
Diss. ETH No. 18772
Diss. TIK No. 110

Novel Techniques for Thwarting
Communication Jamming in

Wireless Networks

A dissertation submitted to
ETH ZURICH

for the degree of
Doctor of Sciences

presented by

MARIO STRASSER

Master of Science ETH in Computer Science
born on April 1, 1978

citizen of Hüttwilen, TG

accepted on the recommendation of
Prof. Dr. Bernhard Plattner

Prof. Dr. Srdjan Čapkun
Prof. Dr. Radha Poovendran

Prof. Dr. Michael Reiter

2009

Abstract

A major challenge in securing wireless applications and services is the
inherent vulnerability of radio transmissions to communication jamming
Denial-of-Service (DoS) attacks. This vulnerability gains in significance the
more one takes the ubiquity of these applications and services for granted
and becomes a crucial factor in the context of safety-critical applications.
At best, failures of safety-critical systems can result in substantial financial
damage—at worst, in loss of life.

In this thesis, we investigate the fundamental primitives that enable
jamming-resistant communication and propose novel anti-jamming tech-
niques for scenarios where common anti-jamming techniques cannot be
applied. This includes scenarios where network dynamics or lack of trust in
the devices prohibits the pre-distribution of shared secrets (a prerequisite
for common anti-jamming techniques), or where the use of anti-jamming
communication is precluded by the constraints of the employed (e.g.,
narrowband and single-channel) transceivers.

In the first part of this thesis, we tackle the problem of how devices that
do not share any secrets can establish a jamming-resistant communication
over a wireless radio channel in the presence of a communication jam-
mer. We address the dependency between anti-jamming spread-spectrum
communication and pre-shared keys that is inherent to this problem, and
propose Uncoordinated Frequency Hopping (UFH), a novel anti-jamming
technique, as a solution to break this dependency. We present and evaluate
several UFH-based communication schemes and show their feasibility by
means of a prototype implementation. In particular, we illustrate how
UFH enables the jamming-resistant execution of (group) key agreement
protocols in order to bootstrap common (coordinated) frequency hopping.

In the second part of this thesis, we study the problem of jamming at-
tacks on alarm forwarding in (security- and safety-critical) wireless sensor
networks. We argue that common anti-jamming techniques are beyond the
capabilities of current sensor nodes and demonstrate the vulnerability to
jamming of current forwarding schemes. Prompted by this deficiency, we
discuss alternative jamming mitigation techniques and present a novel jam-
ming detection scheme to counter advanced (reactive single bit) jamming
attacks. We perform a detailed evaluation of the proposed schemes and
validate our findings experimentally. The results show that our solution
effectively detects sophisticated jamming attacks and enables the formation
of robust sensor networks for the dependable delivery of alarms messages.

Zusammenfassung

Eine wesentliche Herausforderung bei der Realisierung von sicheren draht-
losen Diensten und Applikationen ist die inhärente Verwundbarkeit von
Funkkommunikation für Jamming-basierte Denial-of-Service (DoS) At-
tacken. Diese Verwundbarkeit gewinnt an Bedeutung je mehr man die
stetige Verfügbarkeit dieser Anwendungen und Dienste als selbstverständ-
lich betrachtet und wird zu einem kritischen Faktor im Zusammenhang mit
sicherheitsrelevanten Anwendungen. Im besten Fall führen Ausfälle von
sicherheitsrelevanten Systemen zu erheblichen finanziellen Schäden – im
schlimmsten Fall zum Verlust von Menschenleben.

In dieser Arbeit befassen wir uns mit den grundlegenden Prinzipien,
welche eine Jamming-resistente Kommunikation ermöglichen und präsen-
tieren neue Techniken für Szenarien, in denen existierende Techniken nicht
angewandt werden können. Dies sind insbesondere Szenarien, in denen die
Dynamik des Netzwerks oder der Mangel an Vertrauen in die Teilnehmer
eine (vorgängige) Verteilung von geheimen Schlüsseln (eine Voraussetzung
für gängige Anti-Jamming-Techniken) verhindert, oder die Verwendung
von Anti-Jamming-Kommunikation durch die Einschränkunen der einge-
setzten Funkmodule (z.B. Schmalband und Einkanal) ausgeschlossen wird.

Im ersten Teil dieser Arbeit befassen wir uns mit dem Problem, wie
Kommunikationspartner, die keine geheimen Schlüssel teilen, in der Anwe-
senheit eines Jammers einen jamming-resistenten Kommunikationskanal
über Funk herstellen können. Wir betrachten die Abhängigkeit zwischen
Frequenzspreizung-basierter Anti-Jamming-Kommunikation und geteilten
geheimen Schlüsseln, welche bezeichnend für dieses Problem ist, und schla-
gen unkoordiniertes Frequenzspringen (UFH), eine neue Anti-Jamming-
Technik, als Mittel zur Auflösung dieser Abhängigkeit vor. Wir präsentieren
und evaluieren mehrere auf UFH basierende Kommunikationsverfahren
und demonstrieren ihre praktische Realisierbarkeit mit Hilfe eines Pro-
totypen. Des Weiteren veranschaulichen wir, wie UFH die Durchführung
eines (Gruppen-)Schlüsselvereinbarungsprotokolls zur Initialisierung von
konventionellem (koordiniertem) Frequenzspringen ermöglicht.

Im zweiten Teil dieser Arbeit untersuchen wir das Problem von Jamming-
basierten Angriffen auf die Weiterleitung von Alarmmeldungen in (si-
cherheitsrelevanten) drahtlosen Sensornetzen. Wir argumentieren, dass
konventionelle Anti-Jamming-Techniken die Fähigkeiten der gegennwär-
tigen Sensorknoten übersteigen und zeigen die Angreifbarkeit aktueller

iv

Verfahren zur Nachrichtenweiterleitung durch Jamming. Als Antwort dar-
auf, diskutieren wir alternative Gegenmassnahmen und präsentieren eine
neue Technik zur Detektierung von fortgeschrittenen (reaktiven, einzelbit)
Jammingattacken. Wir führen eine ausführliche Evaluierung der vorge-
schlagenen Techniken durch und validieren unsere Resultate experimentell.
Die Ergebnisse zeigen, dass unsere Lösung auch technisch ausgefeilte Jam-
mingattacken effizient detektiert und somit die Erstellung von robusten
Sensornetzen für die zuverlässige Vermittlung von Alarmmeldungen er-
möglicht.

Acknowledgments

First and foremost, I would like to express my gratitude to Prof. Bernhard
Plattner and Prof. Srdjan Čapkun for enabling and supporting this thesis.
Both provided assistance in numerous ways, and I sincerely appreciate
their invaluable advice and guidance and the time they spent reading
drafts and giving honest and constructive feedback. I am also grateful
to the co-examiners Prof. Michael Reiter and Prof. Radha Poovendran for
their willingness to read and judge this thesis and for providing valuable
comments.

Special thanks are due to my colleagues Christina Pöpper and Boris
Danev, who co-authored most of the publications that contain the results
presented in this thesis, for the numerous (technical and non-technical)
discussions that greatly contributed to the successful completion of this
thesis. I also want to thank all other people with whom I had the pleasure
to collaborate while working on this thesis, notably: Prof. David Basin,
Dr. Philipp Blum, Martin Burkhart, Dr. Xenofontas Dimitropoulos, Ghassan
O. Karame, Dr. Simon Künzli, Prof. Koen Langendoen, Dr. Martin May,
Dr. Andreas Meier, and Dr. Paul E. Sevinç.

I would like to extend my thanks to my office mates Dr. Rainer Bau-
mann, Simon Heimlicher, and Ariane Keller for making our office—with a
few construction-noise-related exceptions—a very pleasant place to work.
I am also thankful to all the other former and present members of the
Communication Systems Group and the System Security Group for the
good time and the interesting discussions; thanks to Prof. Eduard Glatz,
Prof. Hannes Lubich, Dr. Thomas Dübendorfer, Dr. Ulrich Fiedler, Dr. Ste-
fan Frei, Dr. Merkourios Karaliopoulos, Dr. Franck Legendre, Dr. Vincent
Lenders, Dr. Georgios Parissidis, Dr. Lukas Ruf, Dr. Thrasyvoulos Spyropou-
los, Dr. Arno Wagner, Dr. Jinyao Yan, Elisa Boschi, Daniela Brauckhoff,
Gergely Csúcs, Bernhard Distl, Thomas Heydt-Benjamin, Theus Hossmann,
Andreea Picu, Gabriel Popa, Ehud Ben-Porat, Elias Raftopoulos, Kasper
B. Rasmussen, Dominik Schatzmann, Bernhard Tellenbach, Nils Ole Tip-
penhauer, Brian Trammell, and Davide Zanetti. I further thank the TIK
technical and administrative staff for providing an excellent service.

I am indebted to my family for their encouragement and support;
my mother Anita, my father Georg, my sisters Kristin and Corinna, my
brothers in law Antonio and Jean-Marc, my nieces Aurelia, Ann-Cathrin
and Josephine, and my nephew Lino. A special thanks goes to my wife
Katja for her love, patience, and support.

Contents

1 Introduction 1
1.1 Jamming Countermeasures . 2
1.2 Part I: Anti-jamming Communication without Shared Secrets 3
1.3 Part II: Detection of Reactive Jamming in Sensor Networks 4

I Anti-jamming Comm. without Shared Secrets 5

2 Introduction 7
2.1 Contributions . 9
2.2 Outline . 10

3 System and Attacker Model 11
3.1 System Model . 11
3.2 Attacker Model . 12

4 Uncoordinated Frequency Hopping Communication 17
4.1 Uncoordinated Frequency Hopping 17
4.2 UFH-based Communication Schemes 20
4.3 Authenticated Packet-level Timestamping 26

5 Attacker Strategies and Performance 29
5.1 Attacker Strategies . 29
5.2 Impact of the Packet Coding and Length 30
5.3 Attacker’s Jamming Strength 30
5.4 Optimal Channel Selection . 31
5.5 Adaptive Channel Selection . 35

6 Performance Analysis and Evaluation 37
6.1 Analysis of UFH Schemes based on Rateless Erasure Codes 37
6.2 Analysis of UFH Schemes based on Erasure Codes 38
6.3 Multiple Concurrent UFH Transmissions 40
6.4 Performance Comparison and Discussion 41

7 Applications of UFH 47
7.1 UFH-based Key Establishment 47
7.2 Anti-jamming Emergency Alerts 50
7.3 Anti-jamming Navigation Broadcast 51

viii Contents

8 Prototype Implementation 55
8.1 USRP Platform Specification 55
8.2 Implementation Overview . 55
8.3 Experimental Results . 59

9 Related Work 63
9.1 Impact of Jamming . 63
9.2 Jamming Mitigation . 64
9.3 Secure Erasure Coding and Hash Links 67

II Detection of Reactive Jamming in WSNs 69

10 Introduction 71
10.1 Contributions . 73
10.2 Outline . 73

11 Motivating Example 75
11.1 Application Scenario and Requirements 76
11.2 Delay-aware Alarm Forwarding 78
11.3 Robustness Properties . 82
11.4 Experimental Evaluation . 84
11.5 Summary . 87

12 Impact of Reactive Jamming and Mitigation Strategies 89
12.1 System and Attacker Model . 89
12.2 Impact of Reactive Jamming 90
12.3 Robust Packet Detection . 91
12.4 Limited Node Wiring . 93

13 Detection of Reactive Jamming 101
13.1 Error Sample Acquisition . 102
13.2 Interference Detection . 105
13.3 Sequential Jamming Test . 106

14 Performance Evaluation 109
14.1 Sequential Jamming Test . 112
14.2 Impact of the Node Density . 113

Contents ix

15 Related Work 121
15.1 Jamming detection . 121
15.2 Wired Infrastructure . 122
15.3 Alarm Forwarding . 122

16 Conclusions 125
16.1 Contributions . 126
16.2 Remaining Issues and Future Work 127
16.3 Publications . 128

List of Figures

2.1 Anti-jamming/Key-establishment dependency graphs. . . . 8
2.2 Example of Uncoordinated Frequency Hopping. 9

3.1 Required signal strengths for different attacker strategies. . 13
3.2 Input and output channel configuration of the attacker. . . . 14

4.1 Message fragmentation. 18
4.2 Message reassembly. 19
4.3 Packet verification. 22
4.4 Hash links. 23
4.5 Cryptographic one-way accumulator. 24

5.1 Graceful degradation of UFH. 36

6.1 Performance of the presented message coding schemes. . . 43
6.2 Expected message transmission time of UFH. 44
6.3 Expected throughput of UFH. 45

7.1 UFH-based Diffie-Hellman key agreement. 49
7.2 UFH-based Burmester-Desmedt group key agreement. . . . 50
7.3 UFH-based emergency alert broadcast 51
7.4 UFH-based Navigation Broadcast 52

8.1 Hardware setup of our UFH prototype. 56
8.2 Class diagram of the core UFH implementation. 57
8.3 Schematic description of our UFH implementation. 58
8.4 Sampled baseband signal of an UFH transmission. 59
8.5 Time to broadcast a message with our prototype. 60
8.6 Time to establish a shared key with our prototype. 61

11.1 Dwarf forwarding example. 81
11.2 Alarm latency office testbed. 85
11.3 Alarm latency tabletop testbed. 85
11.4 Energy consumption office testbed. 86
11.5 Energy consumption tabletop testbed. 86
11.6 Energy consumption for sending 1000 alarms 87

xii List of Figures

12.1 Proactive and reactive jamming. 90
12.2 Header delivery rate. 92
12.3 Limited Node Wiring . 94
12.4 Geometric relations. 97
12.5 Probability of a wired link out of the jammed area. 100

13.1 Packet reception and jamming detection. 102

14.1 Sample results obtained with our implementation. 110
14.2 Performance of the sequential jamming test. 113
14.3 Probability that a jammed packet is detected. 115
14.4 Geometric relations. 116
14.5 Probability that the jammed area contains a wired node. . . 119
14.6 Probability that the neighborhood of a node is monitored. . 120

List of Tables

14.1 Jamming detection performance for a strong link: true posi-
tives / false negatives — false positives / true negatives . . 111

14.2 Jamming detection performance for a weak link: true posi-
tives / false negatives — false positives / true negatives . . 112

Chapter 1

Introduction

The recent advances in computer and communication technology led to
the proliferation of wireless mobile devices that enable a multitude of new
applications and services. As technology continues to advance so does this
trend and more and more wireless applications start to become an integral
part of our everyday life. This includes an increasing number of security-
and safety-critical applications such as wireless fire or intrusion alarm
systems, secure localization and navigation applications, emergency alert
broadcasts, and (ad-hoc) communication infrastructures for emergency
rescue, law enforcement, or military operations.

