogeneous since footprints allow an indica-
tion of the spatial resolution of meteorological observations above inhomogeneous sur-
faces.

The footprint can be modelled for relatively large-scale and geometrically simple sur-
tace inhomogenities. There are various models of footprint, but. in the following, the
description is restricted to a model as presented by [SCHMID, 1994] because it allows
practical and descriptive conclusions about the spatial representativeness and the local-
ness of the field measurements. In this regard. this model used for footprints assumes
that the surface consists of an infinite array of unit point sources. These sources are
weighted in respect to the influence to the sensor. The source weight is small for small
separation distances because of the wind moving the meteorological quantities (e.g.,
fluxes or temperature) away from the sensor. With increasing distance, the source
weight increases too and reaches a maximum. If the separation distance to the sensors
continues to increase, the source weight falls off again and tends to zero for large dis-
tances due to diffusion effects. The equipotential curve of the described source weight
function bounds the area of the footprint. The shape is displayed schematically in Figure
3.5.

Sensor

Figure 3.5: Shape of footprint (adapted from [SCHMID, 1994])

Assuming the diffusion perpendicular to the wind direction is Gaussian, the shape of the
footprint is axial-symmetric and can be described by the area Ay the upwind distance ay
between near end of footprint and the sensor. the distance by between far end of foot-
print and the sensor, the distance m; of maximum source weight of the footprint and the
lateral half-width ¢, of the footprint. Algorithms and models for the determination of
these parameters are given in [SCHMID, 1994]. The decisive quantity for the determi-
nation of footprints is the height of the sensor above ground z;. The area Ay and the lat-
eral half-width ¢; linearly increase with an increasing height of instrument. Moreover,
the Obukhov length Ly, the surface roughness, the wind direction, the wind speed and
the fluctuation of wind also affect the size of the footprint and its position.

In section 7, an estimation of the footprints is integrated into the description of the ex-
periments. The position and size of the footprint enable a decision as to whether the site
conditions can be assumed to be homogeneous or inhomogeneous.
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3.6 Conclusions

The introduction of the turbulent energy spectrum, structure functions, and the Monin-
Obukhov similarity theory represent an efficient method to model the turbulent ex-
change processes in the atmospheric boundary layer because the similarity relations link
scintillation statistics obtained from field measurements to the desired meteorological
variables used for refraction correction. Although. it should be emphasized that the
structure functions as introduced in (3.29) and (3.63) are only valid if the velocity fields
(or the temperature fields, respectively) are locally 1sotropic and homogeneous.

In order to characterize geometrically the equilibrium of turbulent kinetic energy in the
atmospheric boundary layer, the Obukhov length can be applied. This length provides a
scale which uses averaged quantities such as 7 and wu. and, thus, operates with a statis-
tical approach to describe turbulence. Since this statistical approach requires that 7% and
u: are stationary during the integral time, the validity of the data available from field
experiments can be limited because of the continuous change of the meteorological
conditions.

Under the condition that Lye. T, and - are not zero, these quantities are used as scaling
parameters for dimensionless profile functions which determine the momentum flux and
sensible heat flux. These dimensionless profile functions based on the Monin-Obukhov
similarity theory are only valid in the atmospheric boundary layer where all fluxes being
at the same height z are assumed to be constant and independent of the position, e.g..
[STULL, 1991]. This assumption is plausible if the source area of the influence of the
sensor (footprint) 1s approximately homogeneous.

The presented algorithm to determine the temperature gradient only holds if the sensible
heat flux, the dissipation rate. and the structure constant of temperature are a function of
/Lo, 1.€., Monin-Obukhov similar. This similarity theory has been proved in several
experiments [BUSINGER er al.. 1971] and [DYER er al., 1982]. But in general, many
quantities of boundary layer meteorology such as temperature and pressure are not
Monin-Obukhov similar.

Since the dimensionless profile functions depend on the Prandtl mixing length, the pre-
sented derivation of the Obukhov length can cause the following contradiction. On the
one hand, the Monin-Obukhov similarity theory uses the Prandtl's logarithmic velocity
profile in the calculation of kinetic energy and. at the same time, this similarity theory
generates a velocity profile which defers from logarithmic profile. The contradiction
only disappears in the case of neutral stratification, i.e.. ©/(0) = 1.

Herein, the flux-Richardson number quantifies the deviation of the actual stratification
(L.e., Rr>0or Ry < 0) from the neutral stratification (R,= 0). For this reason, it would be
sensible to replace { = /Lyo by {" = R, using the relation

o

R, = — o
! Lyo @y (Q (3.67)
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The derivation of (3.67) is given by definitions provided in (3.45), (3.46), (3.48), and
(3.55). The influence of this correction (3.67) on the results evaluated from field meas-
urements is discussed in section 7.3. As is mentioned there, a comparison between the
data processed using Ry with those processed using Lyo does not yield more accurate
results.

The dimensionless profile function ¢, (3.53) for the determination of temperature gradi-
ents is based on the sensible heat flux H. However, in addition to H, the latent heat flux
Ler is also part of the energy transfer processe as presented in section 2.4.1, i.e., mois-
ture effects can affect the determination of temperature gradients. Further investigations
are still in process to check if additional moisture measurements are needed [WEISS et
al., 1999].
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4 Optical Turbulence

4.1 Phenomena of optical turbulence

The determination of refraction angles using temperature gradients and Monin-Obukhov
similarity theory requires the calculation of the structure constant Cy° and the inner
scale fy, cf. (3.66). These quantities can be determined using the effects of optical tur-
bulence. Optical turbulence is a phenomena of waves propagating through turbulent
media. The following paragraphs summarize essential elements of this theory [CLIF-
FORD, 1978] needed for refraction analysis.

Optical waves traversing a turbulent
propagation medium develop spatial
patterns of irradiance and phase fluc-
tuations since turbulent exchange proc-
esses such as convection induces ran-
dom irregularities in the atmosphere’s
index of refraction. Optical turbulence

is usually understood as a regime of the > Re

light propagation medium characterized Figure 4.1: Log-intensity fluctuation (7‘){'2
by intense refractive index fluctuations and phase fluctuation ;" of an

in both time and space over a large electromagnetic wave (wave vector E)

range of scales. The phenomena of op-
tical turbulence can be classified into phase fluctuations and fluctuations of the intensity
of light beams (Figure 4.1).

o N 3 . . N . ~
Phase fluctuations ¢~ are perceived in the plane of the receiver as follows: Random
distortions of the incoming wave front cause slight image motion and image blurring in
the plane of the imaging sensor (Figure 4.2).

Undisturbed Image image
Image motion blurring

Figure 4.2: Effects of optical turbulence on one-dimensional pattern
grabbed by an imaging svstem (schematically)

Intensity fluctuations can be perceived as temporal variations of the received irradiance
of the light beam. Phenomena of intensity fluctuations are the twinkling of stars or the
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irregular change of brightness of pixels in optical imaging systems. Scintillometers (ct.
section 3) also utilize intensity fluctuations: These instruments send out laser beams and
measure the intensity fluctuations of these beams after propagating through a turbulent

medium.

Both phase fluctuations and intensity fluctuations result from refractive index fluctua-
tions. These refractive-index fluctuations are caused by turbulent eddy motions along
the propagation path. These eddy motions are generated by temperature and humidity

fluctuations. The eddies of these motions act as a collection of converging and diverging

lenses which affect the propagation of the light beams,
/\\
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Figure 4.3: Effects of eddies (grav) on light beams

The refractive-index fluctuations are known as optical turbulence and can be character-
ized by the refractive-index structure constant C,”. As presented in (2.2), the refractive
index is mainly influenced by the temperature and pressure. Thus, the refractive-index
structure constant C,,2 can be derived from the structure constant of temperature CTI and

from (2.2) as follows:
4.1

cts. This neglect is adequate if the wavelength of the meas-

(4.1) neglects moisture
visible light [WEISS ez al.. 1999].

effec
ured waves is in the range of
The refractive-index structure constant C,f 1$ not a constant in the mathematical sense.
In fact, the structure constant C,” varies in dependence of the turbulent regime of tem-
perature and buoyvancy. As the sun rises, convection causes hot turbulent air eddies to
rise. The rising turbulent air has a large refractive structure constant in contrast to down-

moving, cool air, which is characterized to a very small refractive structure constant

[HILL. 1992].
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The refractive-index structure constant can be assumed to be constant along the propa-
gation path if the optical path runs parallel to the locally homogeneous ground. When
the propagation path is not parallel the refractive-index structure constant may vary be-
cause of the altitude dependence of C,”. In general, the refractive-index structure con-
stant decreases with increasing height above the ground [HUFNAGEL 1978].

4.2 Modelling optical turbulence

4.2.1 Refractive index spectrum

Due to the relation (4.1) between the structure constant of temperature Cy” and that of
refractive index C,fg the properties of C],: follow the same statistical approach as CTQ.
Analogous to (3.35), the structure constant refractive index spectra can be related to the
structure function of refractive index D, as presented in (4.2) and (4.3):

C =D, (ryp" [m] tor Ly > r > I (4.2)

with D, (ﬁl’)=<{11(:.\')wn(.\‘+7’)’ > (4.3)

D, Structure function of refractive index

The exponent "-2/3" in (4.2) is a consequence of a dimensional analysis (cf. section
3.2.7). This analysis uses the one-dimensional spectrum of Kolmogorov @,(x), which
describes the fluctuations of the refractive index:

@ (K)o k" for 2n/Ly < K < 21/l (4.4)
21
with ~ K=-—— (4.5)
l Diameter of turbulent eddy

Hereby, the structure function of the refractive index is related to the Fourier transtorm
of the spectrum @,(x). ¢.g.. [BELAND, 1993]:

D,](l') = R[Rn (O) -~ R, (’.ﬂ (46)
with R (1) = _[(‘D,J (K)exp(—ikr) dx

Ry(ry=E[n(x) - nx+n] (4.8)

(4.7)

These relations reveal that the refractive index spectrum 1s an essential element to de-
scribe the phenomena of optical turbulence. For further investigations in three-
dimensional space. the refractive index spectrum @, (k) must be extended by the intro-
duction of the three-dimensional frequency x. Thus. the three-dimensional refractive
index spectrum is given by [CLIFFORD, 1978]:

~

O (k)=-— lm) J R (rlexp(—ik-r)d’r (4.9)
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Assuming that the random medium is statistically homogeneous and isotropic in each
transverse plane of the wave, the autocorrelation function R,(r) and the refractive index
spectrum @,(K) only depend on the magnitude of the vectors 7 = Irl and x = kI, respec-
tively. Using (4.2). (4.6), and (4.9), the relationship between the refractive-index struc-
ture constant C,” and the refractive index spectrum is principally given under the condi-
tion that the Fourier transform in (4.9) converges. Hence, the refractive index spectrum
in the inertial range is given by. e.g.. [CLIFFORD. 1978]:

@ (k)=0.033-Cx " for 2n/Ly < K < 21/l (4.10)

This equation is theoretically derived and can be applied to other quantities the corre-
sponding spectrum obeys the "2/3"-law of Kolmogorov (3.16) such as the turbulence
spectrum of temperature Oy, e.g.. [HILL, er al., 1980]:

@, (k)=0.033-C, k" for 2n/Lo < k < 27/l (4.11)

Since (4.10) and (4.11) are only valid in the inertial range, the following equation pro-
vides a cut-off for the dissipation range and, thus, introduces the inner scale into the
function of the refractive index spectrum [TATARSKIL 1961]:

, N (4.12)
@, (1)=0.033-C, k" exp| ——— WJ[ for 2m/Ly < K
L)

n;

with  x, =592/,

Due to the mathematical structure of (4.12), this spectrum can be applied in the whole
frequency domain of ¥ > 21/Ly. Various authors have extended the Tatarskii-model in
respect of the outer scale which limits the inertial subrange at the large-eddy scale Lo,
such as [GARDNER, PLONUS, 1975]:

@, (x)=0.033-C, 1+ L T expl - _*_L \, (4.13)

K, )

The refractive index spectrum has been experimentally determined in field experiments,
e.g., in Boulder (CA) [HILL. CLIFFORD. 1978} and [PRIESTLEY, HILL, 1985].
These measurements confirmed the spectra of (4.12) and (4.13) in general, but it is rec-
ommended that the decay from the inertial range to the dissipation range be modelled by
a more sophisticated model:

@, (x)=0.033- ¢ [+ T 7 () (4.14)

with  f,  Decay of refractive index fluctuations in dissipation subrange

The function fo 1s introduced by HILL [1978] in order to model the refractive index
spectrum in the range of high Reynolds numbers more precisely. He proposed to derive
Jfo from a second-order, linear, homogeneous differential equation. To avoid solving the
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differential equation. a good analytical approximation for fo is given in [CHURNSIDE,
1990]:

fo = exp(=70.5x1) + L.45-exp(=0.97-[In(xkn) + 1.55]) (4.13)

with N Kolmogorov microscale: 11 = 0.135 [y, cf. (3.26)

With regard to the mathematical integration, the approach (4.15) is quite problematical
for calculation. Therefore, ANDREWS [1992] suggested a more simplified approach:

fo = 1+ 108 (k/%) = 0.254 (x/x) " (4.16)
. 3.3
with K, = —— 4.17)
1T (
0

Unless otherwise mentioned. the Hill spectrum introduced in (4.14) with the simplifica-
tion of (4.16) is used tor further calculations because of the conformity with results of
practical experiments [HILL, CLIFFORD, 1978]. The good conformity of the Hill
spectrum bases an a slight bump for x near the inner scale. This bump is shown in
Figure 4.4 where the refractive index spectrum of Hill is compared with the Tatarskii
spectrum.

Pp/Cn2 ®n Hill / ®n Tatarskii
1E+002 - 187
‘ 1.6 i} /N 2ndg
o o] i { i i
1E-002 . f
. ~ /l i '
- 1.2 — / :
1E-006 : Y
10— e L
1E-010 _ .
08 —_— VL
; Tatarskii E \
1E-014 - 0.6 —
J‘ [ i [ J‘M:; I ,\HHW 1 [.HM‘ I
0.1 10 1000 0.1 10 1000
K [mf] K [m]

Figure 4.4: Comparison between Hill spectrum and Tatarskii spectrum
4.2.2 Light propagation in turbulent media

The refractive index spectrum obtained in section 4.2.1 provides information about the
energy transfer processes in the turbulent medium through which the light beams are
propagating. However, the relation between the phenomena of optical turbulence as
introduced in section 4.1 and the refractive index spectrum must still be formulated.
This relation 1s given by the Helmholtz equation

VE+kn'E=0 (4.18)
with K Electric field vector
k Wave number: k = 21/A (A : Wavelength)
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(4.18) assumes that depolarization terms are negligible for the propagation of optical
waves in the earth’s atmosphere, e.g., [CLIFFORD, 1978]. The refractive index n used
in the Helmholtz equation is a space-variant random variable. Assuming the Reynolds
approach of section 3.2.1 is valid for space-variant random variables, n becomes:

n=n(r, R)y=i+n(r,.R) (4.19)

with  ry  Transverse vector of the spreading light beam

Iy

Emitter Receiver
plane

3 ¥
b 1

R

Figure 4.5: Transverse vector of the spreading light beam,
adapted from [ANDREWS, PHILLIPS, 1998]

The spectrum of 1 is given by @, (section 4.2.1). Thus, the Helmholtz equation (4.18)
principally provides a relationship between the refractive index spectrtum @, and the
random amplitude and phase fluctuations of the electric field of the wave propagating
though a random medium. However, (4.18) cannot be solved in close form. Therefore,
further simplitying approaches must be formulated which then yield only approximate
solutions of the Helmholtz equation. Some of these heuristic approaches are summa-
rized in a brief overview presented in Figure 4.6,

I
| Optical Turbulence |
— ]
{ Weak \ E Strong [
|
- - 1 ; o
| Perturbation Theory : l Markovian approximation [
1
[ 1
Methods neglecting Methods of smooth perturbation
diffraction influences
1 : [ N 1
Geometrical optics method | t Born approximation | ‘ Rytov's method |

Figure 4.6: Approaches for modelling of light propagation in turbulent media

The approaches of Figure 4.2 mostly treat the optical wave propagation by means of
simple models of waves such as an unbounded plane wave or a spherical wave,

The model of plane waves assumes equiphase phase fronts which form parallel planes.
Plane waves are mostly applied in astronomy when the scintillations of stars are evalu-
ated.
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Figure 4.7: Plane waves and spherical waves

In contrast to plane waves, spherical waves consist of equiphase surfaces which are
characterized by concentric spheres. The spherical wave model is valid for point emit-
ters of light where the wave spherically emanates from the origin (emitter).

Assuming the propagation path is limited to a few hundred meters, the regime of the so-
called weak turbulence prevails (cf. section 4.5.2a). Under these conditions, the Rytov
method was found to give good agreement with scintillation data and, therefore, is the
standard method used today under these conditions, e.g.., [TATARSKIIL, 1992].

As a method of smooth perturbation (MSP), the Rytov approximation models the
propagation of a scalar wave through a medium with large-scale inhomogenities, i.e.,
lo >> A where A is the wavelength. Unlike other methods such as the geometrical-optics
method, the Rytov approximation takes into account diffraction effects which arise
when the Fresnel radius (A R,)”E is larger than the inner scale /y; e.g., for the propagation
path R = 100 m and A = 550 nm. the Fresnel radius is about 7 mm. Since the inner scale
Iy can fall below 7 mm. e.g., under windy conditions, diffraction effects cannot be ne-
glected in this example.

The Rytov method uses the following approach to provide an approximate solution of
the Helmholtz equation (4.18) . e.g.. [TATARSKIL 1971: ISHIMARU, 1978]:

E= A, exply(r,.R)] (4.20)
Y. R)=y(r,.t)+15(r,.R) (4.2
x(r Ry = 1n AR (42
Ay
with A, Electromagnetic amplitude of incident wave

Y (rr, R) Complex phase perturbation

x (rr, R) Logarithm of amplitude (Log-amplitude)
S (rr, R) Phase

R Length of propagation path

Considering diffraction effects. the Rytov method introduces the total complex phase
perturbation of the electromagnetic wave which is influenced by inhomogenities of the
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refractive index. The Rytov approximation is an acceptable solution of the Helmholtz
equation (4.18) under the assumption that the turbulence regime is weak (section 4.5.2a)
and backscatter effects are negligible, ¢.g., [STROHBEHN, 1978].

If these assumptions hold, the Rytov method enables the calculation of the angle-of-
arrival fluctuations and intensity fluctuations as presented in the following sections 4.3
and 4.4. The calculations are based on the spectral representation of y and depends on
the refractive index spectrum and on the assumed wave model (e.g., spherical or plane
waves). The spectral representation of y leads to complicated integrals, therefore, the
following sections only presents the results. A more detailed reference for the derivation
of the angle-of-arrival fluctuations and intensity fluctuations is given, e.g., in [AN-
DREWS, PHILLIPS, 1998] and [LAWRENCE. STROHBEHN, 1970].

4.3 Angle-of-arrival fluctuations for determination of C’

4.3.1 Phenomenon

Angle-of-arrival fluctuations are perceived as, e.g.. image blurring and image motions.
These fluctuations are related to the wave front of a propagating wave which is a sur-
face of constant phase. Angle-of-arrival fluctuations occur when optical wave fronts
passing through irregularities of the refractive index field become distorted.

As radiation with a distorted wave front continues to propagate, its local irradiance also
must vary under the focusing and spreading effects of that wave front. These degrada-
tion effects cause image blurring and image motions where image motion comes from
the influences of large eddies moving across the aperture and image blur arises from the
combination of small-scale effects and large-scale effects produced by eddies of differ-
ent size.

The angle-of-arrival which is a measure for these effects is defined by the angle be-
tween the normal to the perturbed phase front and the normal to the unperturbed wave
front, i.e., to the tangent of the direction of light propagation. This configuration is dis-
played in Figure 4.8 where the wave is assumed to be propagating horizontally.

For plane and spherical waves propagating through a statistically homogeneous iso-
tropic medium, the fluctuations in the plane normal to the ray are also isotropic. With
regard to the vertical angle-of-arrival ¢ and horizontal angle-of-arrival oy, the random
fluctuations become [RYTOV et al.. 1987]:

6 ‘=g l=gt (4.23)

Oy ity ¥

This result has also been confirmed as a result of field measurements in Claro / Swit-
zerland [TROLLER. 2000]. As a conclusion for geodetic practice, the measurements are
only needed for either the horizontal or the vertical component of the angle-of-arrival,
i.e., the use of line scan sensors is possible.
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Figure 4.8: Normal vectors of unperturbed (Ny) and perturbed (N )wave fronts,

adapted from [RYTOV et al., 1978]

4.3.2 Modelling

The modelling of angle-of-arrival fluctuations uses the phase front and its deviation
from the unperturbed state. Referring to Figure 4.8, angle-of-arrival fluctuations are
caused by random phase shifts whereby these phase shifts are interpreted as the random
distortion of the phase front of the wave. Assuming a statistically homogeneous and
isotropic random medium, the fluctuation ot the phase can be described by means of the

following phase structure function Dg(a) defined by:

Dy (Cl):<§S(k7')“5(7'+(7))‘> (4.24)
with  «a Diameter of receiver aperture
S 172
S Ds
Unperturbed \
phase front \ ka
/9\\ D

Figure 4.9: Relation between angle-of-arrival o and phase structure function Dy
S7and S 7 denote the phase of the lower and upper end of the wave front

Using the geometrical-optics approximation as shown in Figure 4.9, the angle-of-arrival

fluctuations can be expressed by the phase structure function as follows:
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where (4.25) assumes the angle-of-arrival to be small, i.e., tan(o) = o. (4.25) implies
that the angle-of-arrival is given if the phase structure function is known.

Using the spectral representation of the complex phase perturbation of the Rytov
method, TATARSKII [1961] expressed the phase structure function by means of the
refractive index spectrum, The following representation of the phase structure function
is given by [LAWRENCE, STROHBEHN, [970]:

. | F PR N R “
Dy(a)=8nk’ “ K@ (x) lu\/,Lfi}i Hlcos” l\—'—,(————)kdkdl for spherical waves  (4.20)

o L R | 2kR
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The phase structure function as given in (4.26) and (4.27) 1s valid for statistically homo-
geneous isotropic media. If the Hill spectrum ®,(x) (4.14) is used, the phase structure
function becomes approximately [ANDREWS, PHILIPPS, 1998]:

Dy(a)=1.093-C k" Ra™ ? [-0.71} f a) for a>> Iy and (4.28)
’ k \ Lo spherical waves
. ,/
‘ ' 113 e F
D, (a)= 2.914~C,,: RO ( 1-0.805 a for a >> ]Q and (4.2(»
’ ” \& 0 plane waves

A comparison between (4.28) and (4.29) reveals that the angle-of-arrival fluctuations of
spherical waves are about three times smaller than those for the plane wave. This rule
holds under the assumption that the source of the spherical wave lies within the ran-
domly inhomogeneous medium and both spherical and plane waves propagate through
the same medium and with the same propagation path length R.

Since angle-of arrival fluctuations of an optical wave in the plane of the receiver aper-
ture can be measured as slight motions of image structures. the angle-of-arrival fluctua-
tion can be determined using the focal length f of the imaging system as illustrated in
Figure 4.10.
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Figure 4.10: Angle-of-arrival fluctuation 6~ and fluctuation of image structures Gy~

Using the geometrical relations depicted in Figure 4.10, it follows that:

o, - (4.30)
I
with  f Focal length [m]

De Size of quadratic pixel element [m/pixel]
2 . ~ . . -
o, Variance of the motion of image structures [pixel]

The determination of (S_\»: will be discussed in section 6.4, where edge detection algo-
rithms are described in order to determine (5_\.3. Using (4.25), (4.28), (4.30), and ne-
glecting the influence of the outer scale Ly, the structure constant of refractive index
follows from [BRUNNER, 1979]:
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" LO9R 109 fR

/3

(4.31)

(4.31) allows a direct determination of €, without any knowledge about the inner scale
Iy and the outer scale Lo. The application of (4.31) is only valid if the outer scale is as-
sumed to be very large (i.e., Ly — eo). This assumption concerning the outer scale L
and the effect on the determination of C,” will be investigated in section 4.5.2.

(4.31) in combination with (4.1) allows the determination of the structure constant of
the temperature fluctuations which is assumed to be Monin-Obukhov similar and which
can be used to calculate the temperature gradient as presented in section 3.4. However,
as shown in section 3.4, the determination of temperature gradients requires also the
knowledge of the inner scale /. Thus, the determination of /s is investigated in the fol-
lowing section.
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4.4 Intensity fluctuations for determination of inner scale

4.41 Phenomena

Intensity fluctuations are perceived as temporal changes of the irradiance of the incom-
ing light beams, e.g.. as twinkling of a target or as temporal changes of the brightness of
an image. Using CCD sensors, these changes can be measured by the temporal variation
of the voltage which is accumulated on each pixel element during the integration time.
The intensity fluctuations of a light ray propagating through turbulence can be ex-

~

pressed using the log-amplitude variance 6~

G’ :im? Sty (4.32)

The normalized intensity fluctuation G/ (1) * s a measure and provided, e.g., with use
of the detectors of a scintillometer as described, e.g., in [HILL, OCHS, 1978], [COUL-
TER, WESELY, 1980], [HILL et al., 1992], [THIERMANN, GRASSL, 1992]

Moreover, the normalized intensity fluctuation can also be determined using image
processing algorithms as described in section 6.3 and 6.4.4.b), e.g., when the adaptive
Wiener filter or least squares template matching algorithm are applied. These methods
estimates the noise variance 6y~ of the image signal which yields the normalized inten-
sity variance as follows:

—l=c,’ (4.33)

(4.32) and (4.33) vields the log-normal amplitude influenced by the inner scale and by
other parameters such as C,” and length of the propagation path. Thus, the determina-
tion of the inner scale is based on the measurement of intensity fluctuations and log-
normal amplitudes needs a sophisticated model as described in the following section.

4.4.2 Modelling
Intensity fluctuations are associated with a redistribution of the ray energy which arises
as a consequence of the focus effects of the turbulent eddies.