A serious threat shared by all these wireless applications and services
is that wireless radio communication is inherently insecure against eaves-
dropping and against communication jamming Denial-of-Service (DoS)
attacks. While eavesdropping is a mainly passive attack with the aim to
obtain confidential information, jamming is an active attack with the aim
to prevent devices from exchanging information by interfering with their
communication. Possible communication jamming attacks include signal
annihilation, modification (bit-flipping, overshadowing), and jamming as
well as the insertion of forged or replayed signals [5,60,61]. An attacker
who can physically isolate a device by enclosing it in a Faraday’s Cage or is
powerful enough to jam the whole frequency band in use simultaneously
might even be able to completely block all communication from and to a
device. To make matters worse, detecting such a jamming attack can be
extremely difficult if the attacker pursues a reactive jamming strategy and
reduces the amount of jamming to a minimum.

The inherent vulnerability of wireless communication to jamming gains
in significance the more one takes the ubiquity of these new wireless
applications for granted and becomes a crucial factor in the context of
safety-critical applications. At best, failures of safety-critical systems can
result in substantial financial damage—at worst, in loss of life. We therefore
argue that the availability of jamming-resistant communication is essential
for the development of security- and safety-critical applications. Even
though one can in general not completely avoid communication jamming,
it is nevertheless advisable to make jamming as difficult and expensive for
the attacker as possible; that is, to make the communication as jamming-
resistant as feasible and desirable.

2 1 Introduction

In this thesis, we investigate the fundamental primitives that enable
jamming-resistant communication and propose novel anti-jamming tech-
niques for scenarios where common techniques cannot be applied.

1.1 Jamming Countermeasures
In principle, there are three ways to counter communication jamming:
jamming avoidance, jamming detection, and jamming mitigation. The
arguably most evident and most effective way is to avoid the jammer by
moving out of its range or by switching to a different communication
medium (such as a wire) that is not affected by the jamming. But in spite
of its effectiveness, avoiding the jammer is almost never possible: most
wireless applications and services must be available at a specific location
and entirely replacing the wireless communication infrastructure with a
wired one is hardly ever a feasible option. The efficiency of jamming
detection and localization as a means to counter jamming heavily depends
on what the network entities can cause with the obtained information, that
is, on whether effective and immediate countermeasures (e.g., the quick
deactivation/destruction of the jammer) can be taken. This de facto limits
the application of jamming detection to settings where physical interven-
tion is possible (and legal) or where no intermediate actions are required
(i.e., where detection of the attacker is sufficient). The third and most
common measure against jamming is to mitigate its impact by means of
anti-jamming communication techniques that can resist the attack. Possible
mitigation techniques include highly directional antennas, forward error-
correcting codes, and spread-spectrum communication [5,60]. Common
spread-spectrum anti-jamming communication such as frequency hopping
spread spectrum (FHSS) or direct sequence spread spectrum (DSSS) en-
ables the sender to spread a signal (in time and/or frequency) such that
its transmission becomes unpredictable for the attacker. Provided that the
attacker cannot physically isolate a device, her ability to alter or erase
a message is restricted to interfering with the message transmission and
is hence limited by the achieved processing gain of the spread-spectrum
communication. The processing gain expresses the cost for the attacker to
jam such a spread-spectrum transmission in terms of energy or power and
is typically in the order of 100 to 1000 times the cost of the sender. The
chances of success for such a malicious interference are thus in general
sufficiently low—either because the attacker is not powerful enough to
achieve more, or because she has no incentive to do so (e.g., if she wants
to stay undetected).

1.2 Part I: Anti-jamming Communication without Shared Secrets 3

However, in order that common anti-jamming communication can be
applied, the used radio devices must support some form of spread-spectrum
communication and—even more important—a secret spreading code must
be shared by the communication partners beforehand. Fulfilling these
requirements is not trivial and severely limits the application of common
communication anti-jamming techniques. In this thesis, we aim to over-
come these limitations and study scenarios in which network dynamics or
lack of trust in the devices prohibits the pre-distribution of shared secrets
and thus the application of conventional anti-jamming communication; or
where the use of anti-jamming communication is precluded by the con-
straints of the employed (e.g., narrowband and single-channel) transceivers
and must be replaced with alternative countermeasures. Specifically, the
two problems addressed in this thesis are: (i) anti-jamming communication
without pre-shared secrets and (ii) detection of targeted, reactive jamming
attacks in (safety-critical) sensor networks. We next discuss the challenges
inherent to these problems in more detail and outline our solutions.

1.2 Part I: Anti-jamming Communication
without Shared Secrets

In the first part of this thesis, we address the problem of jamming-resistant
communication in scenarios in which the communicating parties do not
share secret keys. This includes scenarios where the parties are not known
in advance or where not all parties can be trusted (e.g., jamming-resistant
key establishment or anti-jamming broadcast to a large set of unknown
receivers). An inherent challenge in solving this problem is that known
anti-jamming communication techniques such as frequency hopping or
direct-sequence spread spectrum require that the devices share a secret
spreading key (or code) prior to the start of their communication. This
requirement creates a circular dependency between anti-jamming spread-
spectrum communication and key establishment and generally precludes
the unanticipated anti-jamming communication between unpaired devices.
As a solution to break this dependency, we propose Uncoordinated Fre-
quency Hopping (UFH), a new spread-spectrum anti-jamming technique
that does not rely on shared keys. We present and discuss several UFH-
based anti-jamming communication schemes and show their usage for var-
ious applications, including the establishment of pairwise or group keys in
order to bootstrap common coordinated frequency hopping. We thoroughly
analyze the performance of our UFH communication schemes analytically
and empirically via simulations. We identify an optimal strategy for the

4 1 Introduction

UFH frequency channel selection and show that, although it achieves lower
communication throughput, UFH exhibits the same level of anti-jamming
protection as common (coordinated) frequency hopping (which, however,
cannot be used in scenarios where keys are not pre-shared). We further
demonstrate the feasibility of our UFH schemes, in terms of execution
time and resource requirements, with a software-radio-based prototype
implementation.

1.3 Part II: Detection of Reactive Jamming in
Sensor Networks

An integral part of most security- and safety-critical applications is a de-
pendable and timely alarm notification. However, owing to the resource
constraints of wireless sensor nodes (i.e., their limited power and spectral
diversity), ensuring a timely and jamming-resistant delivery of alarm mes-
sages in applications that rely on wireless sensor networks is a challenging
task. In order to demonstrate how challenging this task is, we present
a state-of-the-art alarm forwarding scheme for wireless sensor networks
that is fairly robust against unintentional link failures and investigate its
resistance against jamming attacks. We show that in current alarm for-
warding schemes blocking alarms by targeted, reactive jamming is not
only straightforward, but that this jamming is also very likely to remain
unnoticed by existing jamming detection schemes.

In the second part of this thesis we address this problem and propose
a novel jamming detection scheme for the identification of such targeted
jamming attacks. Our scheme is unique in the sense that it is able to
identify the cause of bit errors for individual packets by looking at the
received signal strength during the reception of these bits and is well-suited
for the protection of reactive alarm systems with very low network traffic.
We present three different techniques for the identification of bit errors
based on: predetermined knowledge, error-correcting codes, and limited
node wiring. We perform a detailed evaluation of the proposed solution
and validate our findings experimentally with Chipcon CC1000 radios. The
results show that our solution effectively detects sophisticated jamming
attacks that cannot be detected with existing techniques and enables the
formation of robust sensor networks for the dependable delivery of alarm
notifications. Our scheme also meets the high demands on the energy
efficiency of reactive surveillance applications as it can operate without
introducing additional wireless network traffic.

Part I

Anti-jamming
Communication without

Shared Secrets

Chapter 2

Introduction

The open nature of wireless radio transmissions makes them particularly
vulnerable to communication jamming Denial-of-Service (DoS) attacks.
The aim of these attacks is to prevent devices from exchanging any useful
information by interfering with their communication. Possible commu-
nication jamming attacks include signal annihilation, modification (e.g.,
bit-flipping or overshadowing) and jamming as well as the insertion of
forged or replayed signals [5,60,61,70].

A class of well-known countermeasures against communication jam-
ming attacks are spread-spectrum techniques such as frequency hopping,
direct-sequence spread spectrum, and chirp spread spectrum [60, 61].
Common to all these techniques is that they rely on secret (spreading)
codes that are shared between the communication partners. These secret
codes enable the sender to spread the signal (in time and/or frequency)
such that its transmission becomes unpredictable for a third party, thus
reducing the probability of interference. For these schemes to work, how-
ever, the required secret code must be shared between the partners prior to
their communication, generally precluding (unanticipated) transmissions
between unpaired devices or from a sender to an unknown set of receivers.
The requirement of a shared code has so far been fulfilled by out-of-band
code pre-distribution, which suffers from serious scalability problems.

If pre-sharing the codes is not adequate or even infeasible (e.g., because
not all communicating devices are known at the time of deployment or
because the devices are not trusted to keep the keys secret) the devices
must agree on a secret code (or key) in an ad-hoc manner using the
wireless channel. However, the execution of a key-establishment protocol
relies on jamming-resistant communication which, in turn, requires the
availability of a shared secret code. In other words, the dependency of
spread-spectrum techniques on a shared key (or code) and the dependency
of key establishment on jamming-resistant communication create a circular
dependency, which we call anti-jamming/key-establishment dependency (see
Figure 2.1). We point out that, even if the devices hold mutual public-
key certificates issued by a commonly trusted authority, they still need to
communicate in order to establish a secret spreading key (e.g., using an
authenticated Diffie-Hellman key-establishment protocol) and to bootstrap
common coordinated spread-spectrum communication.

8 2 Introduction

the presence of a jammer
Key establishment in

Shared secret key
(spreading code)

dependency cycle

Anti-jamming comm.
(e.g., FHSS or DSSS)

(a)

dependency chain

the presence of a jammer
Key establishment in

Shared secret key
(spreading code)

Anti-jamming comm.
based on UFH

(b)

Figure 2.1: Anti-jamming/Key-establishment dependency graphs. (a) If
two devices do not share any secret keys or codes and want to execute
a key establishment protocol in the presence of a jammer, they have to
use a jamming-resistant communication technique. However, known anti-
jamming techniques such as frequency hopping and direct-sequence spread
spectrum rely on secret (spreading) codes that are shared between the
communication partners prior to the start of their communication. (b)
In this work, we break this dependency and propose a novel frequency
hopping scheme called Uncoordinated Frequency Hopping (UFH) that
enables two parties to execute a key-establishment protocol in the presence
of a jammer, even if the parties do not yet share a secret key or code.

In our present work, we break the dependency between anti-jamming
spread-spectrum communication and shared secret keys. We propose a
technique called Uncoordinated Frequency Hopping (UFH) that enables
jamming-resistant (broadcast) communication without a pre-shared secret
code. We present several UFH-based communication schemes that support
the transmission of messages of arbitrary length and show how these
schemes enable the execution of (group) key establishment protocols
in the presence of a jammer. The established key can then be used by
the communication parties to create a secret hopping sequence and to
switch to more efficient coordinated frequency hopping for the subsequent
communication.

UFH is closely related to coordinated frequency hopping: each message
is split into multiple parts and then sent across the air on random hopping
frequencies chosen from a fixed frequency band. Like coordinated fre-
quency hopping, UFH is based on the assumption that the attacker cannot

2.1 Contributions 9

3 23 65 8 78 14 2 1 33 7 15 ...A 52

...5 1B 2077

12

Figure 2.2: Example of UFH. The numbers indicate the frequency channels
where sender A is sending and receiver B is listening over time (here, both
send and receive on one frequency at a time). If A and B send and receive
simultaneously on the same frequency (5 and 1 in the example), the packet
sent on this frequency is successfully transmitted over the undisturbed
channel.

jam all frequency channels on which the devices communicate at the same
time so that the sender and receiver can still communicate through the
remaining channels. However, unlike in common coordinated frequency
hopping, in UFH, the sender and the receiver do not agree on a secret
channel sequence but instead transmit and listen on randomly selected
channels. Hence, all communication in UFH underlies the observation
that, with sufficient transmission attempts, the sender and receiver will
send and listen on the same channels in a number of time slots, even if
they did not agree on them beforehand (see Figure 2.2). Intuitively, given
200 channels and given a sender hopping among the channels at a high
rate of, for instance, 2 kHz, a receiver will be listening on the frequency
where the sender is transmitting in average 2000/200 = 10 times per
second (independent of the receiver’s choice of the reception channels).
Building on this observation, we develop UFH communication schemes
that are highly resistant to packet losses, insertions, and active interference
by an attacker. They can thus be applied in settings where users want
to establish an unanticipated and spontaneous communication without
pre-shared keys, which was so far not feasible using coordinated frequency
hopping.

2.1 Contributions
In summary, the four main contributions of this part are:

• We address the problem of anti-jamming communication without
shared secrets and introduce the anti-jamming/key-establishment
circular dependency problem.

10 2 Introduction

• We propose Uncoordinated Frequency Hopping (UFH) as a solution
to the addressed problem and develop UFH-based communication
schemes that support the transmission of messages of arbitrary length
in a jammed environment without relying on shared secrets.

• We develop a comprehensive jammer model for reactive and non-
reactive jamming which allows the computation of the number of
blocked channels and the probability that a packet is jammed as a
function of the packet length and the packet encoding.

• We describe how UFH enables the protection of several applications
that could so far not be protected with common spread spectrum
techniques. In particular, we show how UFH enables the execution
of (group) key establishment protocols in the presence of a jammer;
the established key can then be used to support later coordinated
frequency hopping communication.

2.2 Outline
The remainder of this part is organized as follows: In Chapter 3, we specify
our system and attacker model. We describe our UFH communication
schemes in Chapter 4 and analyze their security and performance in Chap-
ter 5 and Chapter 6, respectively. In Chapter 7 we show how our schemes
can be used for key establishment and discuss additional applications of
UFH. In Chapter 8 we demonstrate the feasibility of the schemes with a
prototype implementation. Finally, we discuss related work in Chapter 9.

Chapter 3

System and Attacker Model

In this chapter, we detail our assumptions and prerequisites regarding the
considered system and attacker model. If not stated otherwise, denotations
introduced in this chapter will be used throughout Part I.

3.1 System Model
We consider a scenario where a set of communication parties which do
not share any secret values want to establish a jamming-resistant commu-
nication in the presence of a communication jammer. All parties reside
within each other’s transmission range and are equipped with a full-duplex
radio transceiver capable of frequency hopping communication within a
set C of c = |C| frequency channels. The transceiver can be narrowband
or broadband, enabling the parties to send and receive on one or more
channels simultaneously; the number of channels on which the transceiver
can send and receive on in parallel is denoted by ct and cr , respectively.
We assume that the transceiver does not leak information about its active
reception channels, that is, that the channels on which the transceiver is ac-
tively listening cannot be detected by monitoring its radio signal emissions.
We further assume that a sender A splits its available transmission power
uniformly over its ct output channels such that it transmits with the same
signal strength on all channels. With respect to a specific receiver B, we
denote by PA the strength of A’s signal arriving at B and by Pt the minimal
required signal strength at B such that B can successfully decode the signal
(i.e., the sensitivity of B’s receiver). In this context, a transmission between
A and B over an undisturbed channel will be successful if PA ≥ Pt and if A
sends on a channel on which B is currently listening.

The parties share the same concept of time and their clocks are assumed
to be loosely synchronized in the order of seconds (e.g., by means of
GPS). Each party A is computationally capable of efficiently performing
ECC-based public key cryptography and holds a public/private key pair
(KA,K−1

A), a corresponding public-key certificate σA issued by a trusted
Certification Authority (CA), and the valid public key KCA of this CA. The
keys and certificates were distributed during the system initialization phase
(e.g., after the procurement of the devices) and the CA may be off-line or
unreachable at the time of communication. To increase the robustness of
the message transmissions against interference and jamming, the parties

12 3 System and Attacker Model

apply error correcting codes with code rate rc and resistance ρ to the
messages.

3.2 Attacker Model
We consider an omnipresent but computationally bounded adversary that
controls the communication channel in the sense that she is able to eaves-
drop and insert arbitrary messages but can only modify transmitted mes-
sages by adding her own energy-limited signals to the channel. This means
that the attacker’s ability to alter or erase a message is restricted to in-
terfering with the message transmission and that she cannot disable the
communication channel by blocking the propagation of radio signals (e.g.,
by placing a device in a Faraday’s cage).

The attacker’s goal is to interfere with the communication of the parties
in order to prevent them from exchanging any useful information. That
is, the attacker aims at increasing (possibly indefinitely) the time for the
message exchange in the most efficient way. In order to achieve this goal,
the attacker is not restricted to message jamming only, but can also try to
disturb the parties’ communication by modifying and inserting messages
or by keeping the parties too busy to participate in or proceed with the
protocol. More specifically, the attacker can choose among the following
actions:

• The attacker can jam messages by transmitting signals that cause the
original signal to become unreadable by the receiver. The portion
of a message the attacker has to interfere with in such a manner
depends on the used coding scheme.

• The attacker can modify messages by either flipping single message
bits or by entirely overshadowing original messages. In the former
case, the attacker superimposes a signal on the radio channel that
converts one or several bits in the original message from zero to one
or vice versa. In the latter, the attacker’s signal is of such high power
that it entirely covers the original signal at the receiver. As a result,
the original signal is reduced to noise in the attacker’s signal and the
original message is replaced by the attacker’s message. In either case,
in this attack the signal must remain decodable by the receiver and
result in a valid bit sequence.

• The attacker can insert messages that she generated by using known
(cryptographic) functions and keys as well as by reusing (parts of)

3.2 Attacker Model 13

J

A

B

t1

Pj

t3t2

Pt

PA

Po

J ’s signalA’s signal

Si
gn

al
st

re
ng

th
at

B

Figure 3.1: Required signal strengths for different attacker strategies. Let
sender A transmit a message to receiver B such that the corresponding
signal arrives at B with strength PA. If an attacker J interferes using a
signal that, at B, has lower strength than Pj , then B successfully receives
A’s message (t1 in the figure); if, however, J ’s signal arrives at B with a
strength between Pj and Po, the transmission is jammed, and B receives
no message (t2); finally, if the strength of J ’s signal at B is even equal or
greater than Po it entirely overshadows A’s transmission, and B receives J ’s
message (t3).

previously overheard messages (constituting a replay attack). De-
pending on the signal strength of the inserted messages, these mes-
sages might interfere with regular transmissions.

Regarding the interception and jamming of messages, we make the
worst case assumption that the attacker is aware of the location and
configuration of all devices so that her capabilities are only restricted by
the performance of her transceiver. We can therefore abstract away from
physical parameters such as device distances, device characteristics (e.g.,
their antenna gains), and environmental influences, and only consider the
power of the original and of the attacker’s signal at the receiver. For a
given PA, the strength of the original signal at B, we denote by Pj and Po
the minimal required strength of the attacker’s signal at B in order to jam
or overshadow a message sent from A to B, respectively (see Figure 3.1).
We assume that Pt < PA, Pj < Po and that a message from A is successfully
received by B if the strength of the attacker’s signal at B is less than Pj .
In the case of an additive white Gaussian noise (AWGN) channel, for
instance, we obtain Pt = βNB, Pj = PA/β − NB, and Po = β(NB + PA),
where NB is the total noise power at B and β is the minimal required
signal-to-noise ratio of B’s transceiver to successfully decode the signal.
We further assume that the maximal transmission power of the attacker
is finite and we denote by PJ the signal strength that the attacker is able

14 3 System and Attacker Model

ts t j

in out

t t

c
ch

an
ne

ls

cs

c j

co

ci

co
c j

ci

ci

cs

cscs

Figure 3.2: Input and output channel configuration of the attacker. We
denote by cs the number of channels that the attacker can sense in parallel
and by ts (t j) the required time to switch the frequency of the input
(output) channels. The number of channels on which the attacker can send
(ci), jam (c j), and overshadow (co) is bounded by her transmission power.

to achieve at the receiver B if she transmits with maximal transmission
power on a single channel. However, we do not assume any restrictions
on the attacker’s energy supply, that is, she is considered to be mains-
operated. We also assume that the frequency-dependent variance in the
signal attenuation is negligible over the communication frequency range of
C and that the attacker can divide her transmission power arbitrarily among
all c channels. The only restriction is therefore that for all combinations of
output channel assignments in which the attacker inserts on ci , jams on c j ,
and overshadows on co channels, ci Pt+c j Pj+co Po ≤ PJ and 0≤ ci , c j , co ≤ c
must hold at all times. Consequently, we can derive b PJ

Pt
c, b PJ

Pj
c, and b PJ

Po
c

as upper bounds on the number of channels on which the attacker can
simultaneously insert, jam or overwrite, respectively. The number of
channels that the attacker can concurrently sense is denoted by cs. We
assume that the attacker is able to receive and transmit in parallel, and
that the channels on which she receives and transmits can be switched
independently of each other (see Figure 3.2). The required time to switch
the frequency of the input (output) channels is denoted by ts (t j).

Following prior classifications [60], we distinguish between proactive,
reactive, and hybrid jammers. Proactive jammers do not sense for ongoing
transmissions but permanently jam on c j channels. Static jammers remain
on the same channels for much longer than the transmission time of a
packet. Sweep jammers systematically update the jamming channels in a
way that after d c

c j
e jamming cycles all channels have been jammed once (but

3.2 Attacker Model 15

they do not have to follow a particular order). Random jammers always
choose c j channels at random and might thus jam the same channels
several times before having hit all channels. Reactive jammers differ
from the above mentioned in that they initially solely sense for ongoing
transmissions and enable the jamming channels only when a signal has
been detected. Hybrid jammers, finally, are a combination of reactive
and proactive jammers that have their jamming channels already enabled
while scanning for signals (i.e., hybrid jammers can sense and transmit
independently). As we shall show, of the introduced jammer types, reactive-
sweep jammers are the most general and thus also the most powerful ones.

Chapter 4

Uncoordinated Frequency Hopping
Communication

In a Frequency Hopping Spread Spectrum (FHSS) system the sender and
the receiver rapidly switch the carrier frequencies of their radio transceivers
among a (large) set of frequency channels according to a random hopping
sequence. In the case of common, coordinated frequency hopping, this
sequence is known to the sender and the receiver and is typically generated
by means of a pseudo-random generator which was seeded with a shared
secret key. The two main advantages of FHSS communication compared
to single carrier communication are a high resistance to (narrowband)
interference and a reduced probability of interception.

FHSS communication can further be divided into fast frequency hop-
ping and slow frequency hopping, based on the number of bits sent per
hop. The hopping is called fast if there are multiple frequency hops per
bit transmission and is called slow if there are multiple bit transmissions
per frequency hop. In both cases, the jamming resistance of the scheme is
usually expressed by the achieved processing gain, given by the ratio of the
width of the whole frequency band in which the channels are located to
the bandwith of a single channel. If the channels are orthogonal (i.e., do
not overlap) the processing gain is equal to the number of channels among
which the sender and the receiver hop.

4.1 Uncoordinated Frequency Hopping
With UFH, the sender and receiver hop among a set of known frequency
channels in an uncoordinated and random manner. Information is trans-
ferred whenever the receiver happens to listen on the same frequency
channel on which the sender is currently transmitting (Figure 2.2). In
order for (coordinated or uncoordinated slow) frequency hopping to be
effective against jamming, the time slots during which the sender is trans-
mitting on a specific channel must be kept short (i.e., at most a few hundred
bits). Messages—in particular if they are authenticated—thus do typically
not fit into the sender’s short transmission slots and are split into fragments
by the sender and reassembled by the receiver. After the fragmentation,
the sender encapsulates each fragment into a packet, encodes the packets

18 4 Uncoordinated Frequency Hopping Communication

(a)

packet encoding

(b)

M

M1 M2 M3 Ml

m1

1

m2 mn

2 n

. . .

. . .

. . .
verifiable message encoding

fragmentation

(c)

Figure 4.1: Message fragmentation. For the UFH transmission, the mes-
sage is (a) split into fragments, then the fragments get message encoded
(b), and packet encoded (c). Finally, the sender (repeatedly) transmits the
packets on randomly selected frequency channels.

with error correcting codes, and repetitively transmits the encoded packets
one after another on randomly chosen frequency channels (see Figure 4.1).

Receiving a fragment with (coordinated or uncoordinated) frequency
hopping requires the receiver to listen on the correct channel for the
complete transmission of the fragment. If the sender’s and receiver’s
hopping frequencies were identical (and with it the time that both stay
on a channel before hopping to the next), the successful transmission
of a fragment would require precisely synchronized transmission and
reception slots to avoid partially received fragments. In UFH, we do not
require the slots to be synchronized by permitting the receiver to switch
the channels less often than the sender (Figure 2.2), thus reducing the
number of partially received fragments. Note that this procedure does
not affect the jamming resistance of the scheme; in fact, we will show in
Chapter 5 that from the attacker’s point of view, the probability to jam a
transmitted fragment with randomized uncoordinated frequency hopping
is equal to the jamming probability in coordinated frequency hopping.
The throughput of the communication with UFH is, however, lower than
for coordinated hopping: given that the devices did not establish a secret
shared key beforehand, the receiver will need numerous reception attempts
to receive each fragment.