Figure 4.11: Focus effects of eddy on an emitted wave
Since the focus effects are related to the diameter of the turbulent eddies, the intensity
fluctuations depend on the spectrum of the refractive index fluctuations @, and, hence,
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on the inner scale /. This dependence allows the calculation of the inner scale using the
intensity fluctuations and the Rytov approach which provides an approximate solution
to the Helmholtz equation as presented in section 4.2.2 under the assumption that log-
amplitude fluctuations are small, i.e.,

% <<l (4.34)

First, a relation between the refractive index fluctuations @, and the log-amplitude vari-
ance le is derived from the second-order spectral representation of the Rytov approxi-
mation. Including the refractive index spectrum, these fluctuations can be written with
the integral representation as follows [LAWRENCE, STROHBEHN, 1970]

01/'“ =2mk'R JMD (K) 1-—-*];---‘;111 KR LI’K for plane waves (4.35)
¢ 2 K'R - /)

S =dmk’ J‘ Imb (¥)sin” —(é:—-ﬁ dxdr  for spherical waves 4.36)
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Using the Hill Spectrum given by (4.14), (4.16), and (4.17) the fluctuations of log-
amplitude are given by [ANDREWS, PHILLIPS, 1998}:
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B, =123.C k"R (4.40)
k=2m/A (4.41)

In the following, the spherical wave case (4.38) which is assumed to be valid for geo-
detic applications 1s used. Bd\l(.d“\ (4 ? 8) provides a relation between the (measured)
log-amplitude variance G;{_ and the inner scale /y. Since this relation (4.38) 1s not suit-
able for the efficient computation of /s, (4.38) is simplified in the following by the in-
troduction of the auxiliary variables x. and v, defined as follows:
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X o= Loph (4.42)
v L N (4.43)

If (4.38) is evaluated, a function graph can be plotted as shown in Figure 4.12.
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Figure 4.12: Relation between inner scale and log-amplitude fluctuations
(spherical waves)
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The bold subsection of the graph of Figure 4.12 denotes the range of (A R 15" which

is typical for applications in geodesy. Within this range, one-to-one relation between (A
172 - 3 I .

R)““ I Vand oy,"/ C,” is available.

The relation between x. and v. can be molded into an approximate formula which is
valid for the bold range in Figure 4.12. With the assistance of a simulation program
(SLS-OPS, Scintec Ltd, Tiibingen) based on (4.38). GXJ can be calculated if A, R. /03 ,
and C,” are specified [FLACH. HENNES, 1998]. The output of the simulation is a se-
ries of values (x., v.) as shown in Figure 4.13.

104 -
o
0.60 2.0t 0.02 c.04 .05
X 1107 m*™

Figure 4.13: Results from simulation

The following empirical function gives a relation between x. and v,

Ve=-2.602 = 140.5 x. + 31.86 x,7 + 377.8 x.* — 0.317 In(x.) (4.44)
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(4.44) has been determined as follows: Assuming /o, A, R, and C,,2 are known, ze s
calculated using (4.38) and the values x, and y, are determined using (4.42) and (4.43).
These values are displayed in Figure 4.13. The curve in Figure 4.13 can be modelled
using a least squares fit which vields the terms in Table 4. 1.

Term

Value

std. deviation

{Intercept)

0.

4038

i

L3855

L8071
L5371
.0488

[SeRN SRR

s8]

Table 4.1: Estimated parameters and standard deviations

Besides the estimated values, the standard deviations of the parameters are also pre-
sented in Table 4.1 to illustrate the quality of the regression. The chosen function (4.44)
is advantageous in comparison to high order polvnomials since (4.44) is more stable
than high order polynomials.

In order to compare the fitted function (4.44) with the original function (4.38) of CSXB,
(4.44) and the corresponding values of (4.38) are presented in Figure 4. 14,

3
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ys (fitted) = 2.692 - 140.5 % + 31.86 x. '~ + 377.8 .7 - 0.317 In(x)

Figure 4.14: Comparison between simulated values v and approximation v. (fitted)

Hence, (4.44) provides a sufficient relation between v, and x. in the bold range of Figure
4.12.

Summarizing this section. the inner scale /; is calculated as follows
Determine C,z2 using angle-of-arrival fluctuations and (4.31)

Calculate the log-amplidude 623 using the intensity fluctuation and (4.32)
Insert C,,3 and le into (4.42) and compute x,

Determine v, with use of x, and (4.44)

Insert v.. A, and R into (4.43) and solve for /,

led o —

i

From (4.42), (4.43), and (4.44) follows the observation equation for /g given by:
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Thus. the inner scale can be calculated using the relationship shown in Figure 4.12 if the
remaining parameters (A, R, G’Z: . C,,:,) are known or measured. This procedure is called
"inner-scale algorithm" in the following. The inner-scale algorithm which approximates
(4.38) is stable since the fitting function converges for all valid input values and, fur-
thermore, this algorithm is advantageous since small deviations caused by the limited
accuracy of measurements are not amplitied in the algorithm.

4.5 Analysis of accuracy

In general, the quality of the estimation of parameters can be deteriorated by

e random deviations due to the measuring process and the imperfectness of the sen-
SOTS.

e systematic deviations in cases where the applied model does not entirely hold.

The influence of random deviations can be decreased using sensors which provide re-
sults of an adequate accuracy. In this sense, the analysis of random deviations can yield
some hints for selecting an appropriate measuring system (section 5). In order to avoid
or reduce systematic deviations, the applied model must be refined. However, the re-
finement often involves the measurement of additional quantities. Both random and
systematic deviations are discussed in the following analysis.

4.5.1 Random deviations

In sections 4.3 and 4.4, the structure constant of refractive index C,,2 and inner scale [y
are derived from the angle-of-arrival fluctuations and the intensity fluctuations whereby
these fluctuations must be determined using imaging sensors and image processing
techniques (section 6). In order to analyze the required accuracy of the system, assump-
tions about the planned experiments and the meteorological conditions are necessary.
For this purpose, R= 75m, A = 550 nm, C,,2 = 0.32, and /p = 4.6 mm are assumed
whereby €, and Iy represent conditions of a sunny summer day. Further, assumptions
about the desired accuracy of C,,,: and /y are required. Investigations about the accuracy
of C,” and Iy and their influence on the temperature gradient are presented in [DEUS-
SEN, 2000]. It was found that the accuracy of C,” and 1, which is required for the de-
termination of the temperature gradient depends on the actual turbulent conditions.

Since general rules do not exist, the following analysis assumes a required standard de-

- . RN » : :
viation of 6¢yo = 0.032-107 " m™™ and 6 = 0.46 mm which means a relative accuracy of
10%. Using the law of propagation of variances, the standard deviation of the structure

constant €~ follows from (4.31) and is given by:
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O . =, [IO~12 m‘m] (4.46)

If an aperture of ¢ = 0.065 m is assumed. the required accuracy for the angle-of-arrival
fluctuations is 6.5-10"7 rad”. Therefore. an imaging system with a focal len gth f = 500
mm and a size p, = 107 m/pixel of pixel elements must determine the standard deviation
of 6,” with an required accuracy of 64 > = 0.016 pixel”.

The accuracy of the estimation of the inner scale 1s influenced both by the accuracy of
the log-amplitude fluctuations 64,2 and of the structure constant 6,2, Using (4.45) and
the values for R, A C,f, and 7, which are assumed above, the standard deviation of the
mner scale follows from the law of propagation of variances and is given by:

G = \/(8.4 10" O ) + (28 O )‘ [mm] (4.47)

If an accuracy 6 = 0.46 mm is necessary, an accuracy of the log-amplitude fluctuations
Oay2 = 13% is required as follows from (4.47). This demand is equivalent to a signal-to-
noise ratio (SNR) of 8.8 dB. The SNR and the standard deviation of &,° can be consid-
ered as criteria for the suitability of the imaging systems and the image processing tech-
niques presented in section S and 6.

4.5.2 Systematic deviations

a) Weak turbulence and saturation effects

Systematic deviations may occur when modelling optical turbulence by Rytov’s method
of small perturbations as presented in section 4.2. As shown, e.g., in [CLIFFORD, et al..
1973], modelling optical turbulence requires the distinction of weak and strong turbu-
lence. This distinction is essential since, within the range of weak turbulence, the inten-
sity fluctuations increases with the path length and with the strength of turbulence until
it reaches the "saturation” range and, thus, the beginning of the regime of strong turbu-
lence.

This description of intensity fluctuations is illustrated in Figure 4.15. The abscissa
shows the Rytov variance B, defined by, e.g.. [TATARSKIL 1992], [ANDREWS, et
al., 19981 or [AZOULAY et al., 1988]

B, =1.23-Ck"°R"" for plane waves (4.48)
B, =0.496-C k°R"" for spherical waves (4.49)
with  k=2n/A (4.50)

A Wavelength of light
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Figure 4.15: Comparison between measured intensity fluctuations and
estimated values (Data: [TATARSKIL, 1992])

The ordinate of Figure 4.15 displays the normalized intensity fluctuations. The graph of
Figure 4.15 is interrupted at the transition from weak turbulence to strong turbulence
because there is still a lack of an accepted theoretical description of the saturation phe-
nomenon. Nevertheless, the Rytov variance is a measure of the strength of fluctuations
by the medium in this type of wave propagation and allows the distinction between
weak and strong turbulence. If By” < 0.6, the criterion of weak turbulence is fulfilled as
given in Figure 4.15 and the methods presented in section 4.3 and 4.4 can be applied.

The saturation phenomenon as de-
scribed above 1s especially important 10000 -
for the determination of the inner -
scale using the intensity fluctuations
since the measured intensity fluctua-
tions lose their significance if the
range of weak turbulence is ex-
ceeded. During day-time (i.e., C,,,2 <
112 273 : .

1077 m™), the assumption of weak 100 S R .
turbulence is normally valid for a 0.001 0.01 0.1 1
maximal length of propagation path C.2[1072 )

R, = 170 m as follows from (4.49).
For spherical waves, the relation
between €, and R, is plotted in  Figure 4.16: Maximal length of propagation
Figure 4.16. path R, forweak turbulence

1000 rmmmree

Rmax {m}

As shown in Figure 4.16. an increase of €, requires a decrease of the measuring path.
Practical field experiments should take account of this limitation due to saturation. In
contrast to intensity fluctuations, phase fluctuations continue to increase with increasing
path length, although. the theoretical propagation of phase fluctuations in the strong
turbulence range has not been fully investigated vet [GARDNER, PLONUS, 1975]. But
this is not relevant, since, as mentioned above, the measurement technique is more re-
stricted by the saturation of the intensity fluctuations than by the phase fluctuations.
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b) Aperture averaging

In the atmosphere. the light beams are subject to Light beams
multiple scattering and the propagation path varies —
randomly. Strictly speaking, the spherical-waves
equations as given, ¢.g., in (4.36) assume a point
source and a point recerver which collects the ra-
diation. But dealing with practical applications, the
entrance aperture of the receiver has a finite effec-
tive diameter d,. Whether a receiver can be ap-
proximated by a point receiver depends on its lat-
eral dimension relative to the lateral dimensions of
the intensity fluctuations of the corresponding light
beams. In other words, aperture averaging may
a‘mse if the.apelilurc‘“ _1\ .mwt rclalw\c;ly vsmalli to the Figure 4.17: Effective diameter

Fresnel radius (AR)'~ since the effective diameter

d, acts as a lowpass filter [FRIED, 1967].

Aperture averaging causes a spatial average of the incident irradiance over the aperture
and, thus, weakens the scintillation effects. These effects can be modelled by the at-
tenuation coefficient for aperture averaging A, which is introduced for spherical waves
by ANDREWS [1992] as follows:

a

/\" i 1 i
Ay, = 140333 =S 1| (4.51)
SRV
with 4, Effective diameter of detector

The attenuation coefficient is to be multiplied with the log-amplitude fluctuations ob-
tained by (4.38). Hence, the log-amplitude attenuates as illustrated in Figure 4.18.
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0 .
0.1 1 o 10 100
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== \Nithout aperture averaging - Aperture averaging: de = 3 mm
- Aperiure averaging: de = 1.5 mm -~ Aperture averaging: de = 8 mm

Figure 4.18: Influence of aperture averaging on log-amplitude fluctuations
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For this research work, aperture averaging effects are neglected because of the absence
of an exact model which estimates the effective diameter d,. In order to reduce aperture
averaging effects, image sensors were selected in section 5 which provides a considera-
bly higher sensitivity than the required SNR of 8.8 dB (section 4.5.1), such as. e.g., the
video theodolite TM3000V with SNR = 46 dB (CCD camera). Due to the higher sensi-
tivity, the determination of O"X:' as the input for the determination of /g is expected to be
still possible. Further research work should investigate the aperture averaging problem
in more detail.

¢) Outer scale

The outer scale Ly bounds the anisotropic turbulence range and the upper end of the in-
ertial subrange, i.e., the inertial subrange copes with eddies the diameter of which is
larger than Ly. As mentioned in section 4.3.2, the outer scale Ly is assumed to influence
the angle-of-arrival fluctuations (4.26) and (4.27) since Ly appears in the refractive in-
dex spectrum ®,(x) as given by (4.14) and. therefore. Lq is also included in (4.28) and
(4.29). Thus, the influence coetficient for outer scale ¢, is introduced in order to model
this influence whereby ¢; is defined by

= e (4.52)

Assuming Ly to be negligible, the influence coetficient for outer scale ¢, 15 1.09 The
value 1.09 follows from (4.31). In the literature, other factors are reported, too, e.g.,
GURVICH er al. [1968] mtroduced ¢;, = 1.05. The relation between ¢, and Ly can be
determined using (4.28) and (4.29) and is shown in Figure 4.19 and Figure 4.20 (plots
are determined with ¢ = 0.065 mand R =75 m).
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Figure 4.19: Influence coefficient Figure 4.20: Influence coefficient
Jfor spherical waves for plane waves

Figure 4.19 and Figure 4.20 show a decrease of the influence coefficient ¢; for a de-
creasing outer scale Lo where the decrease is strong especially in the lower ranges of L.
For practical applications, the height above ground is sometimes used as a rough esti-
mate of the outer scale for the atmospheric surface laver, e.¢., [HUFNAGEL, 1978].

But the outer scale Ly is uncertain since the boundary between the anisotropic turbu-
lence range where energy is injected and the inertial subrange cannot be determined
exactly. cf. section 3.2.4. The reason is that, in an anisotropic regime, the eddies are not
spherical vet but have different extensions in horizontal and vertical direction. There-
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fore, the outer scale can be assumed to extend more than 100 meters in horizontal direc-
tion and a few meters in vertical direction [STROHBEHN, 1968].

Hence, the outer scale is thought to be on the order of some 100 meters and the value
¢y = 1.09 for the influence coefficient of spherical waves seems to be a good approxi-
mation. In this case, the systematic deviation is at the most about 5 %, if Ly is not
smaller than 100 m.

4.6 Conclusions

It 1s shown that the angle-of-arrival fluctuations and the log-amplitude fluctuations are
meaningful for the determination of the inner scale /; and structure constant C,,Z. Both
parameters are needed to calculate the refraction angle (cf. section 3.4). For this pur-
pose, the method of smooth perturbation (Rytov method) can be introduced to derive a
relation between the wave parameters and /, and C,,D'.

In the scope of this research work. the angle-of-arrival fluctuations based on (4.31) are
applied to determine C,”. Basically. this relation was already used in previous geodetic
research work, such as [BRUNNER, 1979], [CASOTT, 1999], [DEUSSEN, 2000]. In
addition to those publications, the analysis presented in section 4.5.2¢) also investigates
the influence of the outer scale Lo. This mostly theoretical analysis shows that the influ-
ence of Ly causing systematic deviations for the determination of C,” can be neglected if
Lyis larger than 100 m.

The inner-scale algorithm presented in section 4.4.2 is a new method to determine /. In
contrast to [CASOTT, 1999] which uses the balance point of the full intensity spectrum
of the incoming ray to estimate /y by means of an empirical function, the inner-scale
algorithm is based on the variance of the log-amplitude variance (‘)‘X?' of the incoming
ray. The analysis of accuracy in section 4.5 reveals that /y can be accurately determined
in this way.

A still unsolved problem is a general rule for the measuring time needed to determine
GXQ‘ Basically, the measuring time is important since the refraction correction is based
on the average of the temperature gradients (cf. section 3.4). A general rule for the
measuring time can not be derived from the theoretical formulae of section 4.4.2. Thus,
further investigations are required which take the auto-correlation function of the tur-
bulent regime into account. With respect to the capability characteristics of current geo-
detic instruments, a measuring time in the range of 1 to 10 seconds was chosen for the
measurements of section 7.

The disadvantage of the Rytov method is its sensitivity to saturation on longer path
lengths since the determination of inner scale is based on the measurement of intensity
fluctuations. Due to saturation influences, the evaluation of these fluctuations is not
valid yet if the propagation path and the optical turbulence exceed the limit defined by
the Rytov variance (Figure 4.16). However. the determination of C,” suffers less from
this restriction which requires the presence of weak turbulence. In fact, the evaluation of
the angle-of-arrival fluctuations is considered valid under strong turbulent conditions,
also [ISHIMARU, 1978].
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The presented algorithms are designed for imaging systems and propagation path
lengths of less then 200 m. The analysis of accuracy provides some hints for choosing
appropriate sensors and image processing algorithms (section 4.5.1). Uncertainties still
exist about aperture averaging (section 4.5.2b) which attenuates the log-amplitude fluc-
tuations. This attenuation caused by aperture averaging should be compensated by high-
sensitivity imaging sensors and by optimizing the lens system. But further investiga-
tions are required.

The theory of optical turbulence as outlined above 1s based on the principles of statisti-
cal radiophysics deseribing the wave propagation in turbulent media. The experimental
data which are used to verity this theory are based on measurements in the atmospheric
boundary layer. Since it is very difficult to measure atmospheric turbulence by adequate
reference systems. the experimental results based on the introduced modelling tools
such as the retractive index spectrum and the turbulent eddies are very difficult to verify
and should be discussed carefully. Practical measurements as discussed, e.g., in [VI-
NOGRADOV et al., 1985], [THIERMANN, 1990}, [CASOTT, 1999], and [TROLLER,
2000] often show quite a good agreement between the experimental data and the theo-
retical predictions or the data obtained by a reference system, however. Therefore, the
application of optical turbulence for refraction analysis seems to be quite promising.




5 Measuring systems

5.1 Introduction
In order to analyze the refraction influences using atmospheric turbulence, the experi-
ments presented in section 7 use the following types of measuring systems:

e Imaging systems which determine OUTPUT INPUT
e e 2 10 PLANE PLANE
the structure }?al‘amdu C, ‘m(. 0 » Turbulence .
by means of image processing  Cells
(section 6) and the model of opti-
cal turbulence as presented in Coded 12 —
section 4. staff : mecoiver

Under turbulent conditions, the
image sensors are applied to grab
the image of a target such as a

coded levelling staff. Due to the R

turbulence cells (eddies) along the

propagation path, the light propa- Figure 5.1: Model of light propagation
gation through the turbulent me- through turbulent medium used for the
divm 1s disturbed (Figure 5.1) measurements of image sensors (receiver)
since these eddies are character- and a coded staff (target).

ized by a slightly varving refrac-
tive index.

et

{ence, the recorded images such as the code pattern of a digital staff (cf. section
5.5.2) are subject to intensity fluctuations and angle-of-arrival fluctuations. These
fluctuations are evaluated in order to determine the structure parameter C,Z?' and /o as
discussed in section 4.

e Reference systems providing data for a comparison of the results obtained by the

image sensors. Hereby, two different reference systems are utilized:

~ A scintillometer which provides the structure parameter C,~ and /.
The measurement principle of the scintillometer is based on relative evaluations
of the intensity statistics as presented in section 5.3.1.
A temperature gradient measurement system determining the gradient d7/dz.
This temperature gradient can be compared with the gradient calculated using
the atmospheric turbulence model (section 3.4) and the structure parameter C,,2
and /o.

In the following sections. the measuring systems are explained in more detail. The ex-
planations concentrate on the imaging systems than on the others, since these imaging
systems are applied for the first time in the field of refraction analysis.
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5.2 Imaging systems

5.2.1 CCD sensors

Within this research work, charge-coupled devices (CCD) are used as image sensors.
CCD sensors were first developed in the AT & Bell laboratories, New York in the
1970s. They measure the light intensity by accumulating charges and transferring the
charge to the gate of the sensor (bucket-principle). The concept of the CCD sensor is
given in [SEQUIN, TOMPSETT. 1975], [BOYLE. SMITH, 1980], [BEYNON, LAMB.
1980]. The advantage of CCD sensors is the linear relationship between the strength of
the incident radiation and the charge which is measured at the gate, e.g., [LENZ 1991].
Additionally, CCD sensors allow a high-frequency sampling of image data.

The general procedure of the image acquisition is illustrated in Figure 5.2. The accu-
mulated charges of the CCD sensor are sampled and yield an analog signal. In order to
avoid aliasing effects, this signal is filtered using lowpass filters which have been di-
rectly mounted on the CCD chip by the manufacturer. Then, the analog signal is con-
verted into digital gray values with 8-bit resolution (0...255) using a frame grabber.
Hereby, modern CCD chips (such as the chip of the line scan camera presented in sec-
tion 5.2.4) have a AD-converter which is also mounted on the chip and, therefore, the
AD-conversion by an external frame grabber is not necessary.

Software drivers control the data transfer of the digitized data which are stored on stor-
age media for post-processing (see also section 5.6). The image acquisition of the sensor
as presented in Figure 5.2 can be controlled by means of external signals such as pixel
clock and reference voltage.

Sampling Lowpass AD-Conversion
ceh A Frame . , Digital
Sensor L L grabber »  Driver output
T I
Pixel clock
Reference voltage =

Figure 5.2: Image acquisition using CCD image sensors

In future, it is possible that CMOS (Complementary Metal-Oxide-Silicon) sensors will
substitute CCD sensors in imaging systems. CMOS sensors are based on photosensitive
diodes which are connected to resistors in series. As a result, the photocurrent is con-
tinuously converted into an output voltage. The manutacturing process of CMOS de-
vices is considerably simpler than that of CCD devices. Therefore, industrial oriented
CMOS cameras, including an interface for PCs, are cheaper than a classic system as
shown in Figure 5.2. But up to now. today’s CMOS cameras have a signal-to-noise ratio
which is about 1 to 2 decades lower than that of CCD cameras.
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5.2.2 Criteria for the imaging systems

The imaging system must be able to measure the angle-of-arrival fluctuations and the
intensity fluctuations with an acceptable accuracy. As investigated in section 4.5.1, the
required relative accuracy for the angle-of-arrival fluctuations should be at least 10 %
and the sensor should have a signal-to-noise ratio (SNR) of at the most 9 dB. Since the
SNR of the applied CCD sensors is in the range from 46 dB to 75 dB (cf. SNR of video
theodolite and line scan camera, see below), this criterion is unproblematic.

However, the desired accuracy of the angle-of-arrival fluctuations is demanding, and.
therefore. the following considerations are presented with regard to the accuracy of the
angle-of-arrival fluctuations. In this regard. it is necessary to take the accuracy of the
image processing techniques (edge detection) into account. Practical investigations
(section 6.4.6) show that the accuracy of the edge detection Gy, using the Canny op-
erator or least squares template matching is about 0.05 pixel. As investigated further in
section 6.4.6, the desired accuracy of the angle-of-arrival fluctuations can be achieved if
the focal length f of the imaging system is at least about 300 mm, the aperture « 1s about
65 mm and the size of the pixel element p, is about 10 pm.

Basically, the accuracy of the angle-of-arrival fluctuations and of the intensity fluctua-
tions can be improved if the aperture is as small as possible and the focal length as large
as possible. However, diffraction effects limit the resolution p,., as follows:

P =122 )L—'L (Size of the Airy disk, Ravleigh criterion) (5.1)
a \

Assuming a focal length f= 500 mm. a wavelength A = 550 nm (visible light) and an
aperture @ = 65 mm, p. 1s 5 um as follows from (5.1). In this case, prs < p. = 10 um,
thus, the specifications (300 mm < f < 500 mm). p, = 10 um, and (34 mm < ¢ < 65 mm)
seem to be reasonable.

5.2.3 Video theodolite

The video theodolite TM 3000V (Leica Ltd., Swit-
zerland) displayed in Figure 5.3 is a motorized theo-
dolite including a CCD camera. The following techni-
cal data are gathered from internal technical docu-
ments of Leica Ltd [LEICA, 1989].

The CCD camera is coupled into the optical ray as
shown in Figure 5.4: Behind the lenses (A), an optical
coupler (B) turns the ray round to the CCD camera.
Instead of the optical coupler. an ocular can also be
mounted in order to aim the target by eve. The tele-
scope has panfocal properties, and the focus lens is
driven by a servomotor. The aperture of the video
theodolite is @ = 52 mm. T and the focal length is f =
295 mm (cf. section 5.4.1).

Figure 5.3: Video theodolite
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The focal length f = 295 mm does not exactly fulfill the corresponding criterion f =
300 mim as discussed in section 5.2.2 but the deviation of 1.7 % is assumed to be ac-
ceptable. The aperture of the video theodolite is in the specified range (34 mm < a <
65 mm), thus, this criterion is met.

Instead of a crosshair, the video theodolite has an internal reference frame which defines
the reference system for the two-dimensional image data. This reference frame is com-
bined with the optical coupler in such a way as to display the frame on the CCD camera.
The CCD camera consists of a sensor array of 500 x 582 pixels (H x V) and its pixel
size 1s 17 x 11 um (H x V). The minimal required luminous intensity of the CCD cam-
era is 5 lux at F1.4. The signal-to-noise ratio is 46 dB [LEICA, 1989].

CcCcD
Sensor

500 x 582
pixel

T

a| A I

f

Figure 5.4: Video theodolite with integrated CCD sensor (500 x 582 pixel):
(A): Internal reference frame, (B): Optical coupler,
(C): Infrared emitting diode for target illumination (cf. section 5.5)

The video output signal of the video theodolite is a standardized CCIR-PAL video sig-
nal, c.g., [CCIR, 1990]. The video signal is AD-converted by the frame grabber which
grabs the image sequences with a frequency of 25 Hz. Since the video signal is stan-
dardized the output frequency cannot be altered.

5.2.4 Line scan camera

a) Instrumental setup

The line scan camera (BASLER L120, manufactured by Basler Ltd., Highland, Illinois)
includes a CCD line sensor with 1024 pixels (pixel size: 10 x 10 um). The camera is
mounted behind an objective (Nikkor 500 mm, Nikon) and both are fixed on an optical
theodolite (Wild T2. Leica, Heerbrugg) as shown in Figure 5.5. The telescope of this
theodolite is utilized to aim the target by eye. The following information is provided by
the technical documentation of the Basler line scan camera 1.120 [BASLER, 1998].
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Nikon Line scan
objektive camera

[ !