Whereas UFH message fragmentation is efficient, the reassembly of the
message at the receiver is non-trivial and can become very inefficient if
the attacker inserts additional fragments or modifies transmitted ones. By
way of example, consider that a legitimate message M is divided into l
fragments and that z adversarial packets successfully arrive at the receiver

4.1 Uncoordinated Frequency Hopping 19

11 312 4

1 3

2

4

2 2 4 2 3 3 1

1

1

2

2

2

3

3

4

t

Packet number

(a)

...

(b)
...

...

...

...

t

Figure 4.2: Message reassembly. (a) Example of the packet arrival at the
receiver; white packets were sent by the sender, red packets were inserted
by the attacker (at the time of reception they cannot be distinguished).
(b) The receiver sorts unique packets according to their fragment number
(and message id). Without verifiable message coding, the receiver must
reassemble and check all combinations of packets (indicated by dashed
lines, only a subset is shown). Verifiable message coding enables an efficient
reassembly of valid combinations (solid lines).

during the transmission of M . The number of possible messages that
the receiver must reassemble and verify is then in O((z

l
)l). If l is not

predefined, adversarial insertions may even lead to an exponential number
of message assemblies and verifications at the receiver (i.e., O(qbz/qc),
where q is the number of unique packets that the attacker inserts per
legitimate message fragment, see Figure 4.2). We argue that an attacker
can easily insert z� l unique packets because the receiver needs l specific
packets to reassemble M while the attacker can send any (unique) packets.
In a typical setting, where l = 10 and where the attacker can insert z = 100
unique packets during the legitimate message transmission, the receiver
would already need to reassemble and verify 1010 messages. This is clearly
beyond the capabilities of current devices and would thus constitute a
DoS attack on the message reassembly process and consequently block the
communication to the receiver. UFH-based communication schemes must
therefore take measures that enable the efficient identification of sets of
fragments that belong to the same message (without using a shared key) in
order to mitigate the impact of maliciously inserted or modified fragments.

20 4 Uncoordinated Frequency Hopping Communication

We next describe the fragmentation and reassembly process in more detail
and present a set of schemes that fulfill this requirement.

4.2 UFH-based Communication Schemes
For a given message size |M | (determined by the application) and a size s
of the frequency hopping slots (usually given by the hopping rate of the
radio device), the throughput/latency of UFH communication depends
not only on the probability that a packet sent by the sender is successfully
received by the receiver but also on the number of packets that the receiver
must receive to reconstruct the message.

If a message is split into l fragments before the transmission, all frag-
ments must be received so that the message can be reconstructed. The
requirement to receive all fragments leads to many redundant receptions,
because the more fragments have been received, the less likely it is that the
next successfully received fragment will be a new one (coupon collector’s
problem); after the reception of the second but last fragment, it will take
another expected l successful—but redundant and thus useless—receptions
to receive the last missing fragment. Erasure codes [50] are a way to relax
this requirement and enable message reconstruction if only a subset of all
constructed fragments is available. We distinguish:

Erasure Codes Optimal erasure codes encode a message M into n frag-
ments of size |M |/l such that any subset of l fragments can be used
to reconstruct M . Near optimal erasure codes are more efficient than
optimal codes in terms of coding complexity and memory usage but
require a fragment size of |M |/(l−ε) in order to reconstruct M using
l fragments. The constant parameter ε can usually be reduced at the
expense of a higher coding complexity. Examples of (near) optimal
erasure codes are Reed-Solomon [79] and Tornado [50] codes.

Rateless Erasure Codes Rateless erasure codes (sometimes also called
fountain codes) do not generate a finite set of n fragments but a
(potentially) infinite fragment sequence. The encoded message can
be reconstructed from any set of l different fragments. Examples of
efficient near optimal fountain codes are: Online [53], LT [49], and
Raptor [66] codes.

In what follows, we denote by E(n, l,ε) an erasure code that encodes a
message M into n fragments M1, M2, . . . , Mn, |Mi |= |M |/(l − ε), such that

4.2 UFH-based Communication Schemes 21

any subset of l ≤ n fragments can be used to reconstruct M ; for optimal
codes ε = 0 and for rateless erasure codes n=∞.

Despite their ability to cope with fragment losses, erasure codes are
susceptible to the aforementioned intentional fragment insertions or modi-
fications (pollution attack [41]); that is, they cannot distinguish correct
from modified or phony fragments. Hence, the receiver cannot do better
than try all possible fragment combinations (Figure 4.2). Limiting the
impact of malicious fragments thus requires measures that allow for the
efficient identification of sets of fragments that belong to the same message
(without shared keys). The therefore required overhead per packet must
be kept as low as possible to avoid that the advantage gained by the era-
sure coding is nullified by a largely increased number of required packet
receptions (due to more fragments that the message needs to be split into).
Given these constraints, we require a packet verification technique to fulfill
the following requirements:

Time Efficiency The time to verify (i.e., identify as either belonging to a
specific message or being invalid) a packet mi must be in O(N + n),
where N is the total number of received packets and n is the number
of fragments per message.

Space Efficiency The overhead per packet that is required for the verifica-
tion must be in O(n).

We define a set of packets M as being verifiable with respect to an
erasure code E(n, l,ε) and a message M if at least l of the packets in M
can be verified as belonging to the message M . We next present three
packet verification techniques that fulfill the above requirements and can
be used in combination with (rateless) erasure codes to build verifiable
message coding.

We point out that the only purpose of these packet verification tech-
niques is to ensure the efficiency of the message reassembly. In particular,
they are not intended to provide message authentication or confiden-
tiality (i.e., the attacker may imitate genuine transmissions by inserting
self-composed or by replaying overheard messages). These security goals
can be achieved on layers running on top of the UFH scheme, for exam-
ple by using timestamps, message buffers, and public-key cryptography.
We assume a security level of k bits for the cryptographic primitives (a
strength comparable to a symmetric key of k bits) and denote by h(·) a
weak collision-resistant cryptographic hash function with an output length
of k bits.

22 4 Uncoordinated Frequency Hopping Communication

(a)

(b)

(c)

m1 m5m2 m3 m4

m′1 m′5m′2 m′3 m′4

m1 m5m2 m4m3

m′′3 m′′4m′′2

m1 m5m2 m3 m4

m′5m′3 m′4

m′1 m′2

Figure 4.3: Packet verification. (a) Legitimate packets are logically linked
(solid lines) so that they are efficiently identifiable as belonging to the
same message. (b) The attacker can insert her own or replayed packets,
but she cannot link them to legitimate chains in a way that leads to an
amount of possible packet recombinations that grows exponentially with
the number of maliciously inserted packets (dashed lines). (c) In the case
of the verification based on hash links, for instance, the attacker can create
a fusion of her own and a legitimate chain (e.g., by using h(m3) in m′2), but
she cannot purposefully create a hash link that branches from a legitimate
into her own chains (e.g., finding an m′3 such that h(m3) = h(m′3)).

4.2.1 UFH Communication using Hash Links

A straight-forward approach that allows the receiver to efficiently identify
fragments of the same message is to arrange all message fragments into
a hash chain by linking each fragment to its successor with a hash. In a
general solution, each packet is not only linked to its successor but to the
next α packets (see Figure 4.4). More precisely, once a message M has been
erasure-encoded into the fragments M1, M2, . . . , Mn using E(n, l,ε), each
fragment Mi is encapsulated into a packet mi := id||i||l||Mi ||hi+1|| . . . ||hi+α
by adding the message id, the fragment number i, the required number
of fragments l, and the hash values of the packets mi+1 to mi+α. For the
non-existing packets mn+1 to mn+α−1 the hash value of the entire message
is used (i.e., hi := h(mi) for 1≤ i ≤ n and hi := h(M) otherwise).

4.2 UFH-based Communication Schemes 23

m2 mi mn

M2 M3 Mi Mn

m3

M1

m1

Figure 4.4: Hash links. Each packet contains the hash value of the next α
packets.

A set M of |M| ≥ l packets is verifiable if at least l packets in the set are
connected (i.e., have no gaps of ≥ α missing packets). More formally, the
set M is verifiable if and only if ∃M′′ ⊂M′ ⊆M such that |M′′|= l − 1,
|M′| = l and ∀mi ∈M′′ : ∃ j ∈ {i+ 1, i+ 2, . . . , i+α} : m j ∈M′ (i.e., all
but the last packet in a chain must have a valid successor to which they
link).

Time and Space Efficiency

Upon reception of a new packet mi , the receiver must identify all packets
that link to mi or to which mi links. This can be done by traversing all N
already received packets once. Note that although each packet links to
α other packets, all these α packets are successors of mi and part of the
same chain. Each packet is thus the head of exactly one unique sub-chain
and at most N − 1 chains join at a packet. These joining chains build a
reverse tree that is rooted at the packet. Finding the heads of these chains
(i.e., finding the leaves of the reverse three) can be done in O(N) steps.
Hence, the cost to verify mi (i.e., to find all chains the packet is part of) is
in O(N). The verification-related overhead per packet is αk bits, where k
is the length of a hash value.

Security Analysis

In order to violate the integrity of this verification scheme, the attacker must
create a branch in a chain by inserting a packet m′i such that both mi and m′i
are accepted by the receiver as valid successors of mi−1, that is, the attacker
must find a packet m′i := id||i||l||M ′i ||h′i+1|| . . . ||h′i+α such that h(m′i) =
h(mi). However, given that h(·) is a second pre-image resistant hash
function, finding such an m′i is considered infeasible for a computationally
bounded attacker. Chains that contain such collisions (i.e., split into
branches) will therefore be dropped by the receiver. Note that if h(·) is
also collision-resistant, the attacker cannot even find such collisions in the
packet chains that she created herself (with non-negligible probability).

24 4 Uncoordinated Frequency Hopping Communication

M1 M2 M3 Mn

= yMn

M1

...
...

= y

y, w1, w2, w3, . . . , wn wn

w1· · ·

Figure 4.5: Cryptographic one-way accumulator. The fragments
M1, M2, . . . , Mn are accumulated into an accumulator y and the witnesses
w1, w2, . . . , wn; the witness wi proves that Mi was accumulated into y .

4.2.2 UFH Communication using Accumulators
Cryptographic accumulators [14] combine a (large) set of values U into
one (short) accumulator y such that for each value ui ∈ U there is a
(short) witness wi that ui was indeed incorporated into the accumulator
(see Figure 4.5). A collision-resistant one-way accumulator is a collision-
resistant hash function f : X × U → X that is also quasi-commutative [11].
That means,

∀x ∈ X : ∀u1, u2 ∈ U : f (f (x , u1), u2) = f (f (x , u2), u1).

In order to protect a message M , the sender computes for each fragment
Mi generated by E(n, l,ε) the witness

wi := f (id,M \ {Mi})
= f (. . . f (f (. . . f (id, M1) . . . , Mi−1), Mi+1) . . . , Mn),

where id is the message id and M is the set of all fragments. Fragment
Mi is encapsulated into the packet mi := id||i||l||Mi ||wi by adding the
message id, the fragment number i, the number of required fragments l,
and the witness wi .

Time and Space Efficiency

For each new packet mi , the receiver computes the accumulator

y := f (wi , Mi) = f (f (id,M \ {Mi}), Mi)
= f (id,M) = f (. . . f (f (id, M1), M2) . . . , Mn).

Due to the quasi-commutative property of the one-way accumulator, the
accumulator y is identical for all fragment/witness pairs of the same
message and thus identifies the message the fragment belongs to. Verifying

4.2 UFH-based Communication Schemes 25

a packet involves the computation of the accumulator and its comparison
with the values of all N already received packets. The cost to verify mi is
thus in O(N).

The verification-related overhead per packet is given by the size of wi .
Fairly space-efficient one-way accumulators can be constructed based on
modular exponentiation [14] or bilinear pairings [55]. For these accumu-
lators, the size of the witness is equal to the prime order of the used group;
that is, about 2k bits for a security level of k bits.

Another type of space-efficient one-way accumulators are Merkle trees
[41]. Here, the hash values of id||i||Mi are the leaves of the hash tree and
the accumulator is given by the root value of the tree. The witness wi for a
fragment Mi is the set of the log2(n) sibling nodes on the path from Mi to
the root and is of size log2(n)k bits.

Security Analysis

In order for the receiver to accept a phony inserted fragment M ′i , the
attacker must find a witness w′i such that f (wi , Mi) = f (w′i , M ′i). Given
that f (·, ·) is a collision-resistant hash function, finding such a collision is
considered infeasible for a computationally bounded attacker.

4.2.3 UFH Communication using Short Signatures
If the sender and receiver want to take full advantage of rateless erasure
coding, the packet verification technique must allow for verifying each
packet of a continuous packet stream individually. We propose a scheme
based on short signatures that meets these requirements. In our scheme,
the sender generates a new public/private key pair (KM , K−1

M) for every
message M that he transmits. The length of these keys must be such that
they resist an attack for the duration of the message transmission. Once the
message transmission is over, the keys become useless for the attacker. After
the keys have been created, the sender encapsulates each fragment Mi gen-
erated by E(n, l,ε) into a packet mi := KM ||i||l||Mi ||SigK−1

M
(KM ||i||l||Mi)

by adding the public key KM , the fragment number i, the number l of
required fragments, and the signature of KM ||i||l||Mi .

Time and Space Efficiency

The receiver uses the included public key to verify the signature of each
received packet and drops packets with an invalid signature. Packets that
are signed with the same private key belong to the same message. Verifying
a new packet thus requires to verify the signature once and to compare

26 4 Uncoordinated Frequency Hopping Communication

the included key with the keys of the N already received packets and is in
O(N).

The verification-related overhead per packet consists of the public key
and the signature. For the short signature scheme based on bilinear maps
proposed by Boneh et al. [16], the size of the signature and of the public
key is equal to the prime order of the used group. The total overhead per
packet is thus 4k bits for a security level of k bits.

Security Analysis

To violate the integrity of this scheme, the attacker must find a new frag-
ment and signature pair (M ′i ,σ

′) such that the signature σ′ is accepted by
the receiver as a valid signature for the data KM ||i||l||M ′i and the public
key KM . For a secure signature scheme, finding such a pair is equal to gen-
erating valid signatures without the help of the private key and considered
infeasible for a computationally bounded attacker.

4.3 Authenticated Packet-level Timestamping
A limitation of UFH that might require special treatment in the executed
protocols is that messages are usually not received as a whole and that
there is in general an unpredictable delay between the reception of the first
packet/fragment and the final delivery of the reconstructed message. In a
number of applications such as, for example, secure time synchronization
or localization (see Chapter 7), the receiver has to obtain an authenticated
timestamp that was written into the message right before its transmission.
Thus, in order that UFH can be used for the jamming-resistant dissemina-
tion of such transmission timestamps, the timestamps must be added to
the packets rather than the messages. Alternatively, to reduce the length
of the packet timestamps, an absolute timestamp can be included into
the message and shorter relative timestamps to the packets. The actual
transmission time of a packet is then given by the addition of the absolute
and the corresponding relative timestamp. A further overhead reduction
can be achieved by adding a timestamp to a fraction (γ) of the packets only.
In this case, the probability that the receiver obtained at least one packet
with a timestamp during the reception of a message can be computed as
1− (1− γ)L , where L is the number of received packets.

A received timestamp is, however, useless if it cannot be authenticated.
Since the packet verification by itself provides only message integrity,
the packet verification must additionally be linked to the message which
has to be authenticated (e.g., with a signature). Once the message has

4.3 Authenticated Packet-level Timestamping 27

been reconstructed and verified, the link ensures that the packets are
also authentic (i.e., originate from the same source). A drawback of this
procedure is that an authenticated timestamp is only available after some
delay and not right after the reception of the first fragment; however,
this additional time is not entirely wasted and has the advantage that, in
expectation, not only one but γL timestamps are received per message,
which reduces potential measurement errors and increases the confidence
in the obtained value.

The required linking of the packet verification to the transferred mes-
sage is generally a non-trivial process that might even be impossible for
some verification schemes. Of the introduced schemes, the linking is sim-
plest for the scheme based on short signatures. Here, the sender simply
has to include the public key that is used for the packet verification into
the (authenticated) message. If the message is authentic, so is this public
key and consequently also all valid packets. Furthermore, any packet can
be augmented with a fresh timestamp as each packet is signed individually.

For the verification scheme based on erasure coding and one-way accu-
mulators the linking is slightly more complicated and only possible with
some limitations. The reasons are that the witnesses for the n generated
packets must be included into the (authenticated) message and thus be
computed before the transmission of the packets and that the sender can-
not alter the packets once they have been created. Fortunately, the packet
transmission (i.e., hopping) schedule is fixed so that the first transmission
time—and thus also the timestamp—of each packet can be computed be-
forehand and be included into the generated packets. In order to obtain
a valid timestamp, the receiver must therefore receive at least one packet
when it is transmitted for the first time. Assuming that the receiver is al-
ready receiving when the message transmission starts, the probability that
the receiver obtains at least one authenticated timestamp is 1− (1− pmγ)n,
the expected number of received timestamps pmγn.

In principle, a similar approach as for the one-way accumulators could
be used for the scheme based on hash links. However, because of the
small number of packets per message, chances are rather low that a packet
is received at its first transmission, which precludes the application of
the hash link based schemes in combination with packet timestamps in
practice.

Chapter 5

Attacker Strategies and Performance

In this chapter, we investigate the performance of the attacker. We first
show that jamming is the best attacker strategy and develop an analytical
model for different jammer types. Based on this model, we then express the
attacker’s strength as the number of channels that she can block during the
transmission of a packet. Finally, we present a channel selection strategy
for UFH that is optimal with respect to the achieved throughput and that
exhibits the same jamming resistance as coordinated frequency hopping.

5.1 Attacker Strategies
As described in Section 3.2, the attacker can use her available transmission
power to either insert, modify, or jam packets. We will argue in the follow-
ing that, due to the fragmentation and packet verification (Section 4.2),
the most effective attacker strategy is to use all power for jamming.

Packet Insertion

Maliciously inserted packets are filtered out by the receiver’s packet veri-
fication or by the application protocol. Their processing is therefore not
more expensive (i.e., does not demand more computation or storage) than
that of (faulty) legitimate packets. Moreover, by definition of Pj , the mini-
mal required signal strength at the receiver to jam a packet (Section 3.2),
malicious packets whose signal strength at the receiver is less than Pj do
not interfere with regular packets and thus do not have any impact on
their transmission; sending with power greater than Pj , on the other hand,
requires at least as much energy as jamming.

Packet Modification

Partial packet modifications such that the packet is still accepted by the re-
ceiver are considered infeasible due to the security properties of the packet
verification techniques; partially modifying packets is thus an (expensive)
form of jamming. Consequently, packets must be entirely replaced (i.e.,
overwritten) by the attacker with valid alternatives in order to be accepted.
The minimal signal strength at the receiver to overwrite a packet is Po and
strictly larger than Pj (Section 3.2). Hence, the number of channels on
which the attacker can overwrite packets is b PJ

Po
c < b PJ

Pj
c, where PJ is the

overall transmission power of the attacker.

30 5 Attacker Strategies and Performance

Due to the fact that non-interfering packet insertions do not affect the
processing of legitimate packets and because jamming a packet requires
strictly less power and energy than overwriting a packet and not more
power and energy than is required for interfering packet insertions, we
conclude that jamming is the most effective and energy-efficient strategy
for an attacker whose goal is to prevent communication.

5.2 Impact of the Packet Coding and Length
During their transmission over the wireless channel, the packets resulting
from the message encoding (Section 4.2) are protected against jamming
attacks and bit errors. A packet coding scheme is parametrized by its
jamming resistance ρ, 0 < ρ ≤ 1, and its code rate rc , 0 < rc ≤ 1, if
it encodes data of length |m| into a packet of length |m|/rc and if more
than ρ|m|/rc packet bits have to be disrupted so that the receiver cannot
correctly decode the packet. We say that a coding scheme is efficient if its
encoding and decoding times are polynomial in the length of the packet
and if the packet length resulting from the encoding remains linear in the
data length. In UFH, the length of the packets resulting from the packet
encoding must not exceed the size s = R/ fA of the hopping slots (typically
in the order of few hundred bits), where R is the data rate and fA is the
hopping frequency of the sender A. In general, it holds that the shorter
the slots (i.e., the shorter the packets), the better is the protection against
reactive jamming, but the more packets need to be successfully transmitted.
On the other hand, the longer the slots, the more redundancy can be added
to the packets (allowing to choose codes with smaller rc and larger ρ)
and hence the better is the protection against non-reactive jamming. For a
specific ρ and rc , the transmission time of a packet is tm = |m|/rc/R and
the minimal duration during which it must be jammed is ρtm.

5.3 Attacker’s Jamming Strength
We express the attacker’s jamming strength, with respect to a given packet
transmission, by the number of frequency channels cb that she can effec-
tively block during this transmission. Besides being a fairly intuitive and
easy to comprehend metric to express the strength of a communication
jammer, cb further allows us to abstract away from the technical realiza-
tions of existing jammer types and provides us with a basis for comparing
their impact on a given packet transmission and for arguing about optimal
defense strategies. We next show how cb can be computed for the jammer
types introduced in Chapter 3.

5.4 Optimal Channel Selection 31

Recall from Section 3.2 that reactive and hybrid jammers actively search
for ongoing transmissions, whereas non-reactive jammers proactively (but
blindly) jam the channels in use. Of the presented proactive jammers, static
jammers jam the same channels for much longer than the transmission time
of a packet, sweep jammers systematically update the jammed channels
in a way that after a minimal number of jamming cycles all channels have
been jammed once (but they do not have to follow a particular order), and
random jammers always choose the channels to jam at random (and might
thus jam the same channels several times before having hit all channels).

During the transmission of a packet, the attacker can sense the channels
at most ns :=

tm−ρtm−t j

ts
times so that the transmission is detected early

enough to still jam the packet for the minimal required time. Let cs
(c j) be the number of channels on which the attacker can sense (jam)
simultaneously and ts (t j) be the minimal time that the attacker requires
to switch these channels. The maximal number of jamming cycles per
packet that the attacker can achieve is n j := tm

ρtm+t j
. Hence, the (expected)

number of channels that the attacker can block during the transmission of
m is

cb =

c j for (proactive) static jammers,

n jc j for (proactive) sweep jammers,

c
�

1−
�

1− c j

c

�n j
�

for (proactive) random jammers,

nscs for reactive jammers,

c j + nscs for reactive-static jammers,

n jc j + nscs for reactive-sweep jammers, and

c
�

1−
�

1− c j

c

�n j
�

+ nscs for reactive-random jammers.

(5.1)

Lemma 1. Of the introduced attacker types, reactive-sweep jammers are the
most powerful ones.

Proof. Hybrid jammers are at least as powerful as their non-reactive coun-
terparts as the latter are just a special case of the former. Also, of the hybrid
jammers, the reactive-sweep is able to jam the most channels because
c(1− (1− c j

c
)n j) = c(1−∑∞i=0

�n j

i

�

(
−c j

c
)i)≤ c(1− (1− n j

c j

c
)) = n jc j .

5.4 Optimal Channel Selection
In UFH, the frequency channels on which the sender and receiver send and
receive are chosen randomly from the set of available channels. In contrast

32 5 Attacker Strategies and Performance

to coordinated FH, where the jamming resistance and thus the throughput
of the communication increases with the number of channels used, using
all available channels might not be optimal for UFH: while the jammer’s
chances to jam the right channel decrease the more channels are used, so
do an uncoordinated receiver’s chances to listen on the right channel. As
an example, consider the case where the sender and receiver can send and
receive on one channel (i.e., ct = cr = 1) and select the frequency channels
uniformly at random from a set of c channels. Assuming further that the
attacker blocks cb channels, the probability that a packet is successfully
received with UFH is pm =

1
c
(1− cb

c
), which is maximized for c = 2cb. We

next show that a similar result holds for the general case where the sender
and receiver send and receive on more than one channel:

Theorem 1. In the presence of an attacker that prevents communication
on cb ≤ c channels, the probability pm that a packet is successfully received
with UFH is maximized if the sender and receiver choose the ct (cr) frequency
channels on which they send (receive) uniformly at random from a set of size
c∗, where

c∗ =

¨

cb + 1 if cb < cr and cb < ct

max{≈ 2cb, cr , ct} otherwise.

To prove Theorem 1, we first introduce three lemmas:

Lemma 2. If a1, . . . , ac ∈ [0,1] such that
∑c

i=1 ai ≤ ct , then
∑c

i=1
1
ai
≥ c2

ct
.

Proof. Consider the values ai := ct

c
+ εi and a j := ct

c
− εi + ε j . The sum

y := 1
ai
+ 1

a j
is minimized if d y

dεi
=−(ct

c
+εi)−2+(ct

c
−εi+ε j)−2 = 0; that is,

if εi =
1
2
ε j and thus ai = a j . Since this holds for all pairs ai and a j ,

∑c
i=1

1
ai

is minimized if ∀i, j : ai = a j =
ct

c
.

Lemma 3. Let ct (cr) be the number of channels on which the sender (re-
ceiver) sends (receives) in parallel and cb be the number of channels that the
attacker jams. If the sender and receiver select their channels uniformly at
random from a set of c channels, the probability that the sender and receiver
select at least one common non-jammed channel is

pm = 1−
cr
∑

i=0

�c−ct

cr−i

��ct

i

�

� c
cr

�

� c−i
cb−i

�

� c
cb

� . (5.2)

5.4 Optimal Channel Selection 33

Proof. Let X i denote the event that there is a transmission on exactly i out
of the cr channels chosen by the receiver. There exist

�c−ct

cr−i

�

possibilities to

chose the cr − i channels without a transmission and
�ct

i

�

possibilities to

chose the i channels with a transmission. Hence, P[X i] =
�c−ct

cr−i

��ct

i

�

/
� c

cr

�

.
The attacker, in turn, blocks communication on cb out of c channels. Given
a set of i channels, the probability that the attacker blocks them all is
P[the i channels are jammed] =

� c−i
cb−i

�

/
� c

cb

�

. The proof follows from the

observation that pm = 1−∑cr
i=0 P[X i]P[the i channels are jammed].

Lemma 4. For u≥ v ≥ 0:
�u

v

�≤ uv

v!
.

Proof. By definition we have
�u

v

�

= u(u−1)(u−2)···(u−v+1)
v!

= (1 − 1
u
)(1 −

2
u
) · · · (1− v−1

u
) uv

v!
≤ uv

v!
.