Theodolite
Wild T2

Figure 5.5: Mounting of line scan camera

The camera displayed above is a digital line scan camera in the sense that the CCD chip
(SNR = 75 dB) is directly combined with an A/D converter within the camera. This
means the accumulated charges are digitized by the camera itself and not by an external
A/D converter as is the case when dealing with the video theodolite TM3000V. The line
scan camera outputs the values of the digitized charges to the external circuitry via three
connectors located at the back of the camera.

The cross section in Figure 5.6 presents the Cassegrain type objective (1) which is con-
nected with the theodolite by an adapter (3) and which has a focal length of = 500 mm
and a fixed aperture (¢ = /8 f = 63 mm). The field of view of the objective is 5°. The
line scan camera (2) is mounted on the objective by a Nikon bayonet fixing (6).

The sensor chip (7) is positioned according to the specifications of Nikon C mount, i.e.,
the backflange-to-CCD distance is 17.526 mm with an accuracy of 0.002 mm [NIKON,
2000]. The positioning tolerance of the sensor chip in the horizontal and vertical direc-
tion is 0.3 mm and the rotational positioning tolerance is 0.3°.

The connector of the female D-Sub HD 44 pin (4) interfaces the video data and the sig-
nals which are needed for synchronization (EXSYNC. LVAL. PVAL, see below). The
pin connector (5) of the male D-Sub 9 is a RS-232 interface which controls the settings
of the line scan camera such as exposure time and clamping.
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140 205 45

Figure 5.6: Cross section of objective and line scan sensor.
The unit of the presented quantities is the millimeter

b) Video data and control

The analog digital converter (ADC) in the line scan camera converts the accumulated
charges into video data. The digitized video data have a resolution of 8 bit and are, thus,
transferred to the digital interface connector of the frame grabber (section 5.6) by 2 x 8
separated wires.

Additionally, the so-called LVAL and PVAL signals are generated to indicate a valid
line (LVAL) and a valid pixel of data (PVAL). Both signals are used to synchronize the
digital video output data into external circuitry.

The PVAL signal of the Basler line scan camera [.120 has a frequency of 20 MHz (pixel
clock). In other words. this pixel clock implies that the charge transfer of a pixel takes
about 0.05 us. The pixel clock is displaved schematically at the top of Figure 5.7. The
camera line scan rate 1s controlled by the synchronization signal EXSYNC (Figure 5.7)
provided by the external frame grabber. The line is read out and output with the rising
edge of EXSYNC.

The exposure time is controlled by a programmable internal counter which is included
in the CCD chip and can be addressed by the serial interface RS-232 mentioned above.
The exposure time of a line being read out is determined using the time between the
rising edge and the following falling edge of the signal of the programmable counter.
The exposure time may vary 2 pixel clocks due to the requirement that the external syn-
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“hronization signal must be internally synchronized. The line read out starts about
2.5 us after the exposure time is finished. As shown in Figure 5.7, the exposure time
which is chosen as 2900 us cannot be enlarged arbitrarily since the time needed for line
read out and the line scan rate (e.g.. 333 Hz in Figure 5.7) limits the exposure time.

Besides exposure time and line scan rate. the gain and the offset of the A/D-conversion
can also be optimized. As presented in Figure 5.8 and Figure 5.9, the CCD sensor signal
can be shaped to optimally match input voltage of the ADC range for a given applica-
tion.

e

[

A A A A AAAAAAAAAAAAAAAAAAMAALAD #A fA AA A A AAd LA AL
| : i [ | \ ]
! I
i i ‘
: Pt i

Pixel clock (20 Mhz)

EXSYNC — —
(from Frame Grabber) I I I——I

e e e o o o e

2900 us
o
Programmed T T TTTTTTey TTTRTEX 'y
exposure time | |
; ) | ‘
i
i ; :
| | |
! : )
i ! i
! ! 1024 Pixel j
i ! 2512 us |
; |y |
! by ! ;
i : AAAA MDA A
' i i '
N i
Line read out ; 3 | |
i - j
I 1 1 I
: Do |
: b :
I
! ~2.5 us !
; ]
i 1
; 3000 us |
i

Figure 5.7: Signals and exposure control of line scan camera

For most applications gain and offset settings are advantageous if black has a gray value
of just above 0 and white a gray value of just below 255, Settings should usually not be
0 and 255 to ensure optimal exposure conditions.
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Figure 5.8: Gain Figure 5.9: Offset

c) Optical filter

The CCD sensor of the Basler line scan camera is sensitive for wavelengths in the range
from 400 nm to 1100 nm. Plants (grass, leaves etc.) emit infrared radiation which fluc-
tuates and, therefore. can also deteriorate the measurement of the refraction-induced
intensity fluctuations. Hereby, the reflectance spectra of grass is shown as thin line in
Figure 5.10 [USGS, 1998].

For these reasons, an UV-IR-cut filter is mounted on the objective where the bold line in
Figure 5.10 specifies the spectral transmission of this filter. The filter reduces the dis-
turbing frequencies and. at the same time. transmits the remaining radiation in a range
where the CCD sensor 1s still responsive.

1.2
@ ‘
5 0.8 -
a = = = = CCD sensor
[
° e (GTEEN QTASS
-(?6 - UV-IR-cut filter
< 04 —
o
0.0 ; ‘
200 400 600 800 1000 1200 1400
! Wawe length (nanometer)
i

Figure 5.10: Dimensioning of UV-IR-cut filter taking into account spectral responsivity
of CCD sensor and reflectance spectrum of green grass
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5.3 Reference measuring systems

5.3.1 Scintillometer

A scintillometer determines the structure parameter of optical turbulence using a laser
beam. Scintillometers have been developed based on different concepts and specifica-
tions. Depending on the concept which is applied, the scintillometer is able to determine
both C,” and Iy or ok only. More details are presented in [GRAY, WATERMAN,
1970]. [HILL. OCHS. 1978]. [WANG er al.. 1978]. [AZOULAY et al., 1988] and
[HILL et al.. 1992].

The displaced-beam scintillometer SLS 20 which is used in the scope of this research
work can determine both structure parameter C,* and I, and was developed by THIER-
MANN [1992]. This system only needs one laser source and one receiver since the laser
beam is split into two parallel beam rays which have different polarization and are dis-
placed by the amount «.

Polarizing
beam splitter

Atnosphere

] Fhotodiode

o
z

.

Sl

* Interference Photodiode
filter

Transmitter Receiver

Figure 5.11: Transmitter and receiver of a displaced-beam scintillometer

The two photodiodes of the receiver detect the incoming radiation of the laser beams
and generate an analog signal which is transferred to an analog digital converter (ADC)
board of a portable computer where the inner scale /; and the structure constant of re-
fractive index C;,: are determined.

While the determination of the inner scale /; according to the procedures of section 4.4.2
assumes that the structure constant of refractive index C,” is known, the displaced-beam
scintillometer provides the inner scale directly. This determination makes use of the
correlation of the displaced beams given by the logarithm of the amplitude of the re-
ceived radiation. In doing so. the correlation of the log-amplitude ry is introduced as
follows [THIERMANN., 1992}

Cov. ‘
r,=——%= f(l.a.d.R) (5.2)
) G, )
4
A edr
R = K: ([-) ) 4']:~% l\%
with  Cov, =dmk” [ 1, ()7, (sa)sin’| S =0 iy (5.3)

re=() w=() . 2]([\) i{/ K(/l' .
R
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‘ =0 w=h 5
Ji Bessel function of the first kind

The correlation coefficient r, applied in the displaced-beam scintillometer is independ-
ent of the structure constant C‘,,: because of the division in (5.2). Therefore, the correla-
tion coefficient r, only depends on the receiver separation «a. the diameter d of the de-
tector, and. besides these instrumental quantities « and . on the inner scale and the
propagation path length which is assumed to be known. Thus, the comparison of the
two measured scintillation statistics Cov, and ¢, enables the direct determination of the
inner scale since the correlation allows a non-ambiguous relation to the inner scale.
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Figure 5.12: Correlation and inner scale (fora = d = 3 mm, R =75 m)

The graph of Figure 5.12 is generated by means of (5.2) and shows that [y can be de-
rived from the correlation oefficient .

The determination the structure constant C,” uses the following equation derived from
(5.3):

0, =0.124C, k"R £, (1) (3

o
(I
=z

where  fg Decay of Hill spectrum, cf, (4.16)

Besides C‘,ﬂ all quantities of (5.5) are measured or known. i.e.. (5.5) can be solved for
C,,Q. The commercially available scintillometer SIS 20 uses a wavelength of 670 nm
and operates over a distance of 50 to 200 m. The measuring range for C,” is from 3-10™"°
to 3-107"" m™ and the range for the nner scale /i is from 2 to 15 mm [THIERMANN,
1997]. The accuracy of the structure parameter C,;: and /y determined using the scintil-
lometer SIS 20 is not specified by the manufacturer. Investigations of the accuracy and
the capabilities of the scintillometer SLS 20 are presented in [DEUSSEN, 2000] and
[SCHWIZER, STAHLI 1998]. Hereby. the relative accuracy seems to be about 5 % to
10 9% under the assumption that the sensor and the detector are aligned exactly. There-
fore, at the beginning of the measurements, the alignment must be checked each time by
means of a special calibration procedure as documented in [THIERMANN, 1997].
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5.3.2 Temperature gradient measuring system
The determination of the temperature gradient using scintillometers is based on the hy-

pothesis of the Monin-Obukhov similarity (section 3.3) whereas temperature gradient
measuring systems including several high-precision temperature sensors allow the direct
measurement of temperature gradients if the distance between the temperature sensors 1s
known. Thus. they can be used as a reference system in comparison with the results
obtained by means of turbulence models.

5 mm

I
¥

118 m

TE

4B
i2e]

G

(1) PT1000 temperature sensor (5) Guy wire
(2) Radiation shield (6) Cable for DC transfer
(3) Ventilation tube (7) Interface

(4) Ventilation motor
Figure 5.13: Mast with temperature measuring svstem

The temperature gradient measuring system presented in the following consists of resis-
tive sensors (Pt1000), radiation protection, ventilation, interface, and data acquisition
unit. The sensors can be configured according to the requirements of the application. In
order to measure vertical temperature gradients, four temperature sensors are mounted
on a mast as illustrated in Figure 5.13. Assuming a non-linear temperature gradient pro-
file as modelled in (2.31), the distances between the sensors allow a good approxima-
tion of the profile since the curvature of the protfile (2.31) decreases with increasing
height.

The resistance of PT1000 temperature sensor (1) depends linearly on the temperature
where the nominal resistance at 7 = 07 1s 1000 Q. The interface (7) supplies the sensors
with constant current (DC) so that. according to the Ohm's law, the voltage drop 1s a
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measure for the resistance of the temperaturc sensor and, thus, a measure for the tem-
perature.

The output voltages of each sensor are amplified using the amplifier of the interface. In
order to measure temperature fields as a function of time. the amplified signals are si-
multaneously fed into the ADC board of a portable computer. The ADC board digitizes
the analog input signals and subsequent program procedures correct the raw data using

constants of the calibration.

The accuracy of the temperature measuring sensor can be undermined by various inter-
fering influences, e.g., heating by sun radiation. Thus. the sensors are positioned within
the housing of the radiation shield (2) protecting the sensors trom sun. Each sensor is
equipped with a ventilation tube (3) supplving the sensors with the air of the environ-
ment in order to grant representative results. The ventilation motor (4) is opposite of the
temperature sensor to avoid troublesome influences.

As only temperature differences among the sensors are of interest, the temperature sen-
sors do not need to be calibrated absolutely in relation to the international temperature
normal. However, the sensors must be accurate relative to each other. In order to deter-
mine the offset between the sensors. they are calibrated in a climatic chamber where the
sensors are put together at the same position and, therefore, should yield the same re-
sults. The accuracy of the system can be mmproved, il it 1s also calibrated in the same
way at the beginning of the experiments for about 40 min [HENNES et al.. 1999]. Sev-
eral calibrations reveal that the relative accuracy (standard deviation) of the described
system is about 0.02 K [HENNES er al., 1999].

5.4 Calibration of image sensors

The calibration discussed in the following establishes the relationship between values
grabbed by means of image systems and the corresponding values realized by a refer-
ence standard. Dealing with image sensors, geometrical calibration and radiometric
calibration are applied. The geometrical calibration seeks to define the inner orientation
of the camera or video theodolite, i.e., the position of the center point within the focal
plane and the focal length. The radiometric calibration considers the irregularities of the
grabbed pixel intensity which 1s influenced by the transfer function of each pixel of the
sensor (section 5.4.3).

In sections 5.4.1 and 5.4.2. the geometrical calibration is investigated. Basically, the
procedure can be compared with the camera constant calibration used in applications of
photogrammetry.

Since the geometrical measurands required for refraction detection are standard devia-
tions, the position of the center point does not have to be calibrated. Therefore, the cali-
bration only seeks to confirm the focal length f which is used for the conversion from
the measured pixel values to the angle-of-arrival.



5.4.1 Video theodolite

In order to calibrate the video theodolite in the calibration laboratory, the instrument
aims at a target positioned in a distance R. In Figure 5.14, the field of view is plotted by
continuous lines and the line of vision by dashed line. During the calibration, the line of
vision is rotated slightly in vertical direction at each step (about 10 mgon). Hereby, the
vertical angle AR denotes the angular deviation between the actual line of vision and the
line of vision of the sensor at the beginning of the calibration.

Video theodolite Light-emitting
diodes (LED)

Figure 5.14: Calibration setup of video theodolite

Because of the absence of daylight in the calibration laboratory, the target consists of
three light-emitting diodes (LED). The LED are mapped as patterns in the images
grabbed by the video theodolite (Figure 5.15). The position of the patterns (no 7 — 9)
relative to the reference frame (no 1 — 4) can be measured using least squares template
matching (section 6.4.4).

Figure 5.15: Video image of three LED (no 7 - 9).
The vertices of the reference frame are denoted by no I -4

As mentioned above, the position of the telescope is moved in vertical direction during
the calibration. Since the position of the LED pattern on the image depends on the posi-
tion of the telescope the vertical angle AB can be measured and correlated to the vertical
displacement Ay of the pattern in the grabbed 1mage.
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The correlation for the distance R = 49.4 m is shown in Figure 5.16. The range of AP is
relatively small since the field of view of the theodolite is only about 100 mgon.
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Figure 5.16: Relative displacement of vertical angle and position of pattern
(average of the three diodes). Slope a, = 2.37 mgon/pixel

In general, the lens equation models the tocal length as follows:

;bR 20
with R Object distance
b Image distance

Since the calibration described above uses an object distance R = 49.4 m, the focal
length can be approximated by the image distance b. Theoretically, this approximation
is only valid for R = oo but the relative error is only 0.6% if R is not smaller than 49.4 m.
Using linear regression. the slope «a; of the curve in Figure 5.16 can be determined and
inserted into the following equation to calculate the focal length f:

X P, ;
f=b= T [m] (5.7)
tan| a, - ——— ‘
L 200000
with  a; Slope (from linear regression)  [mgon/pixel]
De Vertical size of pixel elements  [m/pixel]

Based on the data obtained by the calibration of the video theodolite (cf. Figure 5.16)
and using (5.7), the focal length f amounts to 0.295 m (with «; = 2.37 mgon/pixel and
p. =11 um/pixel). This result 1s assumed to be valid for R > 49.4 m.

Since the video theodolite has a panfocal telescope, the determination of the focal length
1s demanding for shorter distances. [BRANDSTAETTER. 1989].
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5.4.2 Line scan camera

Basically, the line scan camera is calibrated in the same manner as the video theodolite
and seeks to confirm the focal length with regard to the conversion from pixel to angle.
In contrast to the video theodolite, the objective is mounted eccentrically to the tele-
scope of the theodolite. However. the vertical angle AR is related to the telescope of the
theodolite and to the optical axis of the line scan camera and can be directly used for
calibration if the influence of the eccentricity can be neglected.

This eccentricity denoted by ¢, in Figure 5.17 causes a vertical deviation Az which is
approximately given by:

T
Az=e sin” (AB) (5.8)

with e, Eccentricity: ¢, = 110 mm (Figure 5.5)

Assuming a distance R = 50 m and AR = 1 gon. from (5.8) follows Az = 0.014 mm and
the error of AR =0.017 mgon, thus, the influence of the eccentricity can be neglected for
distances R > 50 m.

Camera Target

€

AR

Figure 5.17: Calibration setup of line scan camera

As 1n the case of the video theodolite, the same hght-emitting diodes (LED) operate as
targets in the calibration laboratory. Since the sensor permanently grabs one line only,
readouts of each line are put together into an image (see also section 5.6). In other
words, images grabbed by line scan sensor map the LED (no 7 — 9) as stripes (Figure
5.18).
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In this image, the n,-axis denotes the
index of the pixel of the line scan
camera and the n»>-axis of the image
stands for the time, i.e., 1> 18 the -
dex number of the line readout of
the line scan sensor. The positions
of the pattern are measured using
the Canny operator as an appropri-
ated edge detection method (section
6.4.5).

In order to calibrate the svstem. the :
o QOO

telescope is moved in vertical direc-
ion in regular steps and the change s 10. 71 : - -
11911 mregt lar steps anc A the chang Figure 5.18: Line scan image of three LED
otﬂthe vertical ar.lglc Aﬁ 18 mw:suud (no7-29)

using the wvertical circle of the

WILD T2 theodolite.

Since the nj-coordinate of the LED stripes in the image depends on the position of the
telescope, it is a function the change of the vertical angle AP. The correlation for the
distance R = 50 m is again shown in Figure 5.19. The range of AP is considerably larger
than in the calibration of the video-theodolite since the field of view of the line scan
camera is about 5°.
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Figure 5.19: Relative displacement of vertical angle and position of pattern
(average of the three diodes)

Using linear regression. the slope «; can be determined and vields a; =1.27 mgon/pixel.
From (5.7) follows the focal length f = 0.500 m. This value confirms the specifications
as given by the manufacturer.

5.4.3 Radiometric calibration

Radiometric calibration can be essential if the output of the pixel array of the CCD sen-
sor which is irradiated uniformly has rregularities in the intensity. If the sensor is illu-
minated uniformly by diffuse illumination, the gray values of each pixel should be
same. In the calibration laboratory, the illumination is generated using a high-frequency
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Neon lamp and a diffuser which is mounted in front of the aperture of the unit under
test. The investigations show that this assumption holds when dealing with the line scan
sensor but it fails when using the video theodolite (Figure 5.20).
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Figure 5.20: Radiomerric defects in the output of the video theodolite

Figure 5.20 reveals that radiometric defects of the CCD sensor occur in selected ranges
of the video theodolite. These defects are visualized as deviations from a line of con-
stant gray value if the sensor is illuminated uniformly.

Principally, there are two trade-offs to compensate these radiometric defects. As a first
option, the deviations can be determined in the calibration laboratory using a differing
strength of illumination (dark. bright). Based on the measured deviations, a correction
function can be fitted which is applied to each pixel [MAAS, 1993].

The second option is the application of image processing techniques which are not sen-
sitive to the radiometric effects. Least squares template matching as presented in section
6.4.4 is suitable for this purpose since this technique uses the difference between a ref-
erence template and a corresponding image patch containing actual edge segments. In
doing so, the differences are free from radiometric defects and the application of radio-
metric correction functions is not required any more.

5.5 Target

5.5.1 Reflectors

The target image should provide information which is subject to refraction influences
arising along the light path between the target and the imaging sensor. With a suitable
target structure, the intensity and the position of the elements of the target can be meas-
ured as time series from which the intensity fluctuations and angle-of-arrival fluctua-
tions are derived by means of image processing (section 6). Optimal target structures
should have enough detail (circles, bars etc.) since the image processing algorithms
work the more precisely the more information content is in the image.

Since refraction detection should be integrated into geodetic instruments, the selection
of an appropriated target is mainly focused on targets used in geodetic applications at
present or targets which can be adapted easily. In doing so. the first investigations con-
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centrate on reflectors which are applied in electronic distance measurement (EDM). In
order to provide 3D positioning, not only distance information is needed but also infor-
mation about the vertical angle and the direction is required.

To obtain the vertical angle and the direction, tracking tacheometers (e.g., Leica TCA
2003) and video theodolites utilize the position of the image of a reflector on the nter-
nal CCD array sensor as presented, e.g.. in [BAYER. 1992]. [INGENSAND,
BOCKEM, 1997]. or [FAVRE, HENNES. 2000]. Typical examples for this type of tar-
gets are 360° prism or retroreflecting prisms (Figure 5.21).

Figure 5.21: Leica GPRI Figure 5.22: Image of
retroreflecting prism retroveflecting prism

Figure 5.22 shows the image of a retroreflecting prism positioned in the calibration
laboratory at a distance of 46 m and grabbed using a video theodolite. Hereby, a
(GaADAs infrared emitting diode (A = 850 nm. forward current: 100 mA) which is built
into the video theodolite illuminates the reflector [WILD LEITZ, 1988] (The position of
the diode is presented in Figure 5.4).

The retroreflecting prism of Figure 5.21
used as target for refraction detection is
not advantageous since the structure is
poor and the patterns are too large. espe-
cially for short distances.

Reflector

—— o
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A first attempt at creating a target image
showing more details led to a modified
reflector as shown in Figure 5.23. In
doing so, a semi-circular perforated

S
Metal sheat

metal sheet is mounted in front of the re- o
e . 57 8 mm
flector. The holes are countersunk using "
a regular erid (mesh size: S mm). . cm s g e .
gular gnd g ) Figure 5.23: Modified reflector

If the video theodolite illuminates the modified reflector according to the mentioned
configuration, it grabs a symmetrical image as shown in Figure 5.24. The symmetry is a
consequence of the structure of retroreflecting prisms [MAURER, 1982]. Due to the
modification, the structure of the image i1s more detailed.



91

Figure 5.24: Image of the modified re- Figure 5.25: Sub-region of the grabbed
flector acquired using a video theodolite image of the modified reflector
(Distance: 46 m)

The cropped image region (Figure 5.25) reveals that the patches of the image have dif-
ferent shapes and intensities. For good localization, the image processing algorithms
should utilize only the high-contrast patches in the center of the image.

Basically, the modified reflector is suitable for image processing techniques, but practi-

cal investigations reveal several difficulties:

e The image of the target is a function of the distance between the target and the sen-
sor, If the target is far away from the sensor, the patches of neighboring holes
merge, and a loss of information arises since the number of visible elements de-
creases.

e Thus, several types of metal sheet defined by various mesh sizes are required where
the mesh size and the size of the holes must be adapted for the different distance
ranges and for the properties of the geodetic instruments (optics, pixel size). De-
pending on the distance and the mentioned instrumental properties, it can be neces-
sary to use a composed target consisting of several combined reflectors.

e Since the patches have circular shapes they are not appropriated for geodetic appli-
cations using line scan sensors such as digital levelling because the vertical signal
information is highly influenced by the sector of the target which is grabbed by the
line scan sensor.

In respect of applications in digital levelling, a one dimensional target (e.g., coded lev-

elling staft) is preferred to the modified reflector. A coded levelling staff is especially

advantageous since the structure of the code pattern is defined more precisely than that
of the moditied reflector.

5.5.2 Coded levelling staffs

Coded levelling staffs allow an automatic horizontal height reading of the staff using
digital levels. For patent reasons different codes are applied in the digital levels which
are commercially available. As the image of the codes varies not only in height but also
in distance between level and staff. the code of the levelling staff should yield a unique
tmage on the line scan sensor for each combination of distance and height reading. For



the evaluation of an appropriated code with respect to the field experiments (section 7)
the pseudo-random code of the digital level Leica NA3003 is compared with the code of
the digital level Zeiss DiNi 10 in the following.

One digit of the Leica code element has a length of 2.025 mm. As illustrated in Figure
5.26, the width of the code bars varies in the range between 2.025 mm (1 digit) and
28.35 mm (14 digits). For determination of height and scale, the digital level correlates
the image of the CCD array with the internal reference code [INGENSAND, 1990b].

AL AR
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Figure 5.26: Section of pseudo-stochastic code (used in digital levels of Leica)

The Zeiss code has elements of 20 mm length. In contrast to the Leica code, the spacing
of the Zeiss code 1s usually 10 mm or 20 mm and. therefore, more regular than the Leica
code as shown in Figure 5.27. For height determination, 15 dark-light edges of the Zeiss
code are normally measured by means of edge detection [FEIST ef al. 1995].

NI

|
Figure 5.27: Section of Zeiss code

Depending on the code. the corresponding spatial spectrum ol the code can vary consid-
erably. In order to illustrate these relations. the Leica code and Zeiss code are sampled
(sampling rate f; = 16 mm") and analyzed using the algorithms of spectral density esti-
mation as discussed in section 6.2. The spectrum of the Leica code reveals local maxi-
mums spaced at intervals of about 0.48 mm™" whereas the spectrum of the Zeiss code
decreases monotonously as shown in Figure 5.28. The spatial frequency depends on the
distance and the focal length f. For example. assuming a distance of more than 30 m and
J= 240 mm, neighboring code elements of the Leica code coincide and yield an other
code and an other spatial spectrum, respectively. This means that the analysis of the
spatial spectrum for the purpose of refraction detection is principally possible but the
mentioned distance sensitivity is a drawback. Thus, only the time-dependent displace-
ment of code patterns is investigated in the scope of this research work but not the spa-
tial spectrum.
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Figure 5.28: Spatial spectrum of Leica and Zeiss code

For the purpose of refraction detection, the determination of angle-of-arrival fluctua-
tions does not require a very special code. The only requirement is that the code pattern
provides enough image structures and a good contrast which can be detected reliably by
image sensors over a distance up to 100 m. Therefore, a target consisting of strongly
varying code bars seems promising because it allows the testing of image processing
techniques using image patterns of strongly differing sizes. For this reason, the experi-
ments presented in section 7 use staffs coded by the Leica code.

The influence of the code on the determination of the structure parameter C,,2 and /y
should be further imvestigated. As mentioned above, it is difficult to compare the spectra
showed in Figure 5.28 with the spatial spectra of the same codes grabbed by imaging
sensors in field experiments. The reason for the limited spectral analysis is the low spa-
tial sampling rate in field experiments: Assuming a focal length f= 500 mm, a pixel size
pe = 10 um, and a distance R = 63 m, the sampling rate is only f; = 0.8 mm. This
means the spectrum can only be measured up to the Nyquist frequency of 0.4 mm™' and,
thus, special characteristics of the spectrum of the code such as the local maximums of
the Leica code (cf. Figure 5.28) cannot be localized.