Proof of Theorem 1. First we show that selecting the input and output
channels uniformly at random is an optimal strategy for the UFH sender
and receiver. We will show that by jamming the channels that are more
likely to be selected by the sender more intensively than the rarely selected
channels, the attacker can nullify any advantage that the sender and
receiver might obtain by using a non-uniform channel selection. Let ai (bi)
be the probability that the sender (receiver) sends (receives) on channel
i ∈ {1,2, . . . , c}. Let further x i be the probability that the attacker blocks
channel i. Without loss of generality we assume that a1 ≥ a2 ≥ . . .≥ ac′ >
0 and ac′+1 = ac′+2 = . . . = ac = 0. Now consider the jammer strategy
where the attacker jams channel i with probability x i = 1 − ct (c′−cb)

ai c′2
if

ai ≥ ct (c′−cb)
c′2 and x i = 0 otherwise. With this strategy, the probability that

a packet is not jammed and thus can be successfully received on channel
i is equal to ai(1− x i) ≤ ai

ct (c′−cb)
ai c′2

= ct

c′ (1−
cb

c′). This attacker strategy is

a valid strategy since
∑c′

i=1 ai ≤ ct and
∑c′

i=1
1
ai
≥ c′2

ct
(Lemma 2) and thus

∑c
i=1 x i ≤

∑c′

i=1(1− ct (c′−cb)
ai c′2

) = c′ − ct (c′−cb)
c′2

∑c′

i=1
1
ai
≤ c′ − ct (c′−cb)

c′2
c′2

ct
= cb.

Hence, the receiver’s chances to successfully receive a packet are the
same for the first c′ channels and zero for the remaining c− c′ channels. It
follows that in this case every selection strategy—and thus also selecting
the channels uniformly at random—for which

∑c′

i=1 bi = cr is an optimal
receiver strategy. We note that jamming channel i with probability x i =
1− ct (c−cb)

ai c2 might not be the optimal strategy for the attacker with respect
to a particular receiver (e.g., if she knew that the receiver would listen on

34 5 Attacker Strategies and Performance

one channel only, focusing the jamming on this channel would be optimal).
This strategy is, however, optimal for the attacker in the sense that it limits
the performance of the sender for any number of receivers with arbitrary
channel selection schemes.

Having shown that choosing channels uniformly at random is an op-
timal strategy for the sender and receiver, we next deduce the optimal
set size c∗ from which the sender and receiver should uniformly choose
their channels. We first consider the special case where the attacker is
weaker than the sender and the receiver: If cb < ct and cb < cr , for all
c ∈ {cb + 1, cb + 2, . . . , min{cr , ct}} there exists at least one non-jammed
channel on which the sender is sending and the receiver is receiving. In
particular we have pm = 1 for c∗ = cb + 1. Otherwise, if either cr ≤ cb or
ct ≤ cb, a second bound on c∗ is given by c∗ ≥ max{ct , cr}. If c = ct ≥ cr ,
the receiver always listens on a channel on which a packet is transmit-
ted. Using less than ct channels would therefore increase the attacker’s
chances to successfully jam all transmissions without being beneficial for
the receiver. Likewise, if c = cr ≥ ct , the receiver receives all transmissions.
Using less than cr channels would again increase the attacker’s jamming
performance without any benefit for the receiver. Finally, we consider the
general case. According to Lemmas 3 and 4, the probability that a packet
sent by the sender is successfully received by the receiver is

pm = 1−
cr
∑

i=0

�c−ct

cr−i

��ct

i

�

� c
cr

�

� c−i
cb−i

�

� c
cb

�

§ 1−
cr
∑

i=0

(c−ct)cr−i

(cr−i)!
c i

t

i!
ccr

cr !

� cb

c

�i

= 1−
�

1− ct

c

�

1− cb

c

��cr =: p̂m . (5.3)

For a given ct and cr , p̂m is maximized if 1
c
(1 − cb

c
) is maximized. We

obtain d
dc

1
c
(1− cb

c
) = 0 if c = 2b and thus c∗ ≈ 2b. For particular values

of cr , ct and cb, a more precise result can be obtained with some standard
(numerical) optimization technique. However, our simulations showed
that the approximation c∗ = 2b already leads to very accurate results in
practice: for cb ≤ 100 the relative error in pm was always less than 3%.

Corollary 1. An UFH communication scheme in which the transmission
channels are selected uniformly at random from a set of c∗ channels is optimal

5.5 Adaptive Channel Selection 35

with respect to the achieved throughput and exhibits the same resistance to
jamming as coordinated frequency hopping (FH).

Corollary 1 follows from Theorem 1 and the observation that from
the attacker’s perception, all she can observe are transmissions of corre-
sponding length on arbitrary channels. More precisely, the entropy of the
next frequency hop for FH and UFH (for one transmission channel) is
HFH = HUFH = −

∑c
k=1 P(ck) log2 P(ck) = −

∑c
k=1

1
c

log2
1
c
= log2 c, where

ck denotes the k-th channel. In other words, any communication jammer
that can prevent communication in UFH can also prevent communication
of coordinated FH in the same setting, and vice versa.

5.5 Adaptive Channel Selection
Achieving an optimal throughput with UFH requires the sender and re-
ceivers to accurately assess cb and agree on a set of c = c∗ frequency
channels. Especially in the absence of jamming, any selection of c ≥ 1
channels will lead to a suboptimal performance. An optimal adaptive
scheme in which both the sender and receiver(s) adapt their channels
depending on the encountered jamming is, however, not practical. As
jamming occurs at the receiver of a transmission, the sender would have
to reliably obtain the feedback of the (maybe unknown) receiver(s); since
different receivers are likely to observe different jamming strengths, this
would further require to adapt to the worst case receiver. To avoid that the
attacker can exploit this feedback, the feedback channel would have to be
authentic. Providing the sender with the required feedback is therefore the
same problem as the one we intend to solve with UFH in the first place.

Consequently, only those adaptive schemes are feasible where the
receivers adapt their behavior but not the sender. However, as shown in
the proof of Theorem 1, the attacker can nullify any possible advantage
of an adaptive scheme that leverages a non-uniform channel selection by
jamming more often those channels that are selected by the sender more
likely than the rarely selected channels. This result is independent of the
receiver’s behavior and even holds for multiple senders: if we neglect the
impact of the senders’ position and of the physical environment, from the
attacker’s point of view there is no difference between the cases of multiple
senders and a single sender that sends on multiple channels in parallel.

In conclusion, the best strategy for the sender is to assess the jamming
strength cb of the expected attacker as accurately as possible and then
select all output channels uniformly at random from a set of size max{c∗, c},

36 5 Attacker Strategies and Performance

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1 1.5 2

no
rm

al
iz

ed
pr

ob
ab

ili
ty

th
at

a
pa

ck
et

is
su

cc
es

sf
ul

ly
re

ce
iv

ed

relative error in the estimation of cb

cb = 100, cr = ct = 1
cb = 100, cr = ct = 40

Figure 5.1: Graceful degradation of UFH performance for an imprecise
assessment of the attacker’s strength (in terms of cb). We observe that
overestimating the attacker’s strength is less harmful than underestimating
it. We also observe that the larger cr and ct are, the lower is the impact of
an imprecise estimation.

where c is the maximal number of available channels and c∗ is the optimal
number of channels as specified in Theorem 1. The only exception might
be a situation where the attacker (although being strong) is absent (or
inactive) most of the time. In such a situation it is advisable to send
permanently on one channel and select the other output channels uniformly
at random from the remaining channels. The receivers first try to receive
the message on the first channel and only switch to UFH if they are not
successful. Permanently sending on the first channel ensures that the
scheme is as efficient as coordinated frequency hopping if the attacker is
absent.

In practice, assessing the attacker’s strength means estimating the
scanning and sending performance of her jamming device. Given these
parameters, the number of channels cb that the attacker can block can
be derived according to Equation (5.1). How accurately the sender can
estimate the capabilities of the jamming device depends on the considered
attacker model. The impact of an imprecise assessment of the attacker’s
strength is shown in Figure 5.1. We observe that the performance of
UFH gracefully degrades the less accurate the assessment of cb is and that
overestimating the attacker’s strength is less harmful that underestimating
it. Hence, using all available channels is a reasonable fallback strategy
under the threat of a completely unknown attacker.

Chapter 6

Performance Analysis and Evaluation

In this chapter, we evaluate the efficiency of the presented UFH commu-
nication schemes (see Chapter 4) in terms of their throughput. As the
main metric for their performance, we use the expected number of re-
quired packet reception attempts until the receiver can successfully decode
the message. Throughout this analysis, we assume that all erasure codes
are optimal (i.e., ε = 0) and we neglect differences in the verification
and decoding speed of the proposed schemes. This is reasonable since
the message reassembly is performed only once per message due to the
packet verification and takes significantly less time (in the order of millisec-
onds [66]) than the time required for the message packets to be acquired at
the receiver (order of seconds). The packet verification time of our schemes
is also in the order of milliseconds1 and the verification can be performed
in parallel to the packet gathering. We further assume that the hopping
frequency of the receiver fB is much slower than the hopping frequency of
the sender fA (Figure 2.2). We therefore neglect packet losses caused by
the lack of synchronization between sender and receiver as they only affect
every fA

fB
-th packet and are thus rare events compared to the likelihood that

the receiver listens on an incorrect channel (i.e., fB

fA
� (1− 1

c
)).

6.1 Analysis of UFH Schemes based on Rateless
Erasure Codes

We first consider the case of a rateless erasure code E(∞, l,ε) in combi-
nation with short signatures. This combination is optimal in the sense
that there are no duplicate or non-verifiable packets and every successfully
received fragment contributes to the message. Hence, a message can be
reassembled as soon as l fragments have been received. Let pm be the
probability that a packet sent by the sender is successfully received by a
specific receiver (Equation (5.2)). Let further X i denote the event that

1Of the used cryptographic primitives, signatures are the most expensive ones (compared
to computing hash values or to verifying accumulators). Verifying a single 160 bit short
signature takes about 48 ms on a current general purpose CPU and becomes faster if several
packets are verified in a single batch verification (<3 ms per signature for a batch of 200
packets) [30].

38 6 Performance Analysis and Evaluation

the last of the required l packets is received after i (successful and un-
successful) packet reception attempts. The expected number of required
packet reception attempts until a message can be reconstructed by a single
receiver is then N(pm) =

∑∞
i=0 P[X i]i and thus

N(pm) =
∞
∑

i=l

�i−1
l−1

��

pm
�l �1− pm

�i−l i =
l

pm
∈O(l) . (6.1)

Note that Equation (6.1) also applies to erasure codes where the number
of fragments n is finite but larger than the expected number of required
reception attempts N(pm).

In the general case where a message is broadcasted to a group of g ≥ 1
receivers, the message transmission is completed once all g receivers have
successfully received and reconstructed the message. Let receiver B be the
last group member to receive the message and let Yi be the event that all g
receivers have received the message after i (successful and unsuccessful)
packet reception attempts of B. The expected number of required packet
reception attempts until a message can be reconstructed by the last receiver
is then Ng(pm) =

∑∞
i=0(1−P[Yi]), where P[Yi] = (

∑i
j=l P[X j])g ; hence,

Ng(pm) =
∞
∑

i=0

�

1−
�

i
∑

j=l

� j−1
l−1

��

pm
�l �1− pm

� j−l
�g
�

. (6.2)

6.2 Analysis of UFH Schemes based on Erasure
Codes

If the number of fragments n per message is finite (and smaller than
N(pm)), the sender repeatedly sends the sequence of n packets. We observe
that after i such sequence transmissions the expected number of missing
packets is n(1 − pm)i . For the case that any set of l fragments can be
verified we get the approximation

N(pm)≈
log(n− l)− log(n)

log(1− pm)
n ∈O(log(n

n−l
)n) (6.3)

by solving n(1− pm)i = n− l for i. More precisely, the probability that a
specific receiver has received exactly j out of n fragments after i reception
attempts is P[X ji] = ((1− pm)i)n− j(1− (1− pm)i) j . In the final round,
the last packet will be received after an average of n/2 attempts. Let Z j

6.2 Analysis of UFH Schemes based on Erasure Codes 39

denote the event that the set of j fragments is verifiable. For the erasure
code E(n, l,ε) the expected number of required packet reception attempts
is then

N(pm) =
�
∞
∑

i=0

n
∑

j=0

P[X ji]P[¬Z j]− 1
�

n+
n

2
(6.4)

=
∞
∑

i=0

n
∑

j=0

D(j)
�

�

1− pm
�i
�n− j �

1− �1− pm
�i
� j

n− n

2
,

where D(j) is the number of non-verifiable subsets of size j. Clearly, D(j) =
�n

j

�

if j < l since a message cannot be reconstructed with less than l
fragments. Moreover, if an accumulator-based verification is used, then
D(j) = 0 if j ≥ l, as each packet can be verified individually, and thus any
set of j ≥ l genuine fragments is verifiable.

In the case of multiple hash-link verification, a set of j ≥ l packets is
verifiable if at least l packets in the set are connected without gaps of α
or more missing packets between them. In order to compute D(j) (i.e.,
the number of sets with j packets such that no l packets in the set are
connected) we first introduce the following two lemmas:

Lemma 5. The number of allocations of b indistinguishable balls into r
distinguishable bins such that the first m, 0≤ m≤ r, bins contain at most k
balls is

A(b, r, m, k) =
b b

k+1
c

∑

i=0

(−1)i
�

m

i

��

b− (k+ 1)i+ r − 1

r − 1

�

.

Proof. A proof can be found in [51].