5.6 Data recording

The image data of the sensors are grabbed by a frame grabber (Matrox Pulsar) which is
schematically described in Figure 5.29 and transfers the data to the peripheral compo-
nent interconnect (PCI) bus of a portable computer. This frame grabber provides real-
time CCIR or non-standard acquisition capabilities. The ADC of the board digitizes
analog video input such as signals from the video theodolite with a resolution of 10 bit
(at up to 30 MHz) or 8 bit (at up to 45 MHz). The programmable input lookup table
(LUT) can transform data greater than 8 bits per pixel to 8 bits per pixel for transfer to
the video-to-PCI bridge since the subsequent image processing units operate with 8-bit
data.

Using an additional digital interface board, the frame grabber can also acquire RS-422
digital data such as provided by the Basler line scan camera. The maximum sampling
rate of digital data is 30 MHz. This is high enough since the line scan camera is clocked
with 20 MHz only (section 5.4.2).
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Figure 5.29: Block diagram of Matrox pulsar frame grabber

The PCI specification allows several PCI buses to run parallel within one computer,
e.g.. [SCHNURER, 1993]. Therefore a secondary 32-bit PCI bus can be used which
connects the grab section with the display section which outputs the image data directly
to the monitor. In doing so. the secondary PCI bus frees the host processor to perform
other tasks. The introduction of a secondary bus requires a video-to-PCI bridge. This
bridge acts as a router which sends data to the host memory. or to the frame buffers
(external monitor) via the secondary PCI bus. The video-to-PCI bridge can also gener-
ate various interrupts towards the host processor such as grab events (grab-end) or video
synchronization events (field-start). The PCI-to-PCI bridge sends the grabbed 8-bit im-
age data to the host PCT bus. Hereby, the size of the image is limited because the inter-
nal memory of the frame grabber has 3 MB only.

Then, the image acquisition software stores the image data on the hard disc of the port-
able computer. Depending on the image data, the following two storage formats are
applied:

e D image data (line scan sensor): All line readouts are composed to a single image
where the rows of the image enclose the line readouts and the columns of the image
contain the intensity value of each pixel of the line scan sensor (cf. section 6.2.1).
Hence, several line readouts are stored in one image file only.

o 2D image data (video theodolite). The 2D images which are grabbed from the video
theodolite are stored in separated image files. For example. if the video theodolite
(fi =25 Hz) is in action during one second, 25 image files are generated automati-
cally on the hard disc.

The image data files are now ready for post-processing using the image processing algo-

rithms as introduced in section 6.
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6 Image processing

6.1 Introduction

Within the last years, image processing techniques have been introduced which allows
the analysis of optical turbulence in geodetic applications, e.g., [DEUSSEN, WITTE,
1997], [HENNES, FLACH. 1998]. [CASOTT, 1999]. These publications deal with the
derivation of appropriated parameters from image data to determine the turbulence pa-
rameters ([, C,,'"\‘) which have been discussed in section 3 and 4.

In the following section, a new approach is made by the introduction of the Wiener filter
which aims to estimate appropriate parameters for the determination of intensity fluc-
tuations and, thus, of the inner scale /) (cf. section 4.4.2). The (adaptive) Wiener filter
was chosen since 1t 1s superior to conventional lowpass filters, especially in the range of
low signal-to-noise ratio [KROSCHEL, 1996]. The Wiener filter provides also filtered
image data which can be used to estimate angle-of-arrival fluctuations by means of edge
detection.

A brief overview of the approach is given in Figure 6.1. At the first step of Figure 6.1,
the spectral analysis gives information about the frequency decomposition of the signal
and indicates how the spectrum of the image data can be parameterized. The estimation
of the power spectral density is described in section 6.2.
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Figure 6.1: Structure of section 6
If a model for the spectrum is available, the Wiener filter can estimate the parameters of
the model of the spectrum and. thus. determine the intensity fluctuation of the incoming
waves.

Beside the parameter for intensity fluctuation, image processing has also to provide a
suitable parameter for the angle-of-arrival fluctuation. This parameter can be obtained
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by the standard deviation oy~ of temporal displacement of edges whereby Gy~ is applied
to (4.30) and (4.31). For the determination of Gy”, the choice of an appropriate edge
detection algorithm (edge operator) which provides the angle-of-arrival fluctuations is
crucial since random noise caused also by optical turbulence diminishes the quality of
image data. The investigated edge operators are described in section 6.4.2 where also an
overview of actual methods is given (Figure 6.15). The evaluation and comparison of
edge operators presented in section 6.4.2d) use image data which were obtained by field
experiments. The comparison of image processing algorithms shows that the least
squares template matching and the Canny operator in combination with the adaptive
Wiener filter are suited to analyze image data in consideration of turbulence effects.
However, for this purpose. these techniques must be adapted as shown in sections 6.4.4,
and 6.4.5 to provide good results.

6.2 Spectral analysis

6.2.1 Introduction

Spectral analysis discussed in this section tries to describe the frequency decomposition
of an 1mmage signal f(n,, ny) grabbed by imaging systems. The frequency decomposition
provides a spectral model the parameters of which are determined by means of appro-
priate filtering methods such as the Wiener filter (cf. section 6.3.3).

In the scope of image processing using line scan sensors, the ny-axis of the analyzed
image stands for the pixels of the line scan sensor and the n»-axis of the image stands
for the time and determines the index number of the line readout of the line scan sensor
(Figure 6.2).

Pixels of line scan sensor

» 1,

Pixel Readout

Figure 6.2: Example of nwo-dimensional signal grabbed by line scan sensor

However, spectral analysis can also be applied to series of current two-dimensional im-
ages as grabbed, e.g., using a video theodolite. In this case, a third index ns is necessary
to indicate the time, but the further explanations are correspondingly valid.
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In the following approach, only time series are evaluated to determinate intensity fluc-
tuations. In other words, the spectrum which is relevant for the determination of the
inner scale is assumed to depend on the temporal frequency corresponding to 7, or 3,
respectively. This assumption holds if the spatial spectrum of turbulence described by
the distribution of eddies is equivalent to the temporal spectrum (cf. Taylor’s frozen
turbulence hypothesis, section 3.2.1).

The spectral analysis includes the estimation of the power spectral density. Hereby, the
quality of the spectral analysis depends on capability characteristics of the estimator
function which 1s applied to the power spectrum. Therefore, the crucial points of the
estimation of power spectral density have to be observed in the following sections in
order to obtain unbiased results.

6.2.2 Stochastic model for the image signal

The correct interpretation of a spectral analysis requires to know all assumptions which
are implicitly included in the analysis. These assumptions are composed briefly in the
following.

The first assumption is that the image signal can be described by means of time series
consisting of pixel intensities recorded during the acquisition time, whereby these time
series are modelled as a stochastic process. The basic features of a stochastic process in
general are depicted schematically in Figure 6.3.

Measured value

Settling time 1st Realization

2nd Realization

Initial | §
value |
—_—

Probability
density functions

+ + + + ; >
0y 1 13 1y e i

Time

Figure 6.3: Stochastic process: General scheme

A stochastic process is a family of random variables described by their probability den-
sity function which implies that a measured time series is a realization of a stochastic
process. Thus. the first realization of the stochastic process may generate another time
series than the second realization in accordance with the probability density functions at
each time f.

Figure 6.3 shows how the property density function can depend on time. This is the
case, for instance, when the image sensor is settling.

After the settling time (see below) has passed, a second assumption states that average
myp and autocorrelation function Ry (f;) of the stochastic process are time-independent
during the observation time. Hereby, the quantities mp and Rr(#;) are defined as pre-
sented, e.g., in [OPPENHEIM, SCHAFER, 1992]:
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mp = E[f(1)] (6.1)

Rp(t) =E[f(0) - f(r+1)] (6.2)
with ¢ = 1/fs for line scan images (6.3)

t = na/fs for 2D images (6.4)

t Lag

Is Sampling frequency  [Hz]

E[-] Expected value

Referring to Figure 6.3, the second assumption is fulfilled for all # € [t5 ...t,] where mf
and Rr(#;) are the time-independent. Stochastic processes where the second assumption
is fulfilled are called wide-sense stationary, e.g., [KROSCHEL, 1996]. For wide-sense
stationary processes, the power spectral density is related to the autocorrelation function
by the Wiener-Khinchine relation given by:

S[;, ((D) — 2 ]'\)/7 (74 ) . e-—.r'o).-'l (’65)

fo

If these two assumptions hold the power spectral density as defined in (6.5) is appropri-
ate to analyze the 1mage signals and can be estimated as described in section 6.2.3. Re-
ferring to a real imaging system, it is quite difficult to provide a stringent proof that the
assumption of the mentioned weak-stationary stochastic process really holds.

In the calibration laboratory, practical investigations of the imaging systems presented
mn section 5 show that settling time of the systems is at the most 10 to 20 seconds and,
after the settling time, a weak-stationary stochastic process seems at least plausible for a
measuring time of the imaging sensors (< 1 min).

Further investigations about the se}t[ing time of CCD cameras are given, e.g., in [CA-
SOTT, PRENTING, 1999] and [GULCH, 1984].

6.2.3 Estimation of power spectral density

In this section, the spectral analysis of a discrete image signal f(ny, ny) is investigated
which is a realization of a stochastic process F (cf. section 6.2.2) and should be ana-
lyzed by its power spectral density Sp.

As mentioned above, the temporal frequencies are of interest only, i.e., the spectral es-
timation refers to a signal f(n») for the pixel at the position n,. In general, the estimation
of power spectra is demanding because no estimator function exists that is both consis-
tent and unbiased at the same time, e.g., [KOCH, SCHMIDT, 1994]. In the following,
the Welch method, which solves or at least reduces this difficult will be presented.
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a) Discrete Fourier transform

The traditional estimator function for the power spectral density Sy uses the discrete
Fourier transform (DFT) as described in (6.0), e.g., [PRATT, 1991]:

bDF’I o, H

\/")

Sp(m,)= N, (6.6)
, o 2n .
with @, =-— (6.7)
1,
N> Number of sampling points of the discrete signal f(12)
Ny—)
DFT(f(n,))= Z/ ny)-e O (6.8)

The hat ~ in (6.6) denotes an estimated quantity. In equation (6.8), the discrete Fourier
transform computes the one-dimensional Fourier transform of the column n; of image
signal f(ny,m2). The result of the estimation of power spectral density obtained by (6.6)
is called periodogram.

Unfortunately, the estimation using the periodogram using (6.6) can fail because it is
not a consistent estimator function. This means an increasing number N, of sampling
points leads to an estimation of power spectral density which becomes more and more
rough and inconsistent. Moreover, the spectrum has inconvenient side-lobs and the
standard deviation of the periodogram increases in proportion to the amount of the
spectrum. Thus, the standard deviation of the periodogram does not decrease with in-
creasing number of samples, as it could be expected from a good estimation method.

b) Improved estimation for power spectral density

To decrease the standard deviation of the estimation method discussed above, WELCH
[1967] suggested to average several periodograms. This method is illustrated schemati-
cally in Figure 6.4,

Forming O\é\/g;dc?]\/\gsg Fast fourier Averaging of
subsections section (Han- trar;:?:f(T)rm periodograms
ning wmdow) {

Figure 6.4: Welch method for estimation of power spectral density

Spectrum S

When forming subsections, the signal f must be split into sub-signals or sections f.
which the corresponding periodogram is estimated with. Due to FFTU algorithm, the
length of the input sequence f, must be a power of two.

In the next step, each subsection is windowed. That means the original signal values are
not used directly. Instead the signal values are weighted with a windowing function. In
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the scope of this research work, the Hanning window is used as windowing function
(Figure 6.5) and which is defined by, e.g., [LIM, 1990]:

)
‘ {1— I —cos bclil for0< n,< N, (6.9)
w(rn,) = 1 2 N, ) ’

0 else

The choice of the Hanning window offers several advantages: The sides of the sub-
signals f, have less weight than the center of the signal and. additionally, the Hanning
window can be computed fast and provides a smooth graph such as shown in Figure 6.5.
This windowing technique avoids troublesome influences of the discrete Fourier trans-
form such as side-lobs and, therefore, produces more reliable results.

ny

Figure 6.5 Hanning window with Ny = 8

After the application of the Hanning window the periodogram is estimated from each
windowed subsection whereby the estimated power spectral density is the average over
all Fourier transformed windowed signal sections [WELCH, 1967]:

A 1 [ 2
Sy(w,) = -——-—,-——Z'DFI (i) o)) (6.10)
f[w(n WK S ‘
Ny
with  DFT{w(n,)- f,(n)} =D wny): f,(ny)-e (6.11)

)._\:()

§X Estimated power spectral density

w(ro) Windowing function, cf. (6.9)

fi(n2) Signal section (sub-signal)

K Number of windowed signal sections

No/fs Total measurement time

The factor Hw(n,g‘)llz in (6.10) takes the choice of the windowing function into account.
As a consequence of the averaging process in (6.10), the more sections are available for
averaging, the lower the variance of the estimated power spectral density is, therefore,
this method (which is length of section dependent) is consistent, e.g., [OPPENHEIM,
SCHAFER, 1992].

In order to obtain more signal sections f, from a given signal f, the sections f, can over-
lap the adjoining section. A signal section is allowed to overlap an adjacent section up
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to 50% overlap [WELCH, 1967]. To illustrate this technique, Figure 6.6 shows a dis-
crete signal of 1024 values length, where the input for the calculation of the seven peri-
odograms consists of seven overlapped signal sections.

With use of the Welch estimation method as discussed above, the power spectral density
for the time series of the intensity of a single pixel can be estimated by (6.10). Thus, the
power spectral density is available as an input variable for further image processing
methods such as Wiener filter.
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Figure 6.6: Example for the division of a discrete signal (N=1024 sampling points)
into 7 signal sections (grav) which are used for the averaged periodogram

6.2.4 Outlook: Wavelet transformation

The question remains whether there are image processing methods which simultane-
ously perform the spectral analysis to calculate the variance 6}~ on the one hand and, on
the other hand, locates the edges in the image to determine directly the structure con-
stant C,,Z. The wavelet transformation presented in this outlook is such a method which
theoretically fulfills these requirements.

Wavelet analysis is an advancement of the spectral analysis: Tt uses a windowing tech-
nique with variable-sized regions. Wavelet analysis allows the use of long-time intervals
where precise low frequency information is needed. and shorter regions where high fre-
quency information is required, e.g.. [CHUTL 1992].

A wavelet used in the wavelet transform is a waveform function W of effectively limited
duration which has an average value of zero. An example of the wavelet function is pre-
sented in Figure 6.7.
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Figure 6.7: Example of waveform function: HAAR wavelet

The continuous wavelet transform CWT of the input function f(x) is defined as the sum
over all data of the signal multiplied by scaled and shifted versions of the waveform
function ‘V:

. o x=b .
CWT(a,.b) = [ f(0)¥] == (6.12)
N au'
with  a, Scale factor
b, Shift of position

As shown in Figure 6.7. a low scale a,, means a compressed wavelet, and, therefore, a
signal with rapidly changing details, i.e., a high frequency of the signal. Thus, the in-
verse of the scale (1/a,.) 1s related to the frequency o of the power spectral density. The
decisive advantage of the wavelet transform is the ability to perform local analysis, in
other words, to analyze a localized area of a larger signal. Hence, the wavelet transform
can be used for both spectral analysis and edge detection in images. Evaluating the re-
sults of edge detection, the wavelet transform is a suitable method to determine the
structure constant C,,:.

As an example of the wavelet transform using the Haar wavelet, Figure 6.8 shows the
coefficients CWT in dependence of a, and b,.. This wavelet transform is applied on a
real grabbed one-dimensional image signal of the line scan sensor mentioned in section
5.2.4.

In this regard, the wavelet transform is implemented with use of the discrete wavelet
transform algorithm developed by MALLAT [1988]. In contrast to the Welch method,
the wavelet analysis simultaneously provides the spectral analysis of the signal and the
positions of the edges. As illustrated in Figure 6.8. the bright stripes denotes the places
of the edges. In other words, edges in the image signal represent a high value of the co-
efficients of the wavelet transform.




Analyzed signal {line scan)

a0 Values of Coefficients for

Figure 6.5: Wavelet transform of one-dimensional image signal

The connection between the wavelet transform and the structure constant is presented in
[BETH, er al., 1997] where the structure function of the phase Ds(r) can be expressed
by the wavelet transfornu

3

BRGE 15 TR “ -
D (a)= <[S(_\"0 +a) - S(.\‘(,),]’> T j S, 220 | gy (6.13)
—8 0 d Vi
with  «a Aperture
Xp Position of an edge in the image

Lg Signal length

These relations are valid for each waveform function. but attention must be paid on the
limited signal length Lg because (6.13) is only fulfilled if Lg >> a. The structure function
Dg(a) is related to the structure constant C,,” as follows [DEUSSEN, WITTE, 19971:

Diay=06,"(ka) =c,k*a""C'R (6.14)
with ¢ = 2.92 (Plane waves)

= 1.09 (Spherical waves)

The computational effort to perform a wavelet transform like in the example of Figure
6.8 is considerable. The example of Figure 6.8 (signal length: 256 pixels) requires
350,000 floating point operations, while other edge operators ~ e.g., the Canny operator
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(cf. section 6.4) — only need about 24,000 floating point operations. In contrast to the
Canny operator, the wavelet transform yields not only the position of the edge but also
additional information about the spectrum. First results published in [BETH, er al.,
1997] show that the wavelet transform can be used for the determination of the structure
constant C,,z.

However, a functional model connecting the wavelet transform CW7(a,, b,) with the
variance oy” necessary to determine the inner scale /, is not known up to now. For this
reason, the additional computational effort of the wavelet transform is not accompanied
by better results in comparison to other methods.

The edge operators presented in section 6.4 work more efficiently because no multiscale
decomposition is needed. Since the artificial targets used in terrestrial geodesy do not
have very different types of edges and other singularities, algorithms using the one-scale
methods like Canny operator and Wiener filter reach sufficiently good results. Thus the
latter technique will be investigated in the following.

6.3 Wiener filter for determination of intensity fluctuation

6.3.1 Introduction

As mentioned in section 6.1. the Wiener filter is applied for the following purposes:

1. Separation between signal and noise overlaving the signal. The spectrum of the
noise is assumed to determine the intensity fluctuations necessary for the estimation
of the inner scale /.

2. Filtering the data to improve the edge detection which is used for estimation of the
structure constant C”: (ct. section 4.3.2).

Referring to point 1., the model of the Wiener filter supposes an undisturbed image sig-
nal f(n,) and additive noise signal v(72). As given in (6.15), the signals f and v provide
the (noisy) signal v which is measured:

v(m) =) +vim) (6.15)

In general, a convolution filter estimates the filtered signal using the convolution of a
linear discrete filter tunction /71 (7>) and the noisy signal v which is observed as given in

(6.15).

‘/A’(n,z‘) =h(n,)® v(n,) (6.16)

with  f Filtered signal (The hat » denotes estimated quantities)

The discrete filter function /1 (n>) depends on the noise v which is influenced by intensity
fluctuations. In other words, the filter function /1 (n») 1s expected to provide information
about the intensity fluctuations caused by turbulent processes, and. thus, an appropriate
digital filter must be found. In the following approach. the Wiener filter is applied to
provide the desired filter function 21(72-) and the filtered signal.
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The Wiener filter which was first described by WIENER [1950] was considered for
image restoration in the 1960s and 1970s, e.g., [ANDREWS, HUNT, 1977]. In general.
the Wiener filter uses minimum mean-square estimation to determine the filter function
h(na), e.g.. [KRROSCHEL, 1996]. Depending on the estimation algorithim, several sub-
aroups of Wiener filter exists. Figure 6.9 gives an overview of the classification of the
Wiener filters. In Figure 6.9, the two criteria of classification are the filter type (causal
or noncausal) and the application (global. image region) of the filter.

The first criterion of this classification is the filter tvpe (causal or noncausal). Causal
filters as mentioned in Figure 6.9 are defined by the following property:

flna)=0 for ma<ng = 1) =l ® flna) =0 for m<nsg  (6.17)

heans  Point spread function of causal filter

with 20  Boundary value

The property of causal filters (6.17) implies that the effect ¥ will not occur until the
cause / has happened.

Wiener filter
o [ | ]
Criterion 1 Causal Noncausal
I
[ l
Criterion 2 FIR Wiener Filter Filter using Filter using
global image local image
regions
Noncausal Adaptive
Wiener filter Wiener filter

Figure 6.9: Classification of Wiener filter.
Highlighted: Type of Wiener filter applied in refraction analysis

Using the causal Wiener filter, the relation between the noisy observation v and the un-
disturbed image signal f is given by the Wiener-Hopt equations as follows, e.g.,
[KROSCHEL, 1996]:

N il

Eh(/fg) Ry (ny ~ k) =Ry (ny) 0 <12 < Npiy (6.18)

k=0
with  Npp Length of the filter
where the autocorrelation function Ry 1s defined by

Ry (my) =E[v(k) - v(kr+ )] for all (ky) (6.19)
and the cross-correlation function Rpy by

Rpy(ny) = Eff (k) - y(ky+ )] for all (k») (6.20)
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The Wiener-Hopf equations allow the computation of the filter coefficients /1 (k») if the
cross-correlation function and autocorrelation function of the input f and the output y are
given or estimated by their power spectral densities. Solving the Wiener-Hopf (6.18)
equations 1s demanding and can be simplified under the assumption that the Wiener
filter is noncausal. Neglecting the requirement of causuality (6.17) is feasible in appli-
cations of image processing, since the whole image signal information is available when
the filter coefficients are computed, e.g.. [PRATT, 1991]. The noncausal Wiener filter is
presented in section 6.3.2. As shown there, a spectral model Sv () of the noise signal
V() 1s necessary for the application of the Wiener filter. Based on the practical ex-
periments, a spectral model Sy () has been empirically derived which is presented in
section 6.3.3.

The second criterion of the classification in Figure 6.9 emphasizes how the filter proc-
esses the given image signal. On the one hand, the (fixed) Wiener filter uses all pixels
simultaneously to separate the signal from the noise overlaying the signal (Noncausal
Wiener filter) and, on the other hand, the Wiener filter uses local regions of the image to
estimate the signal f (adaptive Wiener filter ). The adaptive Wiener filter as presented in
section 6.3.4 is implemented to evaluate the measured image data obtained by the line
scan camera (section 7.2).

6.3.2 Noncausal Wiener filter

As mentioned above, the noncausal Wiener filter assumes that, after the measuring time,
all intensities v(n») of the column 5 of the image are available for the computation. A
further requirement of the derivation of the noncausal Wiener filter is the stability of the
filter, 1.c., the impulse response must not be infinite:

eo

2%/1(’/\'3)

O

< oo (6.21)

with Kk Index variable of filter

Assuming that the stability criterion is fulfilled. the noncausal Wiener filter can be ap-
plied. From (6.16) follows that the signal f is related to the noisy observations y and the
filter /1 using the discrete convolution:

.7?‘(:”2 ) = ‘2')1(/‘*:\) v, =ky) (6.22)
jp—

If the filter function /1 is given. the discrete convolution (6.22) can be computed since all
observations y are available (property of noncausal filter). In order to estimate the filter
function A, the Wiener filter uses mean-squared-error estimation. This estimation uses
the orthogonality principle which can be written as, e¢.g., [KROSCHEL, 1996]:

N

E[{f(n,)— f(n,)-vin,)}]=0 (6.23)

If (6.23) is inserted into (6.22), the following so-called Wiener-Hopf equation for non-
causal Wiener filtering 1s given by:
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SR, (1, ~ k)= Ryy () eSS oo (6.24)
foy i

~00 L 71y K00

Since equation (6.24) is fulfilled for all integer pixel coordinates n,, (60.24) can be re-
written using the convolution operator &:

Ry (n,)=h(n,) ® Ry (n,) (6.25)

If the autocorrelation function and the cross-correlation functions are Fourier-trans-
formed to the power spectral densities Sy and Sy as given in (6.28) and (6.29), the spec-
tral filter function H(-) can be solved from (6.25) and the noncausal Wiener filter is
given by:

Hiw,)= %%32 (6.26)
with  H(w,)= i{z(mz‘)e““‘*”: (6.27)
Sp (@) = ER oy (12,)e70 (6.28)
Sy(w,) = ,28’“13)6_[‘(%”: (6.29)

On the assumption that the image signal f(n,) and the noise v (n,) are uncorrelated and
zero-mean stochastic processes (i.e., Rpy = 0), the autocovariance function Rpy in (6.25)
can be written as:

Rry(na) = E[f(hkatny) - v(ka)]

E[f(katna) - {f(k)+v (k) }]

= Rp(ny) + Rpv(na) V
Ry(n>) (6.30)

i

I

By using (6.15), the autocorrelation function Ry can be obtained by
Ry(n2) = Rrp(ny) + Ry(n) (6.31)
From (6.26), (6.30) and (6.31), the noncausal Wiener filter is given by

Splm,)

H(w,) =— .
TS o)+ SH(o,y)

(6.32)

With the noncausal Wiener filter, the image signal f can be estimated using a linear es-
timator provided that the power spectral density of the undisturbed signal Sr and the
power spectral density of the noise signal Sy are given or estimated. The noncausal
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Wiener filter assumes that there is only one single power spectral density S (@) which
refers to the global image. In the case of adaptive Wiener filter discussed in 6.3.4, the
power spectral density of the signal Sr is assumed to depend on the time, too, i.e.,
S (s, na). Thus, the adaptive Wiener filter uses several power spectral densities in
various image regions, i.e., one power spectral density Sy per image region (for details
see section 6.3.4).

At first, the power spectral density of the noise signal Sv(m,) is unknown. Therefore,
further investigations as presented in section 6.3.3 are necessary to model the noise sig-
nal Sy (@y) by means appropriate parameters (such as 6,°) whereby these parameters
are expected to indicate the intensity fluctuations needed for the determination of /.

The parameters of the spectrum Sy () can be estimated by using the Welch method,
(cf. section 6.2.3b) if the noise signal v(7n») is known. However, the noise signal v(11,) is
not available before noisy observation signal v has been filtered. Thus, the estimation of
v(n2) is given by:

D) =v(m) = f (n) (6.33)

with ¥ (1) Estimated noise signal

In (6.33), the filtered signal f 15 assumed to be known. Since this is not the case, the
noise signal v(7,) and the parameters of the spectrum Sy ( ) must be determined using
iterative loops. In doing so, a first approximation of Sy () is required which leads to
a first approximation of the filtered signal /(\ using (6.32) and (6.22). In the next steps,
the succeeding approximations of Sv;(my) (j = 1. 2. ...) can be calculated iteratively by
estimating the power spectral density of the residuals v(1n5) obtained by (6.33). At the
end, this algorithm produces an estimation of the spectrum Sy (») the parameters of
which can be used for the determination of intensity fluctuations. The model which de-
scribes the spectrum Sv( ) and, thus, the intensity fluctuations is discussed in the fol-
lowing section.

6.3.3 Model of the power spectral density used for the Wiener filter

As presented in (6.32). the Wiener filter requires a function Sy ( m,) for the power spec-
tral density of the noise signal. Referring to the refractive index spectrum given by

® (k)ec k" for 2n/Ly < x < 27/l (6.34)
a plausible model of Sy (M) can be suggested as follows

5

S(w)=a,0,"" +0c (6.3

N
(Y]
e
-

This model is controlled by the parameters a, and o~ which must be estimated
SN ~ B . N . .

whereby 67 is assumed to be a measure for the intensity fluctuations and is used for the

determination of the inner scale in section 4.4.
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In order to validate the model (6.35), a line scan camera as introduced in section 5
grabbed images within the scope of the field experiments described in section 7, and a
spectral analysis of these images was calculated. In doing so, the time series of the in-
tensity of a selected pixel (fixed position of the pixel in the image = n)) are analyzed by
means of the Welch method as presented in section 6.2.3. Two representatives example
of the spectral analysis are plotted in Figure 6.10

| , " [—19.089909:17
[——25.08.99 1517 |

Sv [dB]
=
=

-20 ek ; : S
1 10 100 1000

Frequency [Hz]

Figure 6.10 Spectral analysis of the time series of the pixel intensity
(Images recorded in Claro, cf. section 7.2)

The spectral analysis of Figure 6.10 is limited to a maximal frequency which is given by
the Nyquist frequency 0.5f;. In other words, in order to recover all Fourier components
of a periodic waveform. it is necessary to sample more than twice as fast as the highest
waveform frequency. Hereby, the line scan camera grabbed with a sampling frequency
fs = 333 Hz, ie., the maximal frequency which can be detected is at the most than
167 Hz. The peak in Figure 6.10 can be interpreted as DC-value and depends on the
radiometric intensity of the grabbed target. Since the averaged intensity mainly depends
on the exposure, the DC-value does not greatly matter for investigations of refraction
influences. Thus, the investigation of refraction influences concentrates on the remain-
ing Fourier components in the following.

From (6.15) and (6.35) follows the power spectral density of the measured signal vy (in-

tensities of a pixel) as

Sp@,)=S (@ )+ S (@.)=S(w,)+a,0.”" +0° (6.36)

As an approximation, this model of the power spectral density is modelled by

Sy, )= A, 8(m,)+6.° (6.37)
with  Ape  DC-value

O(m») Dirac function

and

; 5 -

Sylm,)=0,". (6.38)
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As an advantage. the modified spectrum of (6.38) facilitates the inverse Fourier trans-
form of (6.32) which is required for the calculation of the Wiener filter. The modified
spectrum is depicted schematically in Figure 6.11. Besides the low frequencies, the
modified spectrum parameterizes quite well with the measured spectrum.

40
30 + S

——19.08.99 09:17
- Model [

Sv [dB]
>

Do\ nAl A Nk
= N

1 10 100 1000
Frequency [Hz]

Figure 6.11: Spectrum of the modified model in comparison with
the measured power spectral density

Thus, in the scope of the field experiments presented in section 7.2, the implemented
Wiener-filter algorithm uses the modified model of (6.38) to determine the noise vari-
ance Gy~ which is required for the determination of the inner scale (section 4.4). Hereby,
the implementation of the Wiener filter is discussed in the following section.

6.3.4 Implementation using adaptive Wiener filter

Although the noncausal Wiener filter can be efficiently implemented, this filter is usu-
ally not applied in image processing due to the following disadvantage: The use of a
fixed filter such as the noncausal Wiener filter throughout the entire image signal (i)
can cause systematic deviations of the estimated parameters since this filter is time-
invariant. This deviations can occur if the image patterns float (i.e. move slowly) in n,-
direction with a slow frequency during the measuring time (e.g. due to vibrations of the
instrument) whereby the Wiener filter is applied in n»>-direction. The influence of this
floating process on the image signal f(n-) is depicted schematically in Figure 6.12.
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Figure 6.12: Intensity deviations in the signal f(n») caused by
Floating of image pattern (schematically)

Because the image characteristics (contrast, variance of intensities, etc.) may differ no-
ticeably in parts of the image, adaptive image processing is recommended as is pre-
sented in the following [LIM, 1990]. Adaptive image processing involves that, at each
pixel n> in a specified column n,*, the local characteristics are determined in the neigh-
borhood of the pixel and are used as a-priori-knowledge to determine the presence of
significant high-frequency details of the image signal.

In other words, instead of assuming a fixed spectral density Sr for the entire image, the
adaptive Wiener filter locally estimates this spectral density: For each pixel, the algo-
rithm extracts a part of the image. called local region. Since the adapted Wiener [ilter is
applied in the direction of the n»-axis, the local regions have one pixel in n-direction
and Njey pixels in na-direction whereby N, must be defined by the user (cf. Figure
6.12). Within the local region corresponding to a pixel n,. the image signal fj,.,; can be
approximated by:

Siocar (2) =M E joear (02) + O jocar (12) - N(O,1) (6.39)
with  m1p jew Local mean of the (undisturbed) image signal F'

OF. jncal Local standard deviation

NO.D Zero-mean Gaussian white noise with unit variance

This model is based on the assumption that the local mean and the local standard devia-

tion of the image signal do not change in the local region and the random deviations can

be described by zero-mean Gaussian white noise. Of course, this model will only hold if

the size N, of the local region is chosen correctly:

o If Ny is chosen too large. (6.39) is not fulfilled yet, since the signal is not station-
ary in a region which is too large.

o It Njw 1s chosen too small. practical investigations show that the estimation of the
spectra is biased.
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Based on the results of the field measurements (section 7.2) Ny = 15 pixel can be
recommended. If Ny, is chosen larger than 15 pixel, the results do not change
significantly but a disadvantage is the increase of computational effort caused by the
increase of the size of Ny, cf. (6.50) and (6.51).

Using the model of (6.37) and (6.39), the power spectral density of the local image sig-
nal Sy e leads to

SEeal = SF pear (2 12) = O joear” (112) (6.40)

From (6.32), (6.38), and (6.40), the local filter function /.. for the adaptive Wiener
filter is given by: -

N S (,15) O ) o

}{]m'u/ ((D7 Iy ) - N ’, — = ~ . - = ,“ - B (64— 1 )
0 S (@) F S()) oy, () + 0

iy, Cppn (1) S

ey (ny) = DFT ]{I—‘Ic’;,w,x;f }: e E—— =0(11,) (6.42)

O g (113) + Oy

with  DFT'  Tnverse discrete Fourier Transform
o(n») Kronecker Delta function

As mentioned in the derivation of (6.32), the equations (6.32) and (6.41), respectively
are only valid if the image signal f(n,) and the noise v(n») are uncorrelated and zero-
mean signals (i.e., Rpy = 0).

In order to obtain a zero-mean signal, a transformation with the shift variable mp .0 =
E[F(-)] is required as illustrated in Figure 6.13. However, this transformation does not
change the results of the estimation process.

Noisy observation

Undisturbed e YV N) e PR
image signal ———ps + eyl -y Filter function A ¢ 4 Ve

Fne) 'y K

P f

| | |

intensity noise signal Elyvin)l=m._ m_
fluctuario;}‘» vin) tyt J ] Flocal Fiocal

Estimated Y Estimated I
— i C oise s i 2
image signal-—— 4 ) —p NOISE signa __)L @V

- Ving) _—

Tna

Figure 6.13: Model for signal estimation with Wiener filter h



113

From Figure 6.13 and (6.16), the filtered image signal f 1s estimated by

f(llq -—m, oear (71 )+[\(n ) =10 3,00 U0 )]@/7 (1,) (6.43)

local

with M et =

N 2 vn,) (6.44)

local -

Nypewr Number of rows of the local image region
Ly, Setof pixels in the local region

Using the local filter function (6.42). equation (6.43) vields:

/(nﬁ )=y, (0 (6.45)

2 9

with & (6.46)

locat

Equation (6.45) provides the filtered image using the adaptive Wiener filter. In (6.45)
and (6.46), the noise variance Gy~ as a parameter the spectrum of the noise signal S, is
assumed to be constant throughout the whole image and is assumed to be J\nown But in
the scope of determination of intensity fluctuations, the noise variance GV“ 18 unknown
and, therefore, has to be estimated by means of iteration loops. At the beginning of the
iteration loop, the first approximation for the variance 6y o~ is calculated by:

=E[(E(y)~ )] (6.47)

Using oy, o * . the adaptive Wiener filter provides the filtered signal f o as a result of the
first iteration loop. In the following step. the next iteration of Gy~ is given by

=E[(f, ~ )] (6.48)

- . ~ . . . . - o)
Then, the filtered signal f | of the next iteration loop is estimated by means of 6y~ and
(6.45). The algorithm terminates as soon as the absolute error of convergence €, can be
neglected:

I 2 A 2 ) ~ . T
Ov; =Ov o | <€, forj=1,2... (6.49)
with Index of the iteration loop
This iterative algorithm results in a locally minimum mean-square estimation of the
image signal whereby the corresponding variance ¢y~ is expected as a measure for in-

tensity fluctuations

With regard to the implementation of the adaptive Wiener filter by a software, attention
should be paid to the computational efficiency. Thus, it is recommended to calculate the
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. . . 2 . " .
values of the local average mr . and the local variance 6y, using the following
convolution:

”117..’" wal (HZ .' - ]lri‘m"m; (”J ) @ -\"(”2 )/N/mwf (650)
Cr,\'./um; (1) = (1) ® V) IN, =y () =0y (6.51)

where  /100,,  Convolution kernel of local image region. This is a vector with
Nioeqr €lements consisting of ones in each element

This procedure is advantageous since the convolution can be performed using the algo-
rithm of the Fast Fourier transform (FFT).

6.3.5 Conclusions and outlook

The presented approach applies the adaptive Wiener filter to estimate both the filtered
image signal and the variance 6,” which is used in further calculations to determine the
intensity fluctuations and the inner scale Iy as described in section 4.4.2. Hereby, 6,7 is a
parameter of the model Sy which describes the power spectrum density of the additive
noise and which the Wiener filter requires for the calculation of the filter function (cf.
(6.32) and (6.41)). Therefore. the estimation of parameters necessary to determine the
intensity fluctuations is related to the estimation of an appropriate filter function.

Although the presented algorithm of the adapted Wiener filter satisfied in evaluating the
measurements as presented in section 7.2, some questions remain which should be in-
vestigated in further research work:

e The used model for Sy is an approximation only. Further investigations should seek
for terms which correspond to the x''-law of the refractive index spectrum and
which describe the spectrum of the intensity fluctuations more accurately.

e If further spectral analysis determines a function Sy which is more sophisticated than
(6.38), the filter function (6.41) of the adapted Wiener filter still can be used but the
inverse Fourier transform (6.42) becomes more difficult. In this case, the algorithm
of the adapted Wiener filter must be modified: Instead of estimating the filtered im-
age signal in the time domain as given in (6.43), the filtered image signal F must be
estimated in the frequency domain and, in a next step, transformed into the time
domain by means of the inverse Fast Fourier transform.

e The presented algorithm of the adapted Wiener filter is computationally expensive.
As revealed by the field experiments. the floating of image structures as illustrated
in Figure 6.12 is considerably smaller in reality than it was assumed at the time
when this algorithm was designed. Therefore, the question may arise how the algo-
rithm can be optimized to decrease the computational effort without affecting ad-
versely the estimation of the desired parameters.
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6.4 Edge detection for determination of angle-of-arrival fluctuation

6.4.1 Introduction

Angle-of-arrival fluctuations of the incoming light waves slightly shift image patterns
when monitoring a distant target such as a coded levelling rod as described in section
4.3 and 5.5. The displacement of the pattern is perceived as edges changing their posi-
tion in the 1mage. In order to determine angle-of-arrival fluctuations and the structure
constant of refractive index C,” with use of image processing techniques and equation
(4.31), the time-dependent position of edges in the grabbed image has to be evaluated
and the variance G,\: (fluctuation) of these edges must be determined.

Edges are intensity discontinuities in the progression of the undisturbed image signal
f(x) (gray value function). Assuming images which are acquired from line scan sensors,
a one-dimensional edge is modelled as a ramp or a step, i.e., a decrease in image am-
plitude level from a high to a low level or vice versa.
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Figure 6.14: Model for edges in one-dimensional images: Ramp
Dots: Sampled values of the image signal

An edge exists if the slope of the ramp and, therefore, the difference of image amplitude

level exceeds a specified threshold. To detect edges, places in the image must be found.

where the intensity changes rapidly. using one of these criteria (cf. Figure 6.16):

e Places where the first derivative of f(x) is larger in magnitude than a threshold

o Places where the second derivative of f(x) has a zero crossing (cf. Figure 6.16)

e Places where a given template of an edge matches optimally with the gray levels of
the image (template matching, cf. Figure 6.18)

When dealing with edge detection in images of natural scenes, the amount of noise must
be taken into account. Unfortunately. noisy signals normally consist of similar high fre-
quencies like signals which contain edges. Thus. a crucial step in edge detection is that,
on the one hand. edges which occur in the image should be detected despite of noise
and, on the other hand, noisy signals must not produce fictitious edges.

Nowadays, a wide variety of edge detection algorithms exists. A classification of the
most known algorithms is presented in Figure 6.15.
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Figure 6.15: Classification of edge detection algorithms.
The Canny operator and the least squares matching are chosen for further investiga-
tions concerning refraction influences.

In section 6.4.2, the principles and drawbacks of the presented algorithms are discussed
briefly. Section 6.4.3 presents a comparison and evaluation of edge detection algorithms
in order to select the appropriate algorithm for refraction analysis. The applied algo-
rithms are explained in more detail in section 6.4.4 and 6.4.5. Section 6.4.6 provides
considerations about the accuracy of the applied algorithms.
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6.4.2 Edge operators

As shown in Figure 6.15, the investigated edge operators can be classified into differen-
tial edge detection, template matching techniques and multiscale analysis. In the case of
multiscale analysis, the wavelet transform as a representative for this technique has al-
ready been discussed in section 6.2.4 in context of spectral analysis. The template
matching techniques are explained at the end of this section since these techniques using
reference image patches work completely different from the other edge operators.

The basic concept of differential edge detection is to differentiate the image function
f(x) as follows:

()= f(x)® h(x) (6.52)

Equation (6.52) expresses a convolution between the image signal f(x) and a specific
mask or filter function /i(x). Since the image function is a discrete function, the differ-
entiation must be approximated using the filter function /i(x) whereby several ap-
proaches are known for 2(x) (cf. Table 6.1). A simple approach is to subtract the gray
value of the preceding pixel from the gray value of the subsequent pixel. Thus, the filter
function is

h(x)=(-~1 1 0) (6.53)

The convolution of (6.52) provides the discrete ditferentiation g(x), in other words, the
amount of the gradient of the image signal, e.g., [PRATT, 1991]. Places of an edge are
detected, if the local maximums of the first derivative g(x) exceed a specified threshold.
In the last step, the standard deviation of the positions of the edges has to be calculated
in order to determine .~ and the angle-of-arrival fluctuations using (4.31).

The simple approach of (6.53) is not applicable because noisy signals can easily pro-
duce fictitious edges and real edge cannot be detected if the specified threshold of the
amount of gradient is incorrect. Thus, more sophisticated algorithms are required which

are presented in the following sections.

a) Elementary masks

The direct subtraction of gray values which was presented in (6.52) is normally not used
in practice, since the least perturbation between neighboring pixels will change the
amount of the gradient ¢(x). To overcome this insufficiency, various types of masks
have been investigated and documented as shown in Table 6.1.

For applying the convolution kernel of the Sobel, Kirsch, and Roberts operator as pre-
sented in Table 6.1, the image must be a two-dimensional signal f(x, v). In the case of
line scan camera, this restriction is easily fulfilled when a couple of line scans are
grabbed one after another. so that a frame of subsequent lines forms the two-
dimensional signal.
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Operator | Mask Comments
{convolution kernel)

Prewitt hxy=(=1 0 1) The pixel difference is formed with the next
but one pixel which is assumed as undis-
turbed

Roberts —~1 0 0 Diagonal-crossing edges are easier to be de-

W)=l 0 1 0 te§t§d. but no improvement in images con-
o taining rectangular structures
0 0 0
Sobel -1 0 13 Smoothing effects in direction of the edge are
W)= -2 0 2 { achie\fed by use of three liI.}CS whf;ch are
S § wetghted (weights: determined with the bi-
- L0 1 ) nomial distribution which approximates the
Gaussian distribution.)
Kirsch -3 5 5y Each edge direction uses its own convolution
honn)=|-3 0 5 l kemcl: Smoothing effects in direction of the
- . . | edge like the Sobel operator.
- 3 -y -3

Table 6.1: Llementary masks of edge detection operators

The mentioned elementary masks have in common, that edges are detected with rela-
tively small computational efforts. The structure of this elementary masks reduces the
influences of noise to a certain degree.

In order to detect edges in one-dimensional images, the Sobel is preferred to the Rob-
erts, Prewitt, and the Kirsch method. since the Prewitt operator is more sensitive to
noise and because the Roberts and the Kirsch operator offer advantages which are only
useful in two-dimensional images with diagonal structures. The results of the compari-
son are presented in section 6.4.3,

b) Laplacian operator

The Laplacian operator is based on the second derivative of the image function f(x):
() =Vfin (6.54)

As shown in Figure 6.16, the zero-crossings of g'(x) are places of edges. This is
equivalent to other methods using the first derivative where the positions of edge are at

places with a local maximum of the first derivative g(x).
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Figure 6.16: Localization of edges

The Laplacian operator 1s even more sensitive to high-frequency noise signals than the
methods based on the first derivative. This influence will be made clear in the following
where a sinusoidal noise signal v(x) with frequency o and amplitude vy is investigated:

V(x) = v, sin(@x) (6.55)
The second derivative of (6.55) is

d> / . \ .

e P} T 1 (D7 STR(DY) (6.56)

dx~

(6.56) demonstrates that the influence of the noise becomes stronger with the second
derivation (amplification factor 7). To limit the interfering influence of noise, an ap-

entiation [MARR er. al. 1980].
This method is almost identical with the Canny operator (see section 6.4.2¢)) because

the maximum in the output of a first derivative operator like the Canny operator corre-
sponds to zero-crossings in the Laplacian operator.



c¢) Canny operator

The differential edge operators presented in 6.4.2a) have been heuristically derived.
However, CANNY [1986] has taken a mathematical approach to edge detection. The
Canny operator is based on a one-dimensional, continuous model for a step edge which
is disturbed by additive white Gaussian noise with standard deviation oy.

The basic strategy of the Canny operator is the convolution of the given noisy edge sig-
nal f(x) with an anti-symmetric convolution kernel /1(x), which is an impulse response
function with zero amplitude outside the range [-w.. w ] (Figure 6.17).

h(x)

Figure 6.17: Example of asvmmetric convolution kernel h(x):
First derivative of the Gaussian function as used by the Canny operator

The impulse response function must fulfill the following three criteria:

L. Good detection: The probability of failing to detect true edge points and the prob-
ability of falsely marking nonedge points should be low.

2. Good localization: The detected edges should be as close as possible to the true edge
points.

3. Single response: The operator should mark only one place to the same edge. This
requirement is implicitly captured in the first criterion. But this criterion must be
stated explicitly for mathematical reasons.

In order to mould the first criterion into mathematical terms. the signal-to-noise ratio

SNR(h) can be used which is defined as [CANNY, 1986]:

‘ARJN:;» ’ JA/I(\)([\
S]\/Ie(]ﬂ e ~ L (657>

n, 'H/z(,\‘)]2 dx

Rt i

with 5y Mean-squared noise amplitude per unit length

If a filter /2 is found which maximizes SNR(h), this high signal-to-noise ratio means
good detection. As an assumption of (6.57), the function f (x) assigns the image region
which contains an edge. thus f(x) is modelled by a ramp function of the amplitude Aggpp
as shown in Figure 6.14,
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Referring to the second criterion, a localization factor Loc (1) must be defined which
models the quality of the localization of edges [CANNY, 1986], [PRATT, 1991]:

‘Lxlx’umg‘ ]7/( O)
n, '«

l [h'( ,\')]: dx

Loc(h) = :

where /'(x)is the first derivative of 11(x). Loc (h) increases if the result of the operator is
as close to the edge as possible.

With these terms, the design of the optimal impulse response function for the Canny-
operator reduces to the maximization of the product SNR (h)-Loc (h):

SNR(h)- Loc(h) — max (6.59)

In general it is impossible to find analytically a closed form for the optimal impulse
response function /1(x) which maximizes (6.59). But CANNY [1986] showed that the
first derivative of a Gaussian function G'(x)

ka:méllrmp~%gg = h(x) (6.60)

\ 2T ¢

with o, Standard deviation of Canny operator

is a suitable approximation for the optimal impulse response /i1(x), especially for large
w.. The standard deviation of the Canny operator ¢, is given by the requirement that

e /i(x) 1s non-zero within the range [-w.:+w.] as defined in Figure 6.17

e Ji(x)is zero outside of the [-w.+w,.]

The range parameter w,. and, consequently, the standard deviation of Canny operator G,
are given by the minimal distance which is required for neighboring edges: Within the
range [-w.+w.] the Canny operator detects at the most one single edge only. Practical
investigations showed that a range defined by . = 7 is suitable for edge detection in the
scope of the used instrumental setup for refraction analysis. If w,. is chosen smaller, the
approximation of (6.60) will be deteriorated. If v, is chosen larger, the used code of the
levelling rod involves, that more than one single edge is mapped in the range [-w :+w,].

Thus, G'(x) inserted as filter function A(x) into (6.52) vields:

- 2 ) .
g0 = f () ® m———exp| —= | (6.61)
\ 27O - <0,

Using equation (6.61). the Canny operator marks an edge at the local maximum of the
convolved gradient g(x). Under the assumption that minimal distance of neighboring



edges 1s not too small (see the remarks to (6.60) above), the Canny operator provides a

reliable edge detection as shown in section 6.4.3. The derivation of the desired standard
deviation by means of the Canny operator is presented in section 6.4.50).

d) Template matching

Edge detection using template matching uses synthetically generated or measured image
patches (or templates) which contains an edge. Template matching can be performed
with several techniques whereas least squares template matching is first presented in the
following. Least squares template matching used for edge detection and tracking is
based on the least squares image matching technique as described in [FORSTNER,
1982]. [ACKERMANN, 1984], and [GRUN, 1985]. To extend the least squares tem-
plate matching algorithm for high accuracy measurement of edge positions, a real fea-
ture pattern is introduced as the reference template and is subsequently matched with
image patches containing actual edge segments. Thus, the local direction, shape and
gray value distribution of the edge point are specified in the template. The extracted
edge point is fully determined using transformation parameters which provide a relation
between the mitial position and the final position of the template in the measured image
(Figure 6.18).

Initial position

Final position

Template

Image of coded
levelling rod

Figure 6.18: Visualization of least squares matching for coded levelling rod

The user gives an approximate position for the edge and the matching procedures lo-
cates the precision position. The subsequent approximate position for the next patch
containing the edge can be derived from the result of the previously matched point.

Due to the redundancy in the estimation process, a covariance matrix containing infor-
mation on standard deviations of the parameters and correlations between parameters is
determined simultaneously: this allows for an analysis of the determinability and preci-
sion of the transformation parameters. Former investigations show that edge positions
can be detected with a standard deviation of 0.02 pixel if the image quality (contrast in
particular) is good enough [MAAS er al., 1994].
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Besides least squares template matching, correlation techniques are also suitable for
template matching. This technique marks edges at positions where the coefficient of
correlation 7., of the image and the template containing the edge has a local maximum.

With regard for reduction of computational effort, the coefficient of correlation 7., can
be calculated using the Fast Fourier transform as follows:

~ ST — . 6.62
7: !r‘."l‘(\"\.f v }: I)l.fl K{I:] " ((Di * (02 \) ’ F: (\(0[ » (FD.I ﬂ ( )
with  F*  Complex conjugate of Fourier transform of the image
F»  Fourier transform of the template

Whereas least squares template yield directly to the position of the edge with sub-pixel
accuracy, the correlation technique requires an additional interpolation algorithm to
obtain results with accuracy in the sub-pixel range. For this purpose, the correlation
technique must be modified as reported in [CASOTT, PRENTING, 1999].

6.4.3 Comparison and evaluation

Among the presented techniques, least squares template matching is the only technique
which yields not only the positions of edges but also an estimation for the accuracy of
the parameters and for the standard deviation of noise overlaying the image signal.

In Figure 6.19, the standard de- ‘;'%‘nn . Comparison of o |
viation oy of noise estimated P

from the residuals of the least

squares template matching (cf.
section 6.4.4) is compared with
the corresponding standard de-
viation of noise calculated by
use of the adaptive Wiener filter
(section 6.3.4). The correlation ; ‘1 . } .,
between these two methods is Adaptive Wiener fitter (3Dl gray value]
0.98 and is quite promising.

Therefore, the least squares tem-
plate matching is implemented
for refraction analysis as de-
scribed in section 6.4.4.

7o

Template matching

Figure 6.19: Comparison of least squares matching
and Wiener filter. Data: Measurements using video-
theodolite (1999, Dietlikon, Switzerland)

But a drawback of least squares matching is the need of approximate coordinates which
are required to assign the position of the template in the measured image.

In order to compare the performance of the other edge operators (as presented section
6.4.2) and in order to select an appropriate operator for the edge detection of the meas-
ured line scan images (section 7.2), the operators of section 6.4.2 are applied to the
same image which was grabbed by a line scan sensor.

Table 6.2 presents the recognition rate which is the percentage of correctly detected
edges.
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Table 6.3: Comparison of edge operators
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Obviously. the Canny operator is especially suited for edge detection when using im-
ages for refraction analysis. Hence the Canny operator is used for the determination of
the angle-of-arrival fluctuations. Section 6.4.5 describes the implementation of the
Canny operator which is combined with the Wiener filter to provide both the angle-of-
arrival [Tuctuation and the intensity fluctuation.

6.4.4 Implementation of least squares template matching (LSM)

a) Determination of angle-of-arrival fluctuations using LSM

Least squares template matching uses coefficients of an affine transformation (six pa-
rameters) for a chosen patch in one image to its transformed counterpart in an other im-
age (Figure 6.18). Hereby, the procedure applied in the scope of refraction analysis as
discussed in the following was presented in [FLLACH, MAAS, 1999].