Lemma 6. The number of sequences of length n with j black and n− j white
balls that contain a sub-sequence of ≥ l, 2l > n, black and m white balls such
that no two subsequent black balls in the sub-sequence are separated by more
than b white balls is A(n− j, j+1, l−1, b)+(j−l)A(n− j−b−1, j+1, l−1, b).

Proof Sketch. We identify each sub-sequence fulfilling the given require-
ments by the first black ball in the sequence. If the sub-sequence starts
at the first black ball in the sequence, according to Lemma 5, there ex-
ist A(n− j, j + 1, l − 1, b) ways to distribute the n− j white balls before,
between, or after the j black balls such that there are no more than b
white balls between the first l black balls. In the j − l cases where the

40 6 Performance Analysis and Evaluation

wanted sub-sequence starts at the second to (j− l + 1)-th black ball, the
sub-sequence must be preceded by (at least) b+ 1 white balls. Thus, in
each of these cases there exist A(n − j − b − 1, j + 1, l − 1, b) ways to
distribute the remaining n− j− b− 1 white balls.

From Lemma 6 it follows that there exist D(j) =
�n

j

�−A(n− j, j+1, l−
1,α− 1)− (j− l)A(n− j−α, j + 1, l − 1,α− 1) sets of j packets such that
no l packets in the set are connected. For the single hash link scheme we
have α= 1 and n= l and thus:

N(pm) =
∞
∑

i=0

�

1−
�

1− (1− pm)
i
�l
�

l − l

2
(6.5)

≈ log(0.5)− log(l)
log(1− pm)

l ∈O(log(l)l) .

For a broadcast transmission in which the message must be received by
all g receivers we obtain

Ng(pm) =
∞
∑

i=0

�

1−
�

1−
n
∑

j=0

P[X ji]P[¬Z j]
�g
�

n− n

2
(6.6)

=
∞
∑

i=0

�

1−
�

1−
n
∑

j=0

D(j)
�

(1− pm)
i
�n− j �

1− (1− pm)
i
� j
�g
�

n− n

2
.

6.3 Multiple Concurrent UFH Transmissions
So far, we considered the attacker as the only source of interference. If, how-
ever, several neighboring senders engage in different UFH transmissions at
the same time, these concurrent transmissions might mutually interfere and
increase the effective number of disturbed (i.e., blocked) channels. More
precisely, if, in a cluster of g senders, all senders send simultaneously on
ct transmission channels, the expected number of occupied channels with
respect to a single transmission under jamming is cg =

∑c
i=1 P[channel i

is jammed or used by one of the other transmissions] = (1− (1− cb

c
)(1−

ct

c
)g−1)c. Hence, the probability that a packet is successfully received by

the receiver reduces to

pm = 1−
cr
∑

i=0

�c−ct

cr−i

��ct

i

�

� c
cr

�

� c−i
cg−i

�

� c
cg

� . (6.7)

6.4 Performance Comparison and Discussion 41

Apart from this mutual interference, there is no dependency among
these transmissions as each receiver selects the reception channels ran-
domly and independent of all other receivers. For evaluation purposes,
we can thus consider the concurrent broadcast of gs senders to gr re-
ceivers as gs gr independent transmissions which, in turn, corresponds
to a single broadcast to gs gr receivers. Hence, the number of required
reception attempts until all gr receivers have received all gs broadcasts can
be computed with Equation (6.2) and (6.6) and the substitution g := gs gr .

6.4 Performance Comparison and Discussion
We next compare the performance of the presented message coding schemes
among each other and with an ideal scheme. In particular we compare the
following schemes:

HL1 Simple splitting combined with single hash links (Section 4.2.1).
In this case, only l packets are generated and all of them must be
received.

HL2 Erasure coding combined with double hash links (Section 4.2.1).
Here, a sequence of n packets is generated and any subset of l
packets can be used to reconstruct the message. However, in order
that the subset can be verified, the packets must form a sequence with
at most one missing packet between any two subsequent packets.

HL3 Erasure coding combined with triple hash links (Section 4.2.1). This
scheme is similar to HL2, but gaps of up to two packets in the
received packet sequence are tolerated.

Acc Erasure coding combined with the one-way authenticator based on
modular exponentiation (Section 4.2.2). With this scheme, a se-
quence of n packets is generated of which each packet can be verified
individually. Thus, any subset of l packets can be used to reconstruct
the message. Since this accumulator introduces strictly less overhead
per packet than a Merkle tree based accumulator, we do not consider
the latter in this comparison.

Sig Rateless erasure coding combined with short signatures (Section 4.2.3).
Here, an infinite sequence of packets is generated and each packet
can be verified individually. Hence, the message can be reconstructed
by any set of l distinct packets.

42 6 Performance Analysis and Evaluation

Ideal An ideal scheme that uses rateless erasure coding but has no verifi-
cation overhead. As for Sig, any set of l distinct packet can be used
to reconstruct the message. This scheme constitutes an upper bound
on the performance.

In this evaluation, the size of the message ids and the fragment numbers
is 48 and 16 bit, respectively. We choose n = 500 fragments for Acc and
derive the optimal n for the hash-link schemes numerically. The number
of required packets is l = |M |/(|m| − o), where o is the overhead per
packet (message id, fragment number, verification data). We further
choose a (short-term) security level of k = 70 bits, which ensures that the
cryptographic primitives (hashes, accumulators, signatures) can resist an
attack for a period of several weeks to months [3]. We point out that this
is more than sufficient since the primitives must resist an attack only for
the duration of the message transmission, which is in the order of seconds.

The performance of the considered schemes as a function of the mes-
sage and packet size is depicted in Figure 6.1. We observe that overall Acc
and Sig perform best. The small overhead of HL1 makes it a reasonable
choice for small packet sizes whereas the advantage of the second hash
link for HL2 is more or less nullified by the larger overhead per packet
(i.e., the larger number l of required packets). This is even worse for HL3
which is always less efficient than the basic scheme. We also observe that,
if pm is held constant, the difference between the proposed schemes and
the ideal scheme decreases for larger packet sizes (i.e., a smaller number l
of required packets per message) and increases for larger message sizes
(i.e., a larger number l of required packets per message).

The expected throughput and message transmission times as a function
of the message size, the slot size, and the number of receivers are shown
in Figure 6.2 and 6.3. The simulation results presented in this figure
were obtained with a purpose-built Java application that simulates the
message transmissions and uses a simplified communication model for the
physical layer. The application assumes a perfect jammer that jams a packet
for the minimal required amount of time and whose interference with a
packet is always destructive. Hence, a packet is successfully received if the
sender and receiver are sending and receiving on at least one unjammed
channel, else the packet is dropped. The results show that the transmission
time increases linearly with the message size |M | but only logarithmically
with the number of receivers g. We further observe from Figure 6.3 that
the throughput initially increases for larger slot lengths as less fragments
(and thus less reception attempts) per message are needed. Since the

6.4 Performance Comparison and Discussion 43

jamming probability also increases for larger slots, the throughput starts
decreasing once the advantage of less fragments is outweighed by the
increased jamming probability.

0

1000

2000

3000

4000

5000

1000 1500 2000 2500 3000

Ex
pe

ct
ed

nu
m

be
r

of
re

qu
ir

ed
pa

ck
et

re
ce

pt
io

n
at

te
m

pt
s

(N
)

message size (|M |) in bits

HL1
HL2
HL3
Acc
Sig
Ideal

|m| = 384, k = 70, pm = 0.01

0

1000

2000

3000

4000

5000

1000 1500 2000 2500 3000

Ex
pe

ct
ed

nu
m

be
r

of
re

qu
ir

ed
pa

ck
et

re
ce

pt
io

n
at

te
m

pt
s

(N
)

message size (|M |) in bits

HL1
HL2
HL3
Acc
Sig
Ideal

|m| = 512, k = 70, pm = 0.01

Figure 6.1: Performance of the presented message coding schemes as a
function of message and packet size. We compare the schemes to an ideal
scheme without verification overhead. We observe that overall Acc and Sig
perform best. HL1 is a reasonable choice for small packet sizes, whereas
the advantage provided by two hashes in HL2 is more or less nullified by
the larger overhead per packet. This is even worse for HL3, which is always
less efficient than HL1. By comparing the plots, we observe that, if pm is
held constant, the difference between the proposed schemes and the ideal
scheme decreases for packet sizes and increases for larger message sizes.

44 6 Performance Analysis and Evaluation

0

0.05

0.1

0.15

0.2

1000 1500 2000 2500 3000 3500 4000

m
es

sa
ge

tr
an

sm
is

si
on

ti
m

e
in

se
c

message size (|M |) in bits

HL1
Acc

c = 2000, cr = 10, ct = 10, cb = 500
|m| = 384 bit, R = 5 Mbps, rc = 0.7, k = 70 bit

0

0.05

0.1

0.15

0.2

1 10 100

m
es

sa
ge

di
ss

am
in

at
io

n
ti

m
e

in
se

c

number of receivers (g)

HL1
Acc

c = 2000, cr = 10, ct = 10, cb = 500
|m| = 384 bit, R = 5 Mbps, rc = 0.7, k = 70 bit

Figure 6.2: Expected message transmission time as a function of the
message and group size. In this plot, the lines show the analytical results,
the points and confidence intervals display the findings of our simulations.
We observe that the transmission time increases linearly with the message
size but only logarithmically with the number of receivers.

6.4 Performance Comparison and Discussion 45

0

5

10

15

20

250 300 350 400 450 500 550 600 650

ex
pe

ct
ed

th
ro

ug
hp

ut
in

kb
ps

slot size (s) in bit

HL1
Acc

c = 2000, cr = 10, ct = 10, k = 70 bit
|M | = 2000 bit, R = 5 Mbps

cs = 200, ts = 15µs
c j = 160, t j = 15µs

rc = 0.7, ρ = 0.1

Figure 6.3: Expected throughput as a function of the slot size. In this plot,
the lines show the analytical results, the points and confidence intervals
display the findings of our simulations. We observe that the throughput
initially increases for larger slot lengths as less fragments (and thus also less
reception attempts) per message are needed. Since the jamming probability
also increases for larger slots, the throughput finally starts decreasing once
the advantage of less fragments is outweighed by the increased jamming
probability.

Chapter 7

Applications of UFH

In this chapter, we first show how UFH enables the bootstrapping of
coordinated frequency hopping (FH) by means of a jamming-resistant key
establishment. We then present two additional applications that strongly
benefit from UFH anti-jamming broadcast communication: emergency
alert broadcast and navigation broadcast. Common to these applications is
that a sender has to broadcast a message to a dynamic set of unknown and
potentially malicious receivers that may want to deprive other receivers
from obtaining the information. With coordinated FH, if a sender wants to
broadcast a message to a set of receivers, it needs to share a secret code
with all receivers and the code needs to be hidden from the attacker. Using
coordinated FH in the considered setting is therefore infeasible if the code
is held secret, or can easily be disrupted by malicious users if the code is
public.

7.1 Bootstrapping Coordinated FH with
UFH-based Key Establishment

The bootstrapping of coordinated frequency hopping can be divided into
two stages. In the first stage, the parties execute a key-establishment
protocol and agree on a shared secret key K using UFH. Various key-
establishment protocols can be used in this step and we present the au-
thenticated Diffie-Hellman protocol [7] and the Burmester-Desmedt pro-
tocol [17] as typical examples for two-party and group key agreement,
respectively. Then, in the second stage, each party transforms the key K
into a hopping sequence (using linear feedback shift registers and channel
mappers [60]) and switches to coordinated frequency hopping. The first
message in the second stage is typically a key confirmation that verifies
the successful key agreement and, additionally, is used to synchronize the
frequency hopping between the parties. Note that the established key is not
used for encrypting or signing sensitive data but exclusively for generating
the hopping sequence.

Since our UFH communication schemes do not provide message au-
thentication, all messages that are exchanged during the key establishment
are signed in order to prevent the insertion of fake messages. In addition,
the protocols use timestamps to preclude replay attacks and a (short-term)

48 7 Applications of UFH

history buffer to detect and drop duplicate messages during the validity of
the timestamps. The period during which a message is considered valid is
defined by the receiver and is usually in the order of time that is required
to successfully transmit the message using UFH. Messages can be received
more than once during their validity, either due to replay attacks or due
to the repetitive message transmissions which are inherent to our UFH
communication schemes. We point out that although an attacker may be
able to replay an overheard message within the acceptable time interval in
another protocol session, this does still not enable her to deduce the secret
hopping sequence from it as the key contribution of the legitimate devices
remains secret.

In what follows, let G be an additive cyclic group of prime order p in
which the Decision Diffie-Hellman (DDH) problem is hard and let P be a
generator of this group. Because we are more concerned about minimizing
the message sizes than the computational overhead, we assume that G
is an elliptic curve group. Let further 〈·〉X be the string in angle brackets
concatenated with its signature by party X and let {·}K be the encryption
of the string in curly brackets with key K .

7.1.1 Two-party Key Agreement
As an example for a two-party key agreement, we consider the Elliptic
Curve Cryptography (ECC) based Station-to-Station (STS) Diffie-Hellman
protocol [7]. The STS protocol proceeds in two rounds and is executed
as follows (see Figure 7.1): First, party A selects a (pseudo-)random
element rA←R Zp and broadcasts a signed message containing its public
key certificate σA, a timestamp TA, and the credential zA = rAP. A party B in
the transmission range of A replies with a symmetric message containing its
credential zB = rB P and A’s timestamp TA. Based on the received messages,
both parties then compute the shared key K = rAzB = rBzA = rArB P.