If the target consists of a one-dimensional signal structure such as coded levelling rods,
the analysis can be reduced to a one-dimensional problem due to the characteristics of
the phenomenon and the shape of the image signal. As a vertical scale parameter is very
unlikely to be determinable over the small size of a patch, the analysis can be further
reduced to the determination of one shift parameter Av in vertical image direction.
Hence, the model is given by:

Sl =fily - Av)y+ (), =1, ... Mp (6.63)
with /i Rcfcrence image signal (one-dimensional feature pattern)

f Function of the image signal at the corresponding position in the

subsequent image

X Position of the edge in a one-dimensional signal

Ax  Shift parameter

p Noise signal (error signal)

j Index variable

Mp  Number of pixels of the pattern

Equation (6.63) assumes that the noise of the template is independent of the image
noise. Figure 6.14 shows two 1mage signals with a length of Mp = 45 pixels obtained by
measurements with a video-theodolite with a resolution of 8bit gray values (0...2553).
This makes it clear that the image signals are not linear and, therefore, the functions /)
and f» must be linearized.

H) =fix - fordAY + (X)) (6.64)

with  Axg L\ppm\mwe shift parameter
dAx  Unknown correction of the shift

.f\..}

df, (v)) (6.65)
(/\ |

vy -ANy,

The approximate shift parameter must be provided by the user or derived from previous
calculations. In (6.64) the second order terms are assumed to be negligible. The lineari-
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zation vields the following system of observation equations concerning one pair of cor-
responding patches:

M) == fordAv+v(yy), j=1, .., Mp (6.66)
with - Afl) = f00) - filx- A0 (6.67)
055
T -
3 220- ’
z | 14
L Af(x
g 185 - f2(x) — Y (x)
<50 filxax)
115 .
220 240 X 260 280
x [Pixel]

Figure 6.20: Template marching of one-dimensional signals

Using the least squares method. the unknown correction dAx of the shift Ax can be esti-
mated by

=3 LA (x) (6.68)

and the estimated shift is

dAx =

A,‘\'j = A\‘() + (]A\",‘ i=1..N (069)

N;  Number of images of a series

The equations from (6.63) to (6.69) are evaluated for each grabbed image of a time se-
ries which are indicated by the index  in equation (6.69). In each image of the series,
the template matching uses the same template and the corresponding patch. Thus, the
variance 6, can be estimated from the shift of the template within each image as fol-
lows:

) Q- —T2
6 = D [_\\ ~ _x\-} ) (6.70)

with  Av  Estimated average of the shift
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The variance ,” is an appropriate measure for the angle-of-arrival fluctuation temporal
changes of the angle-of arrival of incoming waves influences directly the variance 6,°.
In order to improve the reliability and accuracy of &, several patches per image are
evaluated. Practical investigations show that up to 40 patches can be utilized whereby
this number can slightly change depending on the structure of the target, the imaging
system and the experimental setup.

The size of the patches can be chosen by the user. For computational reasons, the length
of the sides of the patches must consist of an odd number of pixels. If the size of the
patches is too small, the redundancy decreases and the determination of ¢y~ and other
parameters (cf. the following section) becomes unstable. But also patches being very
large are not suitable because of the increase of computational effort and because of
disturbing influences of exposure which can deteriorate the template matching. Practical
experiments shows good results with a patch size of Mp = 45 x 45 pixels. Minor devia-
tions (up to 20 %) of Mp do not significantly change the results.

An alternate procedure for determination of angle-of-arrival fluctuations using LSM has
been published in [HENNES. FLACH, 1998]. This procedure uses the difference
dpyn = (ks —Xpseas ) derived from the known coordinate xg.s of the patch in the refer-
ence image and the corresponding patch’s coordinate xy.,, in the measurement image,
where Xazeqs 15 calculated by LSM for each pattern. Using np,; patches in one measure-
ment image, the spatial standard deviation G, g 18 given as

1 B parer [ 2 g
N _ - 5.
G\:.\‘,'mlizl.’ =4l T z dl‘{m-/; LZP!«'[('/’E. (( 71)

1, |

aich
As discussed in [HENNES, FLACH, 1998]. Ouspariar Can also be used as a measure for
the turbulence-related disturbance of the phase front of the light bundle emerging from
the target (angle-of-arrival fluctuations). Referring to Taylors theory of frozen turbu-
lence (section 3.2.1), the standard deviation Cuspaiial Of (6.71) can be considered as
equivalent to ©,.

b) Determination of intensity fluctuations using LSM

Additionally to the determination of angle-of-arrival fluctuations, least squares template
matching enables also the determination of intensity fluctuations. Under the condition
that the one-dimensional model really holds and the number of observations (i.e., the
pattern size) is large enough, the noise variance 6y~ as an additional parameter can be
estimated from the residuals of the least squares fit as follows:

5 | M. \ ) |
T P )= f(x A i=1LN, (6.72)
Vi j]\/] , " l g [f_ ; f i [)] I
2 | & \ )
6 =36, o
N, =




On the one hand. the noise variance 6y~ indicates the accuracy of the observations (pixel
intensities) used for the parameter estimation. On the other hand, Gv2 can also be used as
a measure for intensity fluctuations of the incoming light ray as introduced in section
4.4. Hereby, this heuristic model assumes that intensity fluctuations which are caused
by optical turbulence influence the image signal of the patches and, therefore, increase
also the difference f>(x;) - f1(x; - Av) between the patch of the reference image and the
one of the subsequence image. Thus. least squares template matching is also promising
for refraction analysis as already mentioned in section 6.4.3 above

6.4.5 Implementation of Canny operator

The implementation of the Canny operator in combination with the Wiener filter is em-
bedded into an all-embracing proceeding Which vields the noise variance o and the
fluctuation of the position of an edge o, necessary to determine the turbulence pa-
rameters C,” and /; by means of (4.31) and (4.45). Figure 6.21 presents a comprehensive
overview of the applied image processing techniques which are connected with the
Canny operator.

The procedure of Figure 6.21 is principally valid for both images grabbed by line scan
cameras or images grabbed by area scan cameras (e.g.. video theodolites). In the fol-
lowing, the essential elements of the procedure Figure 6.21 are explained with regard to
images grabbed by line scan cameras such as presented in Figure 6.2 since images of
this type were grabbed in the field experiments using a line scan camera (section 7.2).

I Raw \\W) Wiener _ﬂ>344 " Filtered N Canny w_),” Coarse position ___
| image J filter / image regions / operator | of edges ;
v
2
. v
— |
* Edge ’ Sub-pixel .~ Position Outlier Calculation ( g2 i
> tracking ”) interpolation )' of edges ~> detection ~ > of variance ki X i
! S FE— [ ) . /’

Figure 6.21: Determination of 6v" and o, using Wiener Filter and Canny operator

a) Wiener filter

The implementation of the Wiener filter has already been explained in section 6.3. In
the following, the application of Wiener filter in connection with the Canny operator is
discussed. Assuming a raw image obtained from a line scan sensor, the Wiener filter is
only applied to a limited range of the image as shown in Figure 6.22 in order to reduce
computational effort.
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Herein, the 1024 pixel of the x-axis represent the elements of the line scan sensor and
the 3000 pixel of the v-axis consist of the 3000 line readouts which are produced by the
line scan sensor. The limitation of the range of the Wiener filter as shown in Figure 6.22
1s possible because all line readouts are included and, thus, the temporal intensity fluc-
tuation can be measured.

In order to determine the edges, the Canny operator is applied to a sub-range within the
range of the Wiener filter. Figure 6.22 illustrates these ranges: The Canny sub-range is
depicted as dark gray and lays within the range of the Wiener filter (light gray). Herein,
the user should chose the parameter xy and x> as shown m Figure 6.22. Although the
processing of one single column by the adaptive Wiener filter would be sufficient to
determine the intensity fluctuations, the evaluation of the measured image data shows
that a width of 100 pixel for the range of the Wiener filter (light gray) can be recom-
mended since the redundancy enables the user to detect outliers. A larger sub-range is
also possible but 1t must be made sure that the sub-range thoroughly maps a part of the

target (rod), i.e. there are no disturbing influences (e.g. grass).

The minimal size of the range of the Canny operator (dark gray) depends on the length
w, (cf. Figure 6.17) of the filter function (6.60). Based on practical investigations a
length of w,. = 7 and a width of 25 pixel for the Canny sub-range was found adequate.
The parameter x; and x> must be chosen in such a way that the approximate position x,
of an edge is situated approximately in the middle of the sub-ranges of Wiener filter and
Canny operator.

1024 pixels

X4

X

Raw image

g‘ Filtered image section (Wiener Filter)
f41]

AN Application of
Canny-Operator

Figure 6.22: Application of Wiener filter and Canny operator in an image
grabbed by a line scan camera



b) Canny operator

The implementation of the Canny operator follows the explanations presented in section
6.4.2. Attention should be paid to the threshold parameter because edges are detected at
positions where the gradient function g(x) of equation (6.61) is larger than the threshold.
Figure 6.23 may illustrate this difficulty: On the one hand. spurious edges are detected 1if
the threshold is chosen too small (e.g., threshold = 0.02), but on the other hand. edges

can be omitted if the threshold is too large (e.g., threshold = 0.5).
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Figure 6.23: Canny operator: Influence of threshold

The threshold can be determined automatically. e.g., if the quotient of number of edges
and of length of line is assumed to be known (e.g. if the target structure, the focal length
and the distance R are given). Practical investigations using line scan images showed an
appropriate threshold in the range of 0.1 to 0.3. This threshold is valid for edges with a
good contrast (> 10 dB, cf. section 6.4.6).

The Canny operator implemented as described in section 6.4.2 produces binary images

wherein 0 means "no edge” and 1 means "edge detected”. These binary images have two

difficulties:

1. The resolution of the position of edges is only | pixel

2. If an edge is found in a line readout, the position of same edge must be found in the
subsequent line readout in order to analyze the slight displacement of an edge. Thus,
attention should be paid to edges neighboring in vertical (temporal) direction be-
cause edges which occur in a line readout normally should reappear in the subse-
quent line readout (Figure 6.24).

The first problem can be solved using interpolation as explained in section 6.4.5d). The

solution of the second problem can be provided by use of a histogram as shown in

Figure 6.25. An edge and its approximate position x, are identified if the corresponding

counts exceed a specified threshold (e.g., 50% of the number of line readouts). Moreo-

ver, edge tracking techniques as explained in the following sections are required for the

proper detection of temporal displacements of edges caused by turbulence effects.

¢) Edge Tracking

In the following context, edge tracking means the assignment of pixels which are
marked by ones in the binary image to edges which runs in vertical (temporal) direction
(Figure 6.24). An assumption for edge tracking is that the approximate position x, of the
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edge 1s known or determined as described above (Figure 6.25). In doing this, the use of
thresholds and histograms is required. The histogram provides the approximate position
x, of the edge.

n,
e
- :'_L
n> i' ¥
—— Binary image N |
w0
-
o
dod
—- Temporal Y
displacements if
caused by 3o
turbulence w3
effects Loy
dooan
M I
& | -~ ==~~~ ~Threshold
5
Q
Q
Xﬂ
Figure 6.24: Ambiguous edges in bi- Figure 6.25: Edge detection using
nary image. The ny-axis contains the threshold and histogram
coarse positions of edges of one line
readout

When the approximate position x, is given, the algorithm seeks each row 5, of the bi-
nary image whereby the appropriate coarse positions of the edge X.q,. are the positions
of ones Xy, », located at the closest to the approximate position x, of the edge:

o 21 , 7 (6.74)
xw/,ua%.ng = {Y()”U.\'./f: Emm (T\.O!!U,ill:‘: - '\'rr,) J = I f\:’l—
with  Xegee n, Coarse position of the edge located in the row 1y corresponding

to the approximate position v, of the edge

Xones. n, Position of an edged marked by "1" in the row > of the binary
image generated by the Canny operator

N; Number of rows (Number of line readouts)

This algorithm works satisfactorily under the condition that no gaps occur in the edge of
the binary image. However, if a gap occurs as shown in Figure 6.26, the assignment can
be deteriorated since confusions with neighboring edges may arise. In this case, outliers
emerge by including a pixel from the neighboring edge as depicted in Figure 6.26.

In order to avoid this wrong assignment, a morphological operator should be applied to
the binary image which is provided by the Canny operator. Hereby, it can be recom-
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mended to use the so-called "bridge"-operator which can be implemented efficiently
and, therefore, is described in the following.

Data from Canny operator without appli- Wrong assignment
cation of morphological operator

N l
Xn Xn
Binary image Resulting edge

Figure 6.26: Wrong assignment caused by gaps in edge of the binary image

The "bridge"-operator bridges previously unconnected pixels as presented in the fol-
lowing example:

0 1 | 0 0 1 L 0
0 | 0 0 becomes | 0 | 0 0
0 0 0 0 0 1 0 0
0 | 0 0 0 1 0 0

Using this morphological operator, the quality of assignment can be improved consid-
erably as shown in Figure 6.27.

Data after application of Correct assignment
morphological operator

| .
! I

Binary image Resulting edge

Figure 6.27: Improved assignment after application of morphological operator

The application of the morphological operator is followed by the application of equation
(6.74), thus, the position of the relevant edges are known for each line readout (i.e., row
in the raw image). However. the resolution of the position is still only one pixel. In or-
der to increase the resolution, interpolation methods are required as introduced in the
following section.




d) Interpolation

Interpolation methods enable the detection of edges with sub-pixel accuracy. In doing
s0, the gradient function ¢(x) according to (6.61) is calculated in the region of the coarse
POSIION Xage. Within a range of 5 pixel, a polynomial approximation can be estimated
by use of the least squares method. Thus. the gradient function can be approximated by

(6.75)

(X)) =ax" +ax+a,

with . ay. a» - Estimated parameters of the regression

80
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Figure 6.28: Sub-pixel interpolation using polvnomial approximation
& i} .

Determining the maximum of the function of (6.75), the interpolated position X, of the
edge becomes:

X, =~ (6.76)

This procedure yields the position of the edge with sub-pixel accuracy for cach row us-
ing least squares estimation.

e) Outlier detection

As a property of least squares estimation, outliers may affect the resulting xj,. In order
to eliminate or at least to reduce the effects of outliers. robust estimation methods are
required. In the application discussed in section d), the median estimator is suitable and
easily applicable as robust estimation method. Hence, the median of all the interpolated
positions Xy, of the same edge are calculated and. then, the deviation of the interpolated
positions and the median must be determined. If the amount of the deviation exceeds a
specified threshold, the corresponding interpolated position v, i$ an outlier and. there-
fore, must be eliminated. The results from field measurements shows that the percentage
of outliers 1s in the range of 0.1% to 1% under normal conditions.

) Calculation of standard deviation
Once the outlicrs arc removed from the results, the variance (‘5_\; of the edge positions is
given by



s l N, )
G‘\ = M‘ A 2 [Xim‘pj - 'xinrp ] (677)
Ny -l =1
with .  Average of the interpolated edge positions

The variance 6" of (6.77) is equivalent to the variance of (6.70) obtained by template
matching. Both variances can be interpreted as a measure for the angle-of-arrival fluc-
tuation. Since the algorithm using the Canny operator only provides the positions Xy, of
the edge. the noise variance 6,° must be determined by means of the Wiener filter to
achieve the full information necessary to determine the parameter C,z3 and [y for the tur-
bulence model as 1s illustrated in Figure 6.21.

6.4.6 Accuracy of edge detection

The edge detection demands high accuracy as is shown in the following numerical ex-
ample: For R =75 m, a = 65 mm, A = 550 nm, and C,f =05 10" m'z”, the angle-of-
arrival fluctuation is ¢,” = 1.05-10"" rad”. Assuming a focal length f = 300 mm and a
size p. = 107 m of pixel elements, the fluctuation of the edges o, is 0.09 pixel”. There-
fore, the required standard deviation for edge detection 18 G2 = 0.009 pixel2 if a rela-
tive standard deviation of C,,” must not exceed 10 %.

The accuracy of the edge detec-
tion depends mainly on the B
resolution of the gray value and
the contrast. The contrast of an
edge can be expressed by the
ratio of the length xpy, of the

Amep

[

Gray-value function f{x}

Light Qugra Dark
ramp and the amplitude Ag,,, of i o
the edge as shown in Figure e
6.29. L S
These parameters define the Pixel x

minimal resolution d,... within
which the position of an edge
can be solved:

Figure 6.29: Slope of edge as a measure of image
contrast

d, = “\Lﬂ d,. [Pixel] (6.78)

Ramp

with  dgy  Minimal resolution of gray value: do.. = 1 [8 bit gray value].

For example, referring to measured images, edges with an excellent contrast typically
have a ratio of xgaup / Aganp = 0.04 [pixel/ 8-bit gray value] (14 dB). This contrast is
equivalent, e.g., for width of the edge xpyy, = 2 pixel and a dark-to-bright difference
Agramp = 50 [8 bit gray value]. From (6.78) follows that the resolution of the position of
an edge 1s limited to 0.04 pixel. Although, it is important to point out that the standard
deviation of a single edge 1s not of interest but the standard deviation 642 of the stan-
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dard deviation o, which 1s given by (6.77). Using the law of propagation of variances, it
follows:

(6.79)

with N} Number of readouts (number of edges)
. > - R . 3 . . . -~ v
Supposing N; = 24, 6,7 = 0.09 pixel”, and assuming a standard deviation of the position
- - ) . . . . )
of one edge Gpue = 0.06 pixel (see below), the standard deviation 62 15 0.007 pixel

o

whereby this value i1s smaller than the required standard deviation G2 = 0.009 pixel™.

Hence. the application of the Canny operator and template matching as described in
section 6.4.4 and 6.4.5 can provide results which are accurate enough for determination
of angle-of-arrival fluctuation if the assumption G, = 0.06 pixel holds. In order to
validate this accuracy, a series consisting of 24 images is evaluated by means of both
the Canny method (section 6.4.5) and the least squares template matching (section
6.4.4).

The comparison plotted in Figure 6.30 reveals a good correlation between both methods
(reorr = 0.98). The standard deviation obtained by this comparison amounts to
G ;0 = 0.05 pixel which is in the order of the assumed value of Gy, = 0.06 pixel.

single

Comparison of edge detection
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Figure 6.30: Positions of an edge in a series of 24 images. The arrows indicate the
95 % confidence intervals with O, = 0.05 pixel and o, = 0.35 pixel, respectivelv

6.4.7 Conclusions

Edge detection which is necessary to determine the angle-of-arrival fluctuations can be
performed by using various edge operators in principle. Basically, the presence of
strong angle-of-arrival fluctuations can deteriorate the accuracy of the edge detection as
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shown in (6.79) and (6.56). Practical investigations presented in section 6.4.3 show that
the Canny operator and least squares matching provide accurate results present although
the accuracy decreases in the higher range of C,".

The comparison ol these two methods shows that the standard deviation of one single
edge is about 0.05 pixel if a good contrast is provided (Figure 6.30). In order to improve
the redundancy, it 1s recommended to detect the position and the standard deviation of
more than one edge in the same image. This enables to check the plausibility and repro-
ducibility of the results.

In contrast to the Canny operator, least squares template matching is a semi-automated
technique, i.e., the user has to identify the coarse position of edges. But as an advantage,
least squares template matching offers the option to determine the noise variance and
the variance of the position of edges simultaneously. But the application of the least
squares matching as discussed in section 6.4.4 is limited since it provides only the vari-
ance of the noise.

If the intensity fluctuations are described by a more sophisticated function Sy (@>) than
Sy () = 67 as given in (6.38). the template matching cannot determine the intensity
fluctuations. But, in contrast to the template matching, the adaptive Wiener filter is able
to process also more sophisticate spectral models Sy, as mentioned in section 6.2.4.

The method using the Canny operator as described in 6.4.5 has the potential of fully
automated edge detection. Hereby, attention should be paid to the assignment of edges
within subsequent line readouts.

If the assignment is not done correctly, outliers may occur with detrimental influences
on the quality of the results. But these difficulties can be overcome with use of robust
estimation methods and morphological operators as discussed in section 6.4.5¢) and
6.4.5¢).

As shown, e.g.. in Figure 6.19, the results for the intensity fluctuations obtained by least

squares matching are equivalent to the results calculated by means of Canny operator in

combination with the adaptive Wiener filter. For this reason, the measurements de-

scribed in the section 7 are evaluated with these two different image processing tech-

niques:

e Least squares template matching is applied to measurements grabbed by two-
dimensional image sensors such as video-theodolites and

e the Canny operator evaluates measurements obtained by one-dimensional image
sensors such as line scan cameras.
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7 Measurements and results
7.1 Video theodolite

7.1.1 Field experiment

The following field experiment was carried out by means of the video theodolite which
is a representative of a modern geodetic mstrument. The experiment was carried out on
3™ June 1999 in a grassy field (cf. Figure 7.1 and Figure 7.5). The agriculturally used
area is approximately flat for the part where the measurements were performed (cf.
Figure 7.5). Isolated houses and a slight hill in the background are the most relevant
elevations which are about 100 to 500 meters away from the place of the experiment.

Figure 7.1: Area of field experiment (at the corner: emitter unit of scintillometer)

The experimental setup consists of the video theodolite Leica TM3000V and the scin-
tillometer (see also sections 5.2.3 and 5.3.1). The setup of the scintillometer is presented
schematically in Figure 7.2. Hereby, the portable computer stores the data of the scin-
tillometer which are averaged using an integration time of | minute.

Portable Emitter 2 Laser beams Receiver
Computer (A =670 nm)

et

Power ! 86 m

Figure 7.2: Scintillometer
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he line of vision of both instruments are parallel and run horizontally over a distance
f 86 m (Figure 7.3).

Figure 7.3: Parallel measurements of scintillome- Figure 7.4 Levelling
ter (left) and video theodolite (right) staff

eo theodolite
* meter

0
i
¥
Staff

S Video

L. L theodolite

o R
S @
eI} Jo—
- ©
W &

8B m

Figure 7.5: Map and profile of the field experiment of 3 June 1999.
Hereby, the footprint model of section 3.5 is applied
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The video theodolite situated next to the scintillometer (Figure 7.3) aims at two vertical
coded levelling staffs (Figure 7.4) positioned at 86 meters away.

The use of two levelling staffs in-
stead of one is advantageous since
they provide more edges which can
be evaluated and, therefore, in-
creases the redundancy. The struc-
ture of the image data of these two
staffs is illustrated by the image pre-
sented in Figure 7.6. Each meas-
urement of video theodolite consists
of 25 images grabbed within | sec-
ond. The measurements are repeated
at intervals of about 1 to 2 minutes.

The weather was sunny and the Figure 7.6: Image seen by
temperature was in the range from video theodolite

20°C 1o 27 °C (ct. Figure 7.12)

The wind speed did not exceed 2.9 m/s (median of wind speed: 2.1 m/s). The total
measuring period took 6 hours 30 minutes and was interrupted two times for technical
problems.

7.1.2 Results and conclusions

The structure constant C,” and the inner scale /, are plotted in Figure 7.7 up to Figure
7.10. The results of the video theodolite are combined with those of the scintillometer
which can be regarded as a reference instrument. The image data of the video theodolite
were proccsgcd using least squares template matching according to (6.70). The structure
constant C,, 1s calculated using (4.31).

Structure constant C 2 Scintillometer
Video (o7 me=)
theodollte 0.8

VA A “fN |
Y /V V\V \//\I\\WM A\’\/\/\ o4
0.8 % , 0
0.4 : g! y I z ,F; 'TE\"H-\

0 } . i

10 11 12 i3 14 17

Time

1999-06-03

Figure 7.7: Time series of structure constant C,~ (Place: Dietlikon / CH)

The structure constant of refractive index as shown in Figure 7.7 tends to increase dur-
ing the first hours with a maximum at noon (13:00 h in summer-time). Although, C,” is
subject to enormous changes which are caused. e.g., by small clouds covering the sun
during some minutes. The structure constant of refractive index determined using the




140

video theodolite is rather volatile whereas the run of the time series of C,” obtained by

the scintillometer 1s more smooth.

The reason for this may be the measuring
time of the video theodolite being | sec-
ond only which is considerably shorter
than the measuring time of the scintil-
lometer (1 min).

The differences between the results of
scintillometer and video theodolite are in
the range of 0.2 10" m™ (standard de-
viation) but do not reveal a systematic
behavior. In addition, the correlation co-
efficient between scintillometer and video
theodolite in the time series of C,° is
relatively low and only amounts to 7., =
0.57. The correlation plot is given in
Figure 7.8.

PRI

If the structure constant is ¢
(4.45) with use of the noise variance &~

Video theodolite
T 0.83 * X + 0.053
0.8
E D 6 -~ “/,//,,,
R
e . N
O red
o2+ LT
X . . ! Scintillometer
0 | | ]
0 0.2 0.4 0.6 0.8
t999.06-03  C.2 [1072 m?R)
Figure 7.8: Correlation of C,

(Place: Dietlikon / CH)

calculated thL mmner scale /y can be derived from (4.33) and
* modelled by (6.73). These results of the video

theodolite are compared with the inner scale obtained by the scintillometer as shown in

Figure 7.9.
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Figure 7.9: Inner scale ly (Place: Dietlikon / CH)

The inner scale determined using the video theodolite has an offset of about 1.5
the period from 13:30 h to 15:00. This offset is possibly caused by the intensive

mm in
sun

radiation during this period which can decrease the sensitivity of the video theodolite

for intensity fluctuation.
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The correlation between the measure-
ments of the scintillometer and the ones
of the video theodolite is plotted in
Figure 7.10. The correlation coefficient is
Feorr = 0.45. Thus, the correlation of /[y 1s
lower than the one of (l',,l. This 1s an ex-
pected result since the algorithms used
for determination of /, depends also on
C,,Z. This means the deviations of C,f
deteriorates also the determination of /[y,
Thus, the determination of /p 15 more de-~
manding than the one of C,f. The nner
scale /p determined using the video theo-
dolite has a standard deviation of about
[.3 mm whereby the standard deviation is
calculated using the differences between
the measurements of video theodolite and
scintillometer.

With respect of the interpretation of /p, it is
useful to compare the time series of /; with
the measured wind speed and temperature
as shown in Figure 7.11 and Figure 7.12.
In Figure 7.11, the correlation between
wind speed and the inner scale is remark-
able (7. = -0.50). Generally speaking, an
increase of the wind speed leads to a de-
crease of the inner scale and vice versa.
This relationship is also confirmed in sec-
tion 7.2.2 when the results of the line scan
camera are discussed. Those experiments
(19 and 25 August 1999) revealed a corre-
lation (about 0.84 to 0.95) which is even
better than the correlation in the experi-
ment of 3 June 1999. This relation between

Video theodolite

10 T
| 0.58 * X + 2.85
8 - .
[— ,/’/
&
£
6 -
'
e Scintilometer
4 — : } ; 1 g
4 5 6 7 8 9 10

1999-06-03 lo [mm]

Figure 7.10: Correlation of I,
(Place: Dietlikon/ CH)

Wind speed
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P gp— L
o
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2.4 — )
.
)
1.6 —
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1999-06-03 Inner scale [mm] (Scintillometer)

Figure 7.11: Correlation between
inner scale o and wind

wind speed and inner scale can be used to derive the inner scale such as investigated in

[DEUSSEN, 2000].

The temperature gradients presented in Figure 7.12 are derived from the measured C,’
and /[y using Monin-Obukhov similarity and the algorithm explained in section 3.4.
Hereby. the profile function (3.56) of HOGSTROM [1988] is applied. Hereby. the aver-
aged difference between the temperature gradients derived from the scintillometer
measurements and the ones of the video theodolite is -0.03 K/m.

This means that the refractive angle calculated from the measurements of the video
theodolite is about 0.07 mgon smaller than the corresponding refractive angle based on
scintillometer measurements. Because no temperature gradient measurement system
was available on 3 June. these gradients cannot be verified using temperature differ-

ences.
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Figure 7.12: Comparison of temperature gradients with other meteorological quantities
(Temperature gradient calculated using the dimensionless profile function of Hogstrém)

Finally, the relation between C,” and the mean intensity of the measurement images is

meter” based on the effect that arising clouds in the sky decrease the intensity of the
light rays and. therefore. lower the gray values of the pixels.

At the same time,. the clouds influence also the optical turbulence which is modelled by
C,”. The agreement between these two quantities is shown in Figure 7.13.




The practical experiment of 3" June 99 o
reveals that the relationship between
mean intensity and ¢, is more sophisti-
cated and should be modelled using addi-
tional parameters, for example the sunset
which is a function of time and the expo-
sure of the target (shadows caused by
obstacles, etc.).

08
0.6

0.4

1 i 2 13 14 15 18 17
Hence, further ivestigations are neces- Time
sary to model the "cloud meter” capabili- )
ties of the video theodolite and its the Figure 7.13: Correlation of Iy
relation to atmospheric turbulence (Place: Dietlikon / CH)

This experiment using the video theodolite shows that commercially available geodetic
instruments with CCD sensors can provide information about the structure parameters
C,” and [y of atmospheric turbulence. However, the accuracy is not good enough to de-
termine the refraction angle reliably (cf. section 7.5).

7.2 Line scan camera
7.2.1 Field experiment

a) Location

The ficld cxperiments using the line scan camera (type: BASLER 1120, cf. section
5.2.4) took place on 19 and 26 August 1999 at two different places in Claro (Switzer-
land). The experiments were embedded in the Mesoscale Alpine Program (MAP) which
is an international research initiative devoted to the study of atmospheric and hydrologi-
cal processes over mountainous terrain. The areas of both experiments were flat grass
fields as shown in Figure 7.14 and Figure 7.15. As depicted in the maps of Figure 7.16
and Figure 7.17 the measuring places are both surrounded by grass fields, wood and
corn fields.

Figure 7.14: Area of first field experiment in Claro, 19 August 1999
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Figure 7.15: Area of second field experiment in Claro, 25 August 1999

O Scintillometer
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Figure 7.16: Map and profile for the field experiment of 19 August 1999

Similar to Figure 7.5 and Figure 7.17, the gray area of Figure 7.16 indicates the foot-
print of the measurements. i.e.. the area which is assumed to be mainly responsible for
the amount of the measured values (section 3.5).
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Figure 7.17: Map and profile for the field experiment of 25 August 1999

In general, the wind was rather calm on both measuring days. On 19 August 1999, the
wind speed did not exceed 1.9 m/s (median of wind speed: 0.38 m/s). On 25 August, the
maximum of wind speed was 1.5 m/s (median of wind speed: 0.35 m/s).

The wind speed is displayed in Figure 7.31 where the wind speed is compared with the
inner scale. Both days can be characterized as summer days with temperatures up to 27
degrees on 19 August and 30 degrees on 25 August, respectively (Figure 7.35 and
Figure 7.37).

Since the areas of both experiments are located in a broad valley (about 5 km), the di-
rection of wind does not change considerably. As shown in Figure 7.16 and Figure 7.17,
the predominant wind direction was approximately perpendicular to the line of vision of
the measuring systems.

b) Measuring systems

Like the experiment using the video theodolite. also the following field experiments are
based on parallel measurements of the scintillometer and the investigated imaging sen-
sor, i.e., the line scan camera. Figure 7.19 illustrates the parallel measurements where
the distance between laser beam emitter of the scintillometer and coded levelling staff
was about 3 m. White sun shades as shown in Figure 7.14 to Figure 7.18 were installed
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in order to minimize the temperature influences on the instruments and to protect the
electronic devices.

In addition to the experiments of the video theodolite, the following field experiments
also include temperature gradient measurements by means of the sensor system de-
scribed in section 5.3.2 where the mast of the temperature sensors is positioned between
the line scan sensor and the target (section 7.3).

Figure 7.18: Line scan sensor pointing to the
target

Figure 7.19: Levelling staff (left)
and laser emitter of scintillometer
(right)

Figure 7.20: Image grabbed by line scan
sensor (vertical stripes = code elements of
levelling staff)

The measuring process of the line scan camera takes about 9 seconds. Hereby, 333 line
readouts per second are grabbed by the line scan camera. The lines readouts are com-
piled to images containing 3000 lines per one measurement. For illustration, a section of
such an image is given in Figure 7.20. Hereby, the vertical white stripes represent the
horizontal white code elements of the levelling staff (c¢f. section 6.2.1).




147
7.2.2 Results and conclusions

In order to calculate the structure constant C,,,Q, the edge positions of the one-
dimensional code patterns are calculated using the Canny operator as an appropriate
edge detection operator (section 6.4.5). Hence. ¢, follows from the angle-of-arrival
fluctuations as modelled by (4.31) whereby the standard deviations of the edge positions

(6.77) is a measure for the angle-of-arrival fluctuations.

Besides the edge positions, the intensity fluctuations must be derived from the image
data since they are a required quantity for the determination of the inner scale /o. In do-
ing so, the variance oy~ (cf. 6.35) is determined using the adaptive Wiener filter as
given by (6.48). This variance is a measure for the mtensity fluctuations which can be
used to estimate the inner scale /; by (4.33) and (4.45). The results of C,” and 1, are
plotted in Figure 7.21 up to Figure 7.28.

a) Measurements of 19 August 1999

The first field experiment in Claro (CH) took about tive hours and provided time series
of the structure parameter C,” and lo which are discussed in the following. Figure 7.21
shows the results of the structure constant of refractive index C,” (upper line: line s
camera; higher line: scintillometer).
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Figure 7.21: Structure constant C, (Place: Claro / CH)

The time series of C,” shows an broken increase until 11:00 h whereby this increase is
caused by solar heating of the soil during the morning. From 11:00 h clouds began to
gather which led to a decrease of radiation and heat flux and, therefore, C,~ decreased.
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The structure constant remained on a
relatively low level until the end of the
measurements. The results derived from
the line scan sensor reveal a good agree-
ment with the results obtained by the
scintillometer, whereby the correlation
coefficient is ro.. = 0.97 (Figure 7.22).
Although, one should remember the a
small range in which the structure con-
stant C,,2 has varied since 12:00 h. From
this time. the measurements lacked of 0
adequate information for comparison 0
because the structure constant C,” was 1958-08-10
always on a similar level, thus, the sensi-
tivity and measuring range of the instru-
ments cannot be described very well.
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Figure 7.22: Correlation of structure con-
~ 2 - s
stant C,7 (Place: Claro / CH)

The standard deviation ot C,” can be estimated by means of the differences between
N N . . — _1D A

scintillometer and line scan camera and vields about 0.05-10"" m™". Thus, the accuracy

of the line scan camera is about 4 times better than the one of the video theodolite.

The following diagrams (Figure 7.23 and Figure 7.24) show the inner scale /) which

was determined together with the structure constant during the same experiment.
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Figure 7.23: Inner scale ly (Place: Claro / CH)

As in the case of the video theodolite, the inner scale I is related to the wind speed.
High values of /y can be found in time periods where the wind velocity was relatively
low. For example, the wind speed was only about 0.5 m/s in the period from 9:00 h to

11:00 h wherein the values of /; reach local maxima of about 9 mm., see Figure 7.31.
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The correlation of the inner scale ob- Line scan camera
tained by the scintillometer and the line 12
scan camera amounts 7., = 0.95. The 0.996 * X+ 0.039
scattering plot of Figure 7.24 illustrates 10+
this correlation. _
T 8-
The accuracy of the determination of the _i“:; s 1
inner scale is about 0.5 mm (standard i i
deviation) which is significantly better 4L ’3&4
than the results of the video theodolite o
) L ) Scintillometer
(standard deviation: 1.3 mm). o ; ; T |
2 4 6 8 10 12
1999-08-10 ly [mm]

Figure 7.24: Correlation of inner scale ly
(Place: Claro / CH)

b) Measurements of 25 August 1999

The field experiment of 25 August again investigated the agreement of the results
achieved by use of the line scan camera with those of the scintillometer. The measure-
ments were located on an other field in Claro as described in section 7.2.1 (Figure 7.15
and Figure 7.17). Although the experiment took place on a different test area, the length
of the line of sight was again about 74 m and the environmental conditions (grass. to-
pography) were very similar to the ones of 19 August.

The measured time series of the structure constant C,,?‘ are given in Figure 7.25 and
Figure 7.26. From the beginning at 8:30 h the structure constant increased since the sun
heating produced increasing fluxes of sensible heat. At about 11:30, a maximum of C,f
had been reached. C,,: remained on this level until, at 13:30 h, clouds covered the sun
for about 10 minutes leading to a sudden fall of C,".
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Figure 7.25: Structure constant C,” (Place: Claro/ CH)
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In comparison to the experiment of 19 August, the structure constant was higher during
the afternoon of 25 August. This is understandable since the sky was cloudless for most
part on 25 August and therefore, the sun radiation and sensible heat fluxes were
stronger. These circumstances are also manifest by a higher maximum of temperature
on 25 August.

The results obtained by the line scan Line scan camera

camera again revealed a good agreement 0.8 — 0,997 X - 0.0385
with the reference represented by the re-

sults of the scintillometer and the corre- TR

lation coefficient 18 7. = 0.91 (Figure

7.26). Based on this experiment, the es- _E

timated accuracy (standard deviation) of =4 04

the structure constant C,f is 0.06-10™ :

m ™" This means the accuracy and cor- 0271

relation coefficient of the experiment of P o V
25 August are marginally worse than the 0 ; | bc',nwometez
one of 19 August but the accuracy of the 0 0.2 0.4 0.6 0.8
line scan camera is still better than the 1999-0825 G2 [10712 m23]

one of the video theodolite.
Figure 7.26: C mreimlon of structure con-

stant C,” (Place: Claro / CH)

The inner scale /n measured in the field experiment of 235 August is displayed in Figure
7.27.
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Figure 7.27: Inner scale ly (Place: Claro/ CH)

At the beginning, the inner scale /; had reached the maximal level and decreased
whereby short-time fluctuations of 7, occurred in the order of magnitude of about 0.5 to
I mm. The inner scale decreases down to a level of about 4.5 mm which is slightly
higher than the values of 19 August. This seems plausible since the wind speed of 25
August was modestly smaller than on 19 August (0.3 m/s about 13:30 h on 25 August)
which results in a larger size of small eddies and, therefore. in a larger inner scale. This
relation is discussed below in Figure 7.31.
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Figure 7.28 compares the inner scale /p measured using the scintillometer with /y derived
from the image data of the line scan sensor. Also this correlation coefficient is quite
good and amounts to ., = 0.89 which is insignificantly lower than the corresponding
cotrelation coefficient of 19 August.

Line scan camera
The accuracy of the inner scale, derived 2 -
from the differences between scintil- 1057 X-0.321
lometer and line scan camera. is esti- 104
mated to 0.6 mm (standard deviation).
= 8 -+
f—_ . £
[his means both experiments revealed =
approximately the same accuracy of the
inner scale obtained by line scan camera. 4
The intluence of the standard deviation o
N ) ) . Scintillometer
on the refraction angle is presented in o — - I ;
section 7.5 2 4 6 8 10 12
1099-08-25 lo Imm]

As mentioned above, the wind speed can
. . ah o T YR T e |t e e s

be assumed to influence the inner scale 7, Figure 7.28: Correlation of inner scale I

Significant]v_ (’P/CIC(),.‘ (‘]L”()/C[])

'This influence is investigated empirically using the plots of Figure 7.29 to Figure 7.31
where the empirical functions are fitted using a logarithmic approach. Although the
measurements of the inner scale are subject to minor deviations and the measurements
of the wind speed are limited in spatial resolution, the correlation of the wind speed with
the inner scale is rather high and amounts to r.,» = 0.95 (19 August 1999) and 7., =
0.84 (25 August 1999).
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Figure 7.29: Wind speed and inner scale (Place: Claro / CH; 19 August 1999)
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Figure 7.30: Wind speed and inner scale (Place: Claro/ CH; 25 August 1999)
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Figure 7.31: Correlation of wind speed and inner scale ly (Place: Claro / CH)
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Similar to section 7.1.2. the relation between structure constant C,” and the mean inten-
sity of the measurement image can be investigated. This relation is based on the as-
sumption that the mean intensity of the pixels of the line scan sensor coincidences with
the structure constant C,” .

As an example. the time series of the experiment of 25 August are displayed in Figure
7.32. The correlation is rather poor (7., = 0.31) but the trend functions reveal a slight
relationship between €, and the mean intensity.




Obviously, the relationship between
C,” and the mean intensity is signifi-
cantly different than the one detected
in the experiment of 3 June 1999
(Video theodolite).

Thus, as mentioned in 7.1.2, the mean
intensity can only be used for the de-
termination of C,f if further parameter
model the influence of the dlumination
such as the sunset and shadows over
the target. Herein, additional quantities
must be measured 10 determine the
(non-turbulent) part of the illumination
and other systematic effects.

7.3 Temperature measurements
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Figure 7.32: Mean gray value vs. C,”
(Place: Claro/ CH)

As described in section 7.2.1, temperature measurements were performed during the
field experiments of 19 August 1999 and 25 August 1999 simultaneously with the
measurements using scintillometer and line scan camera. The temperature sensors were

mounted on a mast with the geometrical dimensions

(Figure 7.33).

as described in section 5.3.2

Line scan
camera

Line scan
camera
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Figure 7.33: Mast of tem-
perature sensors

Figure 7.34: Mast in relation to the experimental

setup of line scan camera

During the experiment of 19 August 1999, the mast was positioned close to the line of
sight. The mast was placed somewhat eccentrically owing to further field experiments
taking place at the same time [TROLLER 2000]. On 25 August 1999, the mast was
about 6 meters away from the line of sight and situated fairly in the middle of the dis-

tance between instruments and target (Figure 7.34). In both cases, a position of the tem-
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perature gradient measuring system was chosen which can be assumed to be representa-

&

tive for the temperature field as far as possible.

The measured temperature gradients as plotted in Figure 7.35 up to Figure 7.38 are de-
termined between the heights of 1.25 m and 2.43 m above ground since this range 1s
also the height in which the line of vision runs above the ground. For Comparisog, the
temperature gradients are calculated using the parameters of optical turbulence (C,” and
lo) derived from the image data of the line scan camera using .
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Figure 7.35: Measured temperature gradient vs. modelled gradients (Model: Hogstrom)
(first experiment in Claro)
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Figure 7.36: Measured temperature gradient vs. modelled gradients

In order to determine the temperature gradient modelled by Monin-Obukhov similarity,
the calculation follows the algorithm explained in section 3.4 using (3.57), (3.58),
(3.59), (3.61), (3.64), (3.65), (3.66), (4.1) and the profile function (3.56) of HOG-
STROM [1988]. In doing so, the obtained results are displayed in Figure 7.35. and
Figure 7.36 for the experiment of 19 August 1999, The standard deviation of the tem-
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perature gradient (based on the differences between line scan camera and mast) is 0.03
K/m.

The correlation coefficient between the measured temperature gradients and the mod-
elled results (Monin-Obukhov similarity) amounts to 7., = 0.74. As shown in Figure
7.36, the use of other profile functions does not significantly improve the correlation as
shown by the application of the profile function (3.55) of BRUNNER [1979]. The pro-
file functions (3.56) of HOGSTROM and BRUNNER utilize the dimensionless quantity
 defined by (3.50) as presented in section 3.4. Moreover, the refinement of the Monin-
Obukhov theory using the flux-Richardson number R, (section 3.6) is investigated too,
whereby the modified dimensionless ratio L’ is defined by (3.67). The results obtained
by means of (3.67) and (3.56) are plotted in Figure 7.36. With respect to the measured
temperature gradients, the correlation coefficient between the flux-Richardson-modelled
temperature gradients and the measurements is only 7., = 0.47, this means the agree-
ment is worse then the results obtained with use of C.

In an analogous manner, the following plots (Figure 7.37 and Figure 7.38) compare the
modelled temperature gradients obtained by image processing with the temperature gra-
dients measured by the mast during the experiment of 25 August 1999 in Claro.
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Figure 7.37: Measured temperature gradient
vs. modelled gradient (Model: Hogstrom; second experiment in Claro)

Obviously, the measured temperature gradients were subject to considerable fluctua-
tions (up to 0.2 K/m during 5 minutes) on 25 August 1999. The standard deviation cal-
culated using the differences is 0.10 K/m which is considerably worse than the results
obtained on 19 August 1999. In general, the deviations seem to be randomly distributed
as shown in the scatter plots of Figure 7.38. But the deviations are especially large (up
to 0.3 K/m) in the first hour of the measuring time (8:30 h to 9:30 h).



156

Possibly, the transition from stable (d7/dz > = 0) to unstable (d7/dz <= 0) stratification
can cause these deviations, since different profile functions must be applied for each
type of stratification (cf., e.g., (3.56)) and, therefore. uncertainties of the current stratifi-
cation can cause significant deviations.

In Figure 7.38, when using the models of HOGSTROM and BRUNNER (7, = 0.70),
the correlation coefficients of the scatter plots are shightly lower than the ones of 19
August 1999, but the difference seems not be very significant. Thus, these models can
still be applied. It is remarkable that the model using the Richardson number yields
better results based on the measurements of 25 August 1999 than on the ones of 19
August 1999, This can be interpreted as follows: On 19 Aug. the deviations of the tem-
peratare profile from the adiabatic case are lower than on 25 Aug, therefore, the contra-
dictions of the Monin-Obukhov similarity using the Obukhov length do not cause ditfi-
culties since the deviations can be neglected. On 25 Aug. the temperatures are higher
and the buovancy is stronger and re-enforces the turbulence caused by friction produc-
tion. In this case, the application of the Richardson flux number is more justified, al-
though this model does not yield the same quality such as the models of HOGSTROM
and BRUNNER.
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Figure 7.38: Measured temperature gradient and its moving average
vs. modelled gradient (second experiment in Claro, continued)

The comparison of the results as shown in the diagrams above illustrates that the mod-
elled temperature gradients are in the order of magnitude of the measured temperature
gradients, principally. Nevertheless, depending on the time, considerable deviations
between the measured and the modelled gradients may occur.

Under adverse conditions characterized by strong [luctuations of «7/dz such as shown in
Figure 7.37 (08:30 h to 09:30 h). the standard deviation of the temperature gradient is
about 0.10 K/m. If the conditions are favorable as depicted, e.g., in Figure 7.36, the
standard deviation of the temperature gradient is about two times smaller and only
amounts to 0.05 K/m.

In respect of the estimation of accuracy as presented above, it should be pointed out that
the temperature gradient measurement system only provides temperature gradients for a
discrete position in the area, whereas the modelled temperature gradient is an averaged
value which is integrally valid for the whole path of propagation. In order to validate the



157

results, the achieved accuracy of the temperature gradient will be compared with the
accuracy of the temperature gradient as derived in section 7.5.

7.4 Temperature gradient profile

The contemplation in section 7.3 is only valid for the vertical temperature gradients at
the height of the instrument (about 1.5 m). In this section, the results of investigations
which take the entire vertical temperature gradient profile into account are presented.
Hereby. the profiles are determined using the temperatures measured by all sensors at-
tached at the mast. The temperature gradient profile was approximated by (2.31) where
the parameters ay and by must be estimated. Thus, the temperature gradient profiles can
be compared with the ones obtained by the HOGSTROM model. The comparison of the
gradients at different heights is presented in Figure 7.39.
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Figure 7.39: Temperature gradients at different heights

The dotted line in Figure 7.39 marks the one-to-one reference line. Diagram d) shows
that the gradients of the HOGRSTROM model agree quit well with the ones obtained by
the temperature gradient profile modelled using (2.31) except for the values in the el-
lipse (Figure 7.39d). These outliers refer to the measurements which were performed at
about 9:00 PM. At that time, the stratification changed from stable to unstable. That
means the HOGSTROM model can be uncertain during the time of the transition. Fur-
thermore, the measured temperatures of the mast can only be fitted properly using the
parameters ar and by of (2.31) if the stratification is strictly unstable.



Referring to the remaining diagrams, systematic deviations in the order of 0.1 to
.4 °C/m may occur. In order to provide more general explanations for these deviations,
additional measurements are recommended. Currently, further investigations about the
temperature profile are still in process at the Swiss Federal Institute of Technology
[WEISS et al.. 2000].

7.5 Accuracy of temperature gradient and refraction angle

7.5.1 Derivation

In the following. the accuracy of the temperature gradient and refraction angle is esti-
mated to support the interpretation of the results presented in the previous sections. To
estimate the accuracy of the temperature gradient and the refraction angle, the relevant
measurands (temperature, pressure. distance. C,” . /o B1) denoted by the index j, their
accuracy o; (standard deviation) and their influence coefficients P; must be given or
calculated. Assuming stochastically independent measurands. the accuracy of refraction
angle O (standard deviation) follows from the law of propagation of variances and is
given by:

=205, :zpz’:(jil (7.1)

To obtain the influence coefficients P; for the refraction angle, the refraction angle is
modelled by the refraction index gradient n of (2.3) which yields:
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Thus, the influence coefficients are given by the correspondent partial derivation:
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Therefore. the influence coefficients P; can be calculated under the condition that the
amounts of measurands are given smh as presented in the third column of Table 7.1,
Since the amounts are assumed with use of the results obtained in the previous sections,
the influence coefficients can be determined. principally.
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This determination may be complicated if the temperature gradient is not given and,
therefore. must be derived from C,* and lp by means of (3.56), (3.57), (3.58), (3.59),
(3.61), (3.64). (3.65), (3.60), and (4.1).

Referring to the conditions of the experiment of 19 August at about 11:45 PM, the gra-
dient yields d7/dz = —-0.39 K/m derived C . =03210" m":"/R', R=T74m, lh= 4.6 mm,
By =0.86, (n—1) = 261-10°, T = 25.8 °C, p = 989 hPa, and a height of instrument z; =
1.56 m (ct. Table 7.1). A more general analysis of the accuracy considering various
amounts of the measurands is presented Table 7.3 and. ¢.g., in [DEUSSEN, 2000].

Likewise, the calculation of the influence coefticients for the parameters of optical tur-
bulence €, and 7 is complicated. since the refraction angle (7.2) directly depends on
the temperature gradient d7/d4z and. indirectly, on C,;ﬁ" and /y which are given. However,
by means of the Monin-Obukhov similarity, a relation between d7/dz and C,° and I, is
available as described in section 3.4 and. therefore, can be implemented in a software.

- . v D \ . . .

Since the mathematical dependence of C,” and /y on the refraction angle cannot be ele-
mentarily differentiated. the influence coefficients must be determined by means of the
discrete differentiation which is applied as follows:
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Hereby. the expression &(.) denotes the refraction angle provided by the software using
the algorithm of section 3.4. and provided by the input parameters given in the brackets.
The increments of the differentiation AC,f . ABy, and A/, are to be chosen by the user.
On the one hand. the increments of the discrete differentiation AC,” . Ay, and Aly must
be chosen small enough to fulfill the assumption of linearization and. on the other hand,
AC,” and Aly must be large enough in order to avoid numerical problems (effacement of
digits). In Table 7.1, the increments are chosen as 1 % of the amount.

] Meas- Amount Unit Accuracy Influence Influence |
urand o coefficient P, | o5, [mgon]

1 T 25.8 °C 1 0.0060 0.006
2 p 989 mbar 1 0.000902 0.001
3 R 74 m 0.01 0.0121 0.000
o 4 C. 032 10" m*™" 1005 1.04 0.052
|71? 5 h 4.6 mm 0.5 0.0601 0.030
| 6 By 0.86 -~ 0.09 0.36 0.033

Table 7.1: Influences on the accuracy of refraction angle
Total standard deviation = 0.07 mgon
The Obukhov-Corrsin constant can usually be assumed to be about B; = 0.86 but inves-
tigations such as [HILL, 1982] show that uncertainties in the value of B are about 10 %.
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Therefore, the standard deviation of 0.009 for B, is introduced into Table 7.1 since
measuring methods for the standard deviation of f3; were not available.

Thus, the influences of each relevant measurand on the accuracy of refraction angle can
be determined and are presented in the rightmost column of Table 7.1. Using (7.1), the
total standard deviation of the refractive angle is about 0.07 mgon.

The standard deviation of the refraction angle depends on the length of the propagation
path R as shown, ¢.g.. in (2.23). In order to reach an accuracy analysis which 1s inde-
pendent of R, the analysis of the influence of 7, p, €. Iy and B, on the temperature gra-
dient is more meaningtul. The influences of each relevant measurand on the temperature
gradient can be determined in an analogous manner to the refraction angle. Thus, the
accuracy of the temperature gradient can be calculated using Table 7.2 from which fol-
lows the total standard deviation of the temperature gradient = 0.03 K/m.

] Meas- Amount Unit Accuracy Influence Influence
urand O coefficient Pj Cyrdz [K/m]

1 T 258 °C 1 0.0028 0.003

2 p 989 mbar 1 0.0004 0.000

4 C, 0.32 107 m*™ 0.05 0.507 0.025

5 hy 4.6 mm 0.5 0.0293 0.015

6 By 0.86 -- 0.09 0.1889 0.017

Table 7.2: Influences on the accuracy of temperature gradient
Total standard deviation = 0.03 K/m
. Aoy Y . o A 2
Depending on the amount of C,” and /o. the influence coefficients of C,” and Iy on the
accuracy of the temperature gradient vary as presented in Table 7.3. The figures in ital-
ics correspond to the coefficients of Table 7.2.

Inner scale |,
4.6 mm 7.6 mm 4.6 mm 7.6 mm
~ [ 0.1110"m™ | 0.945 Kim/(10"m™) | 0.738 K/m/(10"m™™ | 0.0159 K/m/mm| 0.0116 K/m/mm
Q1032 10%m™ | 0.507 Kim/(10 M™% | 0.314 Kim/(10™m?™) | 0.0293 K/m/mm|  0.0335 K/m/mm

Table 7.3: Variation of C,” and ln: Changes of influence coefficients P; for dT/d:

Summarizing the influences displaved in Table 7.1 and Table 7.2, it follows th at the
refraction angle and the temperature gradient are sensitive to errors in /o and C,,, . But
also the influence of the uncertainties of the Obukhov-Corrsin constant B, cannot be
neglected.

7.5.2 Conclusions

As illustrated in Table 7.1. the accuracy of refraction angle mainly depends an the accu-
racy of the parameters of optical turbulence C,". ly. and B, whereas the influences of
temperature and pressure on the accuracy of refraction angle are negligible. Under the
assumption of a propagation distance R = 74 m (case of the field experiments in Claro)
the accuracy of refraction angle calculated by (7.1) is about 0.07 mgon (standard devia-
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tion) and the corresponding standard deviation of the temperature gradient of Oy 18
0.03 K/m.

At first, the accuracy of oy = 0.07 mgon derived from Table 7.1 is based on an accu-
racy of ¢, and I (standard deviation of C, =003 10" m ™ and standard deviation of
ly = 0.5 mm) which has been confirmed by the field experiments. Hereby, the standard
deviations are calculated using the differences between line scan camera and scintil-
lometer. With respect to the accuracy of o5 = 0.07 mgon. the accuracy of the measuring
system (line scan camera) seems to be sufficient.

But it should be taken into consideration that the estimation of the accuracy as presented
in section 7.5.1 deals with stochastic deviations only and neglects systematic deviations.
To form an opinion about the systematic deviations. it is reasonable to interpret the re-
sults of the temperature gradient measurements in a more detailed matter. For example,
it 1s possible that the choice of location of the mast or the texture of the footprint (sec-

tion 3.5) can cause systematic deviations of the temperature gradient measurements.

As shown in Figure 7.36. the temperature gradient measurements of 19 August 1999
(Garw: = 0.05 K/m) almost achieved the standard deviation of the temperature gradient
Cur- = 0.03 K/m derived from Table 7.2. But, on the contrary, the measurements of 25
August 1999 with 647- = 0.10 K/m (Figure 7.37 and Figure 7.38) do not confirm the
standard deviation of 67> = 0.03 K/m derived from Table 7.2.

In other words, the measurements of 25 August 1999 reveal a standard deviation of
about 6 r- = 0.10 K/m which corresponds to an accuracy of refraction angle of about
o5 = 0.20 mgon and which is about 3 times higher than the standard deviation derived
from Table 7.1 and Table 7.2, respectively. An accuracy of the refraction angle of about
05 = 0.20 mgon is not accurate enough since the refraction angle is 0.72 mgon (assum-
ing the amounts of Table 7.2) and, thus, the uncertainty is about 30 %.

Various reasons can be given for these differences:

e Systematic errors are principally possible if the assumptions of the Monin-Obukhov
similarity do not hold. e.g., if the fluxes are not stationary and the environment of
the area of the field experiment is not homogeneous.

e The shape of the temperature gradient profile function ¢y also systematically influ-
ences the quality of the modelled temperature gradient. The temperature gradient
profile functions are usually obtained by previous field experiments in a semi-
empirical way. Depending on the conditions, the current temperature gradient pro-
file function @y, is slightly different.

e The transition from stable to unstable stratification can cause uncertainties in the
calculation of the temperature gradients using dimensionless profile functions since
both types of stratification have their own protile function.
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8 Conclusions and outlook

The increasing relevance of imaging sensors in applications of geodesy enables also to
make progress in refraction detection using image processing and turbulence models.
The basis of these models are presented in section 3 and 4. It is conceivable that turbu-
lence models continuously become more and more nmportant, such as in the design of
air crafts and combustion engines using computers without experimental setups.

In geodesy, the application of turbulence models and spectral analysis is promising to
characterize turbulent exchange processes in the atmospheric boundary layer as shown
by the theoretical considerations in section 3 and 4. In doing so, these exchange proc-
esses are modelled by turbulent eddies (section 3.2.1) whereby the turbulent-eddy
model postulated by Kolmogorov (section 3.2.3) is the base of the refractive index
spectrum (section 4.2.1). Relevant properties of the refractive index spectrum are de-
scribed by the nner scale /iy (section 3.2.6) and the structure constant of refractive index
C,” (section 4.1). In combination with appropriate models for the temperature profile
(section 3.4), these two structure parameters can be used to determine the temperature
gradient and, thus, to provide corrections for the refraction influence in geodetic appli-
cations. In doing so, the structure parameters C,,: and /, must be estimated during the
field measurements. whereby the presented investigations are concentrated on the de-
termination of C,” and /, using image sensors and image processing techniques.

8.1 Determination of Cn*

As shown In section 4.3 and 6.4, the structure constant C”2 can be determined if the
time-dependent positions of a single edge in the grabbed images are detected and the
variance o, of detected positions 1s calculated. As shown in section 6.4.6, the accuracy
of the single detected edge must be about Gy, = 0.06 pixel in order to provide the de-
termination of the structure constant C,,: with an accuracy of about 10%. This statement
1s valid if the chosen imaging system fulfills the criteria presented in section 5.2.1 (Size
of the pixel elements = 10 um. focal length in the range form 300 mm to 500 mm. and
aperture between 34 mm and 65 mm).

In order to achieve these high demands on accuracy, the edge operators which come
into question must be investigated n respect of precision and reliability (section 6.4).
The Canny operator and the least squares template matching are proved to be suitable
image processing algorithms within the scope of this research work but it is still possi-
ble that other algorithms can be suitable as well.

When applying edge operators in series of images for the determination of 6,7, it is es-
sential to "track” the edges correctly. This means the edge of an image structure in one
image must be related confidentially to the correspondent edge in the subsequent image.
If this requirement is not fulfilled, outliers may occur which considerably falsify the
calculation of the standard deviation of the edge position and, thus, deteriorate the esti-

g2
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mation of C,,".
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To avoid outliers and to increase the reliability of edge detection, the following safety

measures can be recommended:

e Semi-automatic edge detection: The approximate position of the edge must be pro-
vided in each image by the user and is applied as input value for the edge operator.
For example, least squares template matching needs these values to linearize the
gray value function using the partial differentiation of each unknowns (section
6.4.4).

o Fully automatic edge detection: Edge operators such as Canny operator only detect
edges at positions where the gradient or an other related quantity exceeds a prede-
fined threshold (section 6.4.5)

e Tracking of edges in subsequent images: Assuming that the coarse position of edges
is given in each image. appropriate algorithms such as the morphological "bridge"-
operator (section 6.4.5) ensure that edges are assigned correctly to the edges in the
subsequent images and. therefore, fictitious edges can be detected and eliminated.

e Robust estimation: The determination of standard deviation &,” is based on the es-
timation of the average X of the position of an edge. In a first step, the median of the
position of an edge is estimated instead of the average since the median is a robust
estimator. Thus, outliers which are still oblique can be detected in the second step
and the definitive standard deviation of the position of the edges is calculated in the
third step.

e Determination of the variance 0}3 using edge detection of several edges in the same
image instead of a single one.

These measures and combinations of them lead to a reliable detection of the edges and,

thus, to plausible results for the structure constant of refractive index 7,,3' as demon-

strated in the field experiments.

8.2 Inner scale

Besides the structure constant C,7, the inner scale /y must also be estimated by appropri-
ate image processing algorithms. The theoretical investigations as presented in section
4.4 reveal that the inner scale /y can be determined if a measure for the intensity fluc-
tuation is given and the other parameters such as C,7. R. and A are known as well. In
order to investigate these relations, theoretical simulations are performed which are
based on the theory of weak turbulence (section 4.5.2a). This theory 1s valid up to a
length of propagation path R = 200 m or more, if the scintillation is not saturated (sec-
tion 4.5.2a). These simulations vield to the tunctional model presented in section 4.4.2
which allows the determination of the inner scale /, under the assumption that appropri-
ate measures for the intensity tluctuations can be derived from the image data.

In order to find these measures for the intensity fluctuations, the image data are ana-
lyzed by means of the (temporal) power spectral density. Basically, referring to the re-
fractive index spectrum @, = @, (k'3 ). the temporal spectrum of the intensity of the
pixels Sy (6.35) is expected to depend on the spatial spectrum in an analogous manner,
e, Sy =Sy (' 6. whereby the variance of noise 617 is a parameter of this spec-
trum. Based on investigations in section 6.3.3, Sy can be approximated by neglecting the
o' ""“term. This approximation facilitates the estimation of the noise variance oy° by
means of image processing techniques such as the adaptive Wiener filter (section 6.3.4)
and template matching (section 6.4.4). These image processing techniques provide the

/
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noise variance 6y~ which is assumed to determine the inner scale as described in section
4.4.2. In doing so, the sensitivity of the image sensors must reach at least a signal-to-
noise ratio of about 9 dB (4.47) whereby this demand can be easily fulfilled using the
sensors presented in section 5 (video theodolite: 46 dB, line scan camera: 75 dB). Al-
though, the accuracy of the determination of the inner scale /y can be deteriorated by
random deviations of the structure constant C,f (4.47). This statement is confirmed by
practical experiments where the correlation of the inner scale /y is systematically lower
than the one of the structure constant C,ﬁ

8.3 Field experiments

The experiment using the video theodolite shows that the standard deviation of (ff_,,z de-

termined with use of the two-dimensional image data is about 0.2-107" m™" and the

standard deviation of /5 1s about 1.3 mm. In order to improve the accuracy of C,f and 7

the following relevant considerations and improvements arc achicved:

e Theoretical considerations and field experiments using two-dimensional images,
e.g., [TROLLER, 2000] proved that the angle-ot-arrival fluctuations (section 4.3.1)
in vertical direction are approximately equivalent to the ones in horizontal direction
(cf. 4.23). This means the use of line scan sensors applied, e.g., for digital levelling
in geodesy. is principally feasible for the determination of C,” and Iy as well as two-
dimensional sensors.

e The line scan sensor enables a higher sampling frequency (333 Hz and more)
whereas the data packages of the acquired image data are considerably smaller than
in the case of the video theodolite and. therefore. the use of line scan sensors allows
a longer measuring time (9 seconds instead of | second as in the case of the video
theodolite) .

The extension of the measuring time in combination with a higher sampling frequency

provides an image data sample which is assumed to be more representative for the cur-

rent turbulent regime.

Therefore, the line scan camera is applied in further field experiments wherein the com-
parison with the scintillometer shows that the results for C,.,2 (achieved standard devia-
tion = 0.05-10" m™%) and the inner scale (achieved standard deviation = 0.5mm) are
considerably better. Based on these results, a standard deviation for the refraction angle
of 0.07 mgon can be expected (based on R = 74 m and a standard deviation of dT/dz =
0.03 K/m. cf. Table 7.1 and Table 7.2).

However, this expected accuracy depends significantly on the quality of the dimension-
less protile functions and the validity of the Monin-Obukhov similarity which are used
to model the temperature gradient. As the comparison of the temperature gradients ob-
tained by the image processing with the measured temperature gradients reveals in sec-
tion 7.3, major deviations still can occur which are not acceptable (standard deviation of
dT/dz amounts up to 0.1 K/m instead of 0.03 K/m). Therefore. improvements of the mi-
crometeorological models are necessary.

For this reason, appropriate models are still investigated at the Swiss federal institute of
technology [WEISS et al.. 2000].
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8.4 Disturbing influences on imaging systems

The quality of the estimation of C,” and Iy using image processing techniques can be
affected by various disturbing influences. When using imaging systems, disturbing in-
fluences are typically caused by the improper illumination which falsifies the measured
gray values. These influences must be treated carefully because they can deteriorate the
estimation of intensity fluctuations, on the one hand. and weaken the accuracy of edge
detection, on the other hand.

Optical filters can be an appropriate mean to reduce disturbing intensity fluctuations
which are caused by troublesome sources of (infrared) light. Since most of the field ex-
periments took place on grass fields emitting infrared radiation, the application of an
optical infrared cut-off filter can be strongly recommended (section 5.2.4).

Moreover, aperture averaging makes also the determination of /y difficult. Theoretical
simulations as illustrated in Figure 4.18 demonstrate that the relation between intensity
fluctuations and /y 1s influenced by the effective diameter d, of the detector (Figure
4.17). The results of the field experiments indicate that the assumption of d, = 0 (i.e.,
point detector, section 4.5.2b) leads to the most plausible results, especially for the line
scan camera. With regard to further research work, it is possible that the aperture aver-
aging must be modelled using (4.51) an other diameter d. when applying other imaging
systems.

8.5 Outlook

The investigated 1mage processing techniques in combination with the 1maging sensors

are suitable to derive the parameters of optical turbulence C,” and lo. When designing a

system for commercial use, attention should be paid to the following aspects:

e The influence on the measuring range (maximal distance, measuring range of o
and /) should be investigated in more detail.

e Further investigations about the measuring time are also recommended. The meas-
uring time in the field experiments of the line scan camera was about 9 seconds. A
shortening of the measuring time may be possible. but the risk increases that the re-
fractive index spectrum cannot be measured correctly because a shortage of meas-
uring time lowers the quality of the spectral analysis.

e The derivation of temperature gradients from C,” and [, presumes the stratification
of the atmospheric boundary layer (stable, unstable) to be given. In the normal case,
the stratification of the atmospheric boundary layer is unstable during day-time but
deviations from this assumption produce systematic errors on the estimation of the
temperature gradient. For this reason, a device for geodetic instruments should be
developed which determines the stratification of the atmospheric boundary layer
easily and reliably.

e (Considerable mmportance must be attached to the dimensionless profile functions
and to the turbulence model in general which are the base of the determination of
the temperature gradient and refraction angle.

e As shown, e.g., in Figure 7.31, the wind speed measurements are highly correlated
with the inner scale /n. These results confirm the investigations which have already
been made in [DEUSSEN, 2000]. Therefore, the use of wind speed measurements
for estimation of atmospheric turbulence and temperature gradients can be recom-
mended but, of course. this would require additional measuring instruments.
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e Correlations between the structure constant (’",f and mean gray value of an image
section seem to exist. But the estimation of the structure constant C,,2 by use of the
mean value of the pixel intensities is only possible if other parameters such as sunset
and shadows lying over the target are also included into the model. Moreover, addi-
tional calibration procedures for the CCD sensors are required to control the rela-
tionship between the solar radiation and the grav values of the pixel.

At present, the accuracy and reliability of the model of the atmospheric boundary layer
is crucial and further investigations are strongly recommended. In doing so, the installa-
tion of a calibration line for which the height difference 1s known exactly could be use-
ful for long-term measurements which reveal more information about the temporal
variation of the observed refraction angle in comparison to the refraction angle derived
from the structure parameters C,,: and /o. Moreover, in future, the dimensionless profile
functions and turbulence model should be investigated in more detail because they are
not valid with respect to special geodetic applications such as tunnel measurements.

Under the assumption that further mvestigations will refine the turbulence models, the
measurement of optical turbulence with the use of image processing techniques will
become noticeably more important in geodetic applications.
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Appendix A: Fractals

A.1 Turbulence and fractal theory

The perturbations of the turbulent flow have a transient chaotic behavior and therefore
cannot described in a deterministic way. The theory of fractals expresses that turbulence
is a scaling phenomenon. In the context of this (phenomenological) theory, there is a
universal function that characterizes this extremely convoluted organization of turbu-
lence. In other words, fractal theory shows that turbulent flows can be equated to self-
similar structures such as fractals. Fractals are self-similar on all scales and, thus. can be
modelled mathematically. The concept of self-similar relation of fractals is illustrated in
Figure A.1: Turbulent flows need not exhibit exactly the same structure at all scales.
but, at least, the same "type" of structures must appear on all scales
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Figure A.1: Example of a fractal: Caesaro-Curve, e.g. [HERRMANN, 1994]

Since self-similarity means that an object looks the same on any scale and, therefore,
has the same structure on any scale, too. This relation can be expressed mathematically
by, e.g. [GROSSMANN, 1990]:

Dy, =A"D,

g+l

(A.1)

with Dy Fractal structure function

A Scale factor
dr Fractal dimension
ny Index of recursion

Equation (A.1) allows the building of fractal structures using the following procedure:
An appropriate structure function Dy must be chosen.

An appropriate measure must be selected in order to be used as scale factor A.
The fractal dimension dr can be derived from the scale factor and the structure
function.

(_.)J ;Q —

The algorithms of fractal theory produce an object or quantity which displays self-
similarity. Hence, fractals are suitable as a mathematical tool to describe turbulence. To
illustrate these procedures. the steps mentioned above are applied to the calculation of
the Caesaro fractal shown in Figure A.1.
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Figure A.2: Example of a Fractal (Caesaro curve): Structure function and 5 iterations

In the first step, the structure function Dy of the Caesaro curve is defined by the trian-
gular structure function shown in Figure A.2. The base angle o is given by

X .
CoS O, = L (A.2)
I

The base angle is known since it can be derived from Figure A.2 of the structure func-
tion.

In the second step, an appropriate scale factor can be selected as follows:

A=L (A3)
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Since the structure function Dy is applied to a line of the length [ (standardization), it
follows

2x, + 28 =1 (A4

and  A=2(l+cosa, ). (A.5)

In the third step, the fractal dimension has to be calculated as defined by MANDEL-
BROT [1977]:

(M) (M) (A6)
In(A) 20 +cosa, )

d,

with Mg Number of lines of which the fractal consists (Caesaro curve: My = 4)

If the parameters Dy, A and dr of (A.1) are known, the fractal can be built using recur-
sions which are given by (A.1). These parameters are also used to describe the self-
similarity property of structure functions as introduced below in (A.9).

As shown in Figure A.2, the curve of iteration ny = 1 and the curve of iteration 5 have
the same shape but the fractal with ny = 5 shows more details. Thus, fractal theory pro-
vides efficient tools to model complicated structures as, e.g., turbulence effects. in a
realistic manner.

There is a direct relationship between turbulence and fractals. GROSSMANN [1990]
showed that the Navier-Stokes equation generates a fractal structure Dp which can be

assigned to the structure function of the velocity field « defined by the Navier-Stokes
equation.

D, =D, (r) (A7)

Herein, the structure function of the velocity tield D, () is defined by

QJN:GMX+H~HMY> (s (A.8)
with r Displacement vector between two points of the turbulent flow

The structure function describes the time variation of the velocities of two points in
space separated by a displacement vector r where the angle brackets indicate an ensem-
ble average.

The structure function as defined in (A.8) implies that the velocity field is locally ho-
mogenous, L.e.. the structure function only depends on the displacement vector. Moreo-
ver, 1f the velocity field is locally isotropic, the structure function only depends on the
magnitude of the displacement vector 7.
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I'rom (A.7) follows that self-similarity is a property of the structure function and can be
expressed by:

D(Ar)= A" D(r) (A.9)
with A Scale factor
dr Fractal dimension

The index u« has been omitted in (A.9) because this relation is valid for all quantities the
structure function can be applied to. For example, in the case of optical turbulence as
investigated in section 4, the structure function of refractive index is given by

D.(r)= <§n(}\- +r)- ;z(.\»>§3> (A.10)

with  n Refractive mdex.

As the example of the Caesaro curve showed, fractals can calculate complicated phe-
nomena of nature based on structure functions and scale factors. The scale factor must
be selected with regard to the phenomena of nature. In the case of atmospheric turbu-
lence, the dissipation rate of turbulent kinetic energy € can be used as scale factor A to
describe atmospheric turbulence. The definition and application of the dissipation rate €
of turbulent kinetic energy is explained in detail in section 3.2. The use of the dissipa-
tion rate as scale factor can be derived from the Navier-Stokes equation, too [GROSS-
MANN, 19901:

A=¢ (A.1D)

Besides the dissipation rate and the structure function given by (A.8), the fractal dimen-
sion dp still remains unknown and must be determined whereby the equation (A.9) gives
the relation between the scale factor, structure function, and fractal dimension. Using
dimensional analysis as shown in section 3.2, the tractal dimension of turbulence is dr =
2/3. At this point, all parameters of (A.9) are given and, therefore. the structure function
can be modelled using self-similarity as follows:

D, (er)=¢""D, (r) for Lo > r> Iy (A.12)

This means that, in the inertial subrange (Lo > r > lp), the turbulent velocity field is (sta-
tistically) self-similar. If the scale factor (dissipation rate €) changes and the velocity
differences D, are scaled. the resulting velocity field is the same. Therefore, the turbu-
lent flow is scale-invariant in the inertial subrange. By means of experiments, the meas-
ured inner scale /y determines the dissipation rate using (3.61), i.e., the scale factor of
the velocity field is determined. Using (3.59) and €, the Obukhov length Lyo can be
calculated which is the scale factor of further dimensionless profile functions and which
allows the calculation of the temperature gradient profile.
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List of Symbols

Roman Symbols

A Amplitude

a Aperture

Ao, Ay, s Parameters of a regression

Apc DC-value of power spectral density

Ay Area of footprint

ag Distance between near end of footprint and sensor
ARamp Amplitude of a ramp in an intensity function of an image
ar Parameter of temperature gradient model (factor)

e Scale parameter of wavelet transform

Qe Scale parameter of power spectral density

B Bowen ratio

b Image distance

by Distance between far end of footprint and sensor

by Parameter of temperature gradient model (exponent)
b, Shift parameter of wavelet transform

¢r Lateral half-width of footprint

cr Influence coefficient for outer scale

C,,2 Structure constant of refractive index

cp Constant-pressure heat capacity of air

Cr Structure constant of temperature

D Structure function

d Diameter

dp Fractal dimension

Dr Fractal structure function

D, Structure function of refractive index

dpuicn Difference of the position of two corresponding patches
dy Deviation in transverse direction

res Resolution

Dy Structure function of phase

D, Structure tunction of velocity

E Electric field vector

e Base of the Natural Logarithm (Euler number)

Eiin Total kinetic energy

L Turbulent Kinetic energy

E['] Expected value

e, Eccentricity

ENorm Normalized estimation error

f Focal length

F Gray value function of an image (stochastic process)
1) Gray value function of an image

F Fourier Transform of the gray value function fi of an image
F* Complex conjugate Fourier Transform of the gray value function f
1) Signal section (sub-signal)

fs Sampling rate
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Decay of turbulent spectrum

Gravitation constant

Gradient function

Geothermal flux

Sensible heat flux

Fourier transformed filter function

Convolution kernel, filter function

Causal filter

Imaginary unit

Index variable

Wave number

Number of windowed signal sections

Index variable of image signal

Von Karman constant

Refraction induced deviation between foresight and backsight readings in
height levelling

Characteristic length

Diameter of eddy

Inner scale

Outer scale

Latent heat flux

Obukhov length

Localization factor

Prandtl mixing length

Set of pixels in a local region of image

Signal length

Number of pixels

Average of signal fin a local image region

Refractive index

Mean-squared noise amplitude per unit lenght (used for Canny operator)
Image coordinates

Number of sampling points of a discrete signal (rows, columns)
Random variable with standardized Gaussian distribution
Length of the filter

Number of lines or number of read-outs

Length of local image region

Number of patches in one measurement image

Pressure

Influence coetficient

Size of quadratic pixel element

Resolution defined by diffraction effects

Prandtl's number

Specific humidity

Influential quantity of inner scale on log-amplitude variance
Propagation path length

Integration variable for propagation path

Coefticient of correlation

Correlation of the log-amplitude

Incoming radiation (short-wave)
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Net radiation

Radiation emitted by the ground (long-wave)

Coefficient of correlation

Radius of earth

Flux-Richardson number

Parameters of Caesaro fractal

Net radiation

Autocorrelation function of refractive index
Autocorrelation function of stochastic signal F
Cross-correlation function of stochastic signals Fand ¥
Autocorrelation function of velocity

Phase

Signal-to-noise ratio

Power spectrum density of stochastic signal F

Cross power spectrum density of stochastic signals /- and Y
Temperature

Temperature scale factor

Time

Lag

Characteristic velocity

Velocity

Friction velocity

Velocity of crosswind

Noise signal

Noise (stochastic process)

Vertical component of wind

Windowing function

Limiting value of windowing function of Canny operator
Coordinate: pixel coordinate

Coarse position of the edge located in the row n»
Upwind distance of maximum source weight of footprint
Position of the edge located in the row n, determined by Canny operator
Length of a ramp of an edge

Noisy image signal

Height

Height of instrument

Greek Symbols

Angle-of-arrival

Albedo

Dry-air wavelength-dependence function for wavelength A
Exponents of equation of Pi-Theorem

Angle of incidence

Obukhov-Corrsin constant

Rytov variance

Log-amplitude
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Refraction angle

Delta function (Dirac pulse)

Deviation of vertical angle

Shift parameter of least squares template matching
Dissipation rate

Absolute error of convergence

Refractive index spectrum (Hill spectrum)

Refractive index spectrum of Kolmogorov

Angle between refractive index gradient and vertical axis z
Gamma function

Dry-adiabatic temperature gradient

Kolmogorov microscale

Gravitation potential

Dimensionless protfile function of sensible heat flux gradient
Dimensionless profile function of temperature structure constant
Dimensionless profile function of momentum
Dimensionless profile function of dissipation rate

Angle between refraction index gradient and propagation path
Spatial frequency of the fluctuation

Limiting spatial frequency

Curvature of propagation path

Coefficient of refraction

Optical wavelength

Scale factor

Kinematic Viscosity

Dimensionless numerical coefficient of Pi-Theorem
Potential temperature

Density

Standard deviation of Canny operator

Standard deviation of the signal f in a local image region
Fluctuation of refractive index

Fluctuation of phase

Standard deviation of the position of a single edge
Variance of noise

Fluctuation of the position of an edge

Spatial standard deviation of the position of an edge
Fluctuation of angle-of-arrival

Fluctuation of log-amplitude

Standard deviation of refraction angle

Shearing stress or momentum flux

Angular frequency

Complex phase perturbation

Wavelet function

Dimensionless ratio between height and Obukhov length
Modified dimensionless ratio between height and Obukhov length
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