In the second stage, A switches to coordinated frequency hopping and
proves its knowledge of K by sending {〈h(rAP ‖ rB P)〉A}K to B. Party B uses
this message to synchronize its hopping sequence. Note that the above
protocol contains the explicit exchange of the parties’ public key certificates;
this overhead can be omitted in the case where the parties exchanged or
preloaded each other’s certificates prior to the protocol execution.

7.1.2 Group Key Agreement
Known Group Key Agreement (GKA) protocols for arbitrary group sizes
proceed in several sequential rounds and therefore require some sort of (im-
plicit) synchronization. This synchronization constitutes a major challenge

7.1 UFH-based Key Establishment 49

K ← rBzA〈B, KB,σB, TA, zB〉B

St
ag

e
2

(F
H

w
it

h
ke

y
K

)
(U

FH
)

zA← rAP
rA←R Zp

zB ← rB P
rB ←R Zp

A

K ← rAzB

B

〈A, KA,σA, TA, zA〉A
St

ag
e

1

{〈h(rAP ‖ rB P)〉A}K

Figure 7.1: Two-party UFH-based key establishment using an authenti-
cated DH protocol. In stage 1, party A uses UFH to broadcast its certified
public key KA and its key contribution rAP for the elliptic curve DH protocol.
A party B in A’s power range answers by sending its own DH-contribution.
In stage 2, A transmits a key acknowledgment, then the devices can send
arbitrary messages using coordinated frequency hopping.

for UFH-based group key agreement protocols as common synchroniza-
tion techniques such as the (explicit) acknowledgment of all unicast and
broadcast messages or the exchange of coordination messages should be
avoided due to the comparatively high latency of UFH communication.
Roughly speaking, the less rounds a GKA protocol comprises and the more
message exchanges can be performed in parallel, the better its performance
in combination with UFH communication.

In this work, we use an authenticated version of the Burmester-Desmedt
(BD) group key agreement protocol [17] as an example for a suitable GKA
protocol. What makes the BD GKA protocol particularly suitable for the
use with UFH is the fact that it proceeds in only two rounds and that it
allows all parties to concurrently send their contributions within a round
(see Figure 7.2). Moreover, the protocol does not require all parties to
switch simultaneously from the first to the second round. All that must be
ensured is that a party stops sending the first contribution only after all
intended receivers have received it. To avoid the overhead of an explicit
synchronization (e.g., by means of acknowledgment messages), we propose
to include the first contribution in the message that is sent in the second
round. This simple solution avoids the overhead of additional messages at
the cost of a longer second message.

50 7 Applications of UFH

Ai

ri ←R Zp

zi ← ri P

X i ← ri(zi+1 − zi−1)

Ai receives X1, . . . , X i−1, X i+1, . . . , X g

K = grizi−1 + (g − 1)X i + (g − 2)X i+1 + . . .+ X i−2

Ai calculates

St
ag

e
1

(U
FH

)

〈zi , Ti,1〉Ai
〈zi , Ti,1〉Ai

zi+1zi−1

Ai+1Ai−1

Ai broadcasts 〈zi , Ti,2, X i〉Ai
to all other parties

Figure 7.2: UFH-based Burmester-Desmedt group key agreement protocol,
depicted from device Ai ’s perspective. In the first round, Ai transmits the
message 〈zi , T1,i〉Ai

which needs to be received by its two logical neighbors
Ai−1 and Ai+1. Once it has received the two key contributions of its neigh-
bors, Ai starts the second round and broadcasts the message 〈zi , Ti,2, X i〉Ai

.
After having received all contributions X i , Ai computes the group key
K = grizi−1 + (g − 1)X i + . . .+ X i−2, where g is the group size.

Let A1, A2, . . . , Ag be the set of parties that participate in the GKA. For
simplicity, we assume that the set is known to each party and that the
indices form a logical ring from 1 to g (i.e., Ag+1 is A1 and A0 is Ag).
The BD GKA protocol proceeds as follows: In the first round, each party
Ai selects a (pseudo-)random element ri ←R Zp and broadcasts a signed
message containing a timestamp Ti,1 and the credential zi = ri P. In the
second round, each Ai broadcasts a second signed message containing a
timestamp Ti,2, the credential zi , and the value X i = ri(zi+1−zi−1) = (ri+1−
ri−1)ri P. Given the values X1, X2, . . . , X g , each participant finally computes
the shared key K = grizi−1+(g−1)X i +(g−2)X i+1+ . . .+ X i−2 = (r1r2+
r2r3 + . . .+ rg r1)P. In the second stage, the parties switch to coordinated
frequency hopping and use A1’s broadcast of {〈h(X1 ‖ X2 ‖ . . . ‖ X g)〉A1

}K
to synchronize their hopping sequences.

7.2 Anti-jamming Emergency Alerts
Two typical examples where a jamming-resistant dissemination of emer-
gency alerts is required are (1) if a central (governmental) authority needs
to inform the public about the threat of an imminent or ongoing (terrorist)
attack while minimizing the risk that the attackers can jam the alert trans-

7.3 Anti-jamming Navigation Broadcast 51

B4
J

B3

X2

B1

X1

A

B2

Figure 7.3: UFH-based emergency alert broadcast: Using UFH, a sender is
able to disseminate a message to a set of unknown or untrusted receivers
in an ad-hoc and jamming-resistant manner.

mission, or (2) if a distress call in high sea operations (nautics) needs to
be undertaken in face of an (imminent) adverse invasion (see Figure 7.3).

Even under jamming, information dissemination in these settings is
crucial. Being able to disseminate the information within a delay (even
of seconds) under jamming is clearly preferred over not being able to
communicate any information at all. Once the information has been
received by some entities, other communication means (e.g., speech or
landline) may additionally support its dissemination to more people or
authorities concerned.

In addition to the single-hop broadcast scenarios given above, the anti-
jamming emergency alert property of UFH communication can also be
used for (multi-hop) jammer alarm forwarding in mobile ad-hoc or mesh
networks. Jamming is a menacing threat to wireless networks because it
deactivates the communication channel and thus, apart from disrupting
normal network communication, also disables the transmission of jamming
alerts and communication targeting to counteract the ongoing jamming.
Here, UFH can be used for the delivery of short warning messages out-
side of the jammed region in an ad-hoc manner (i.e., without the need
for any previous coordination among the nodes) from where external
countermeasures can be taken.

7.3 Anti-jamming Navigation Broadcast
Another well-suited application for UFH communications is the broadcast
of navigation signals which are primarily used for time synchronization, lo-

52 7 Applications of UFH

A1 A2

A4 J

A3

B

Figure 7.4: UFH-based Navigation Broadcast: jamming-resistant reception
of navigation signals used for positioning and/or time-synchronization.
The receiver receives the landmark transmissions of multiple senders si-
multaneously and uses them to compute its position and/or local time.

calization, and navigation. Examples of navigation systems include satellite
navigation (e.g., GPS [33]) and terrestrial systems such as Loran [8] (based
on TDoA) and DME-VOR [15] (based on distance/angle measurements).
Localization and time-synchronization systems require the reception of
navigation signals from multiple base stations; in general, three or four
different signals are necessary for most localization methods [15]. The
broadcast stations are precisely time-synchronized (e.g., via wired links)
and located at static or predetermined positions. Each broadcast station
transmits navigation signals either continuously due to a fixed schedule
(GPS, Loran-C) or sends replies to individual localization requests (DME-
VOR, WLAN-localization), based on which the localized device determines
its position.

Without appropriate protection, navigation signals are vulnerable to
signal spoofing, signal synthesis, and jamming attacks [43, 64]. Even
though current civilian implementations using GPS satellite signals [33]
or terrestrial WLAN signals [9] apply spreading to make the transmissions
resistant to unintentional interference, they do not provide any means to
counteract targeted DoS attacks because their spreading codes are public
and can thus easily be misused for jamming.

Whereas data integrity (and confidentiality) can be achieved by crypto-
graphic functions, the precise (relative) arrival times of navigation signals

7.3 Anti-jamming Navigation Broadcast 53

at the receiver are also security-critical for many localization methods [43].
An attacker should thus not be able to block or delay the signals.

UFH communication offers an enhancement to the dissemination of
navigation signals that counters targeted jamming. The fact that UFH
does not require the sender and the receiver to be coordinated enables
the receivers to receive several navigation signals in one reception phase
(see Figure 7.4). The receivers each hold the authentic public key of the
base stations (although they do not share secret keys with them) and can
receive three (or more) individual messages, verify their authenticity, and
therefrom derive position and/or time information. In order for the time
information to be accurate enough, authenticated packet-level time-stamps
must be used (see Section 4.3). Depending on the implementation and
underlying hardware, the delay in the reception of UFH messages may
vary. However, even if UFH causes a delay, the computed position and
time are accurate since the aforementioned timestamping still enables the
receiver to deduce the exact transmission and arrival times of the packets
he receives.

Chapter 8

Prototype Implementation

To demonstrate the feasibility of the proposed uncoordinated frequency
hopping schemes, we created a prototype implementation based on Uni-
versal Software Radio Peripherals (USRPs) [48] and GnuRadio [2]. In
this chapter, we first outline the characteristics and configuration of the
employed USRP hardware platform, subsequently describe our software
implement in more detail, and finally present the experimental results that
we obtained with this prototype.

8.1 USRP Platform Specification
The USRPs consist of a mainboard for the baseband processing and two
exchangeable daughterboards for the down- and up-mixing from and to the
radio frequency band. This modular design allows the USRPs to be used on
different radio frequency bands. The mainboard includes four analog-to-
digital (A/D) and digital-to-analog (D/A) converters of type AD9862 that
provide an A/D (D/A) sampling rate of 64 Mb/s (12 Mb/s) and a sample
resolution of 12 bits (14 bits). The sample conversion is coordinated by an
Altera Cyclone EP1C12Q240C8 FPGA which is connected to a Cypress USB
2.0 controller.

In our setup, each USRP was equipped with two RFX2400 daughter-
boards (covering a carrier frequency range from 2.3 to 2.9 GHz) and was
connected via a 480 Mb/s USB 2.0 link to a Lenovo T61 ThinkPad (Intel
Core 2 Duo CPU @ 2.20 GHz) running Linux (kernel 2.6) and GnuRadio
version 3.0.3 (see Figure 8.1). In the basic USRP configuration one daugh-
terboard was used in reception, the other in transmission mode, thereby
enabling full duplex communication on each device. For the experiments
with a single sender, all but one daughterboard were set into reception
mode so that one USRP device could act as two receivers.

8.2 Implementation Overview
For performance reasons and for ease of deployment, our sender and
receiver applications were written entirely in C++, which—at the time—
required porting some GnuRadio libraries from Python to C++. Moreover,
to achieve a synchronization between writing the signal data to the USRP

56 8 Prototype Implementation

Figure 8.1: Hardware setup of our UFH prototype, consisting of a Universal
Software Radio Peripheral (USRP) and a Lenovo T61 ThinkPad.

and the actual signal generation that is accurate enough to enable fre-
quency hopping, the USRP drivers had to be adapted in way such that a
call-back handler is called whenever the data for a single hop was com-
pletely received by the USRP.

Altogether, our implementation comprises tree parts: the low-level
drivers to access the USRP device, the core UFH implementation, and
the broadcast and key establishment applications. The structure of the
core UFH implementation is further outlined in Figure 8.2, a schematic
description of the sending and receiving process in Figure 8.3.

In our UFH implementation, we use LT erasure codes [49] with optimal
degree distributions [39] for the message fragmentation; for these codes
the number of non-verifiable sets (see Section 6.2) after the reception of j

out of n packets is D(j) =
�n

j

�

if j < l and D(j)≈ 1
60

p
l log2 l

j−l+1
otherwise [49].

LT erasure codes are easy to implement and provide a reasonable tradeoff
between encoding/decoding performance and correction capability. All
fragments are mutually linked with either a single hash of 72 bits or an
accumulator witness of 144 bit. The sender encapsulates the fragments into
packets, encodes them with a (8,4)-Hamming code, and scrambles (inter-
leaves) the bits according to a public pseudo-random permutation. Packets
are transmitted on a randomly chosen frequency from the set {2.301 GHz,
2.303 GHz, . . . , 2.700 GHz} of 200 channels using Gaussian Minimum Shift
Keying (GMSK) at a bitrate of R =1 Mb/s. After the last bit of a packet has

8.2 Implementation Overview 57

in
he

ri
ta

nc
e

ac
ce

ss
vi

a
in

te
rf

ac
e

as
so

ci
at

io
n

co
m

po
si

ti
on

uf
h_

bi
t_

sc
ra

m
bl

er

uf
h_

m
ar

sh
al

lin
g

uf
h_

fr
am

e_
se

nd
er

uf
h_

fr
am

e_
re

ce
iv

er

uf
h_

m
es

sa
ge

uf
h_

tr
an

sc
ei

ve
r

uf
h_

m
es

sa
ge

_e
nc

od
er

uf
h_

m
es

sa
ge

_d
ec

od
er

uf
h_

pa
ck

et
_e

nc
od

er
uf

h_
pa

ck
et

_d
ec

od
er

uf
h_

pa
ck

et
_e

nc
od

er
_h

84
uf

h_
pa

ck
et

_d
ec

od
er

_h
84

uf
h_

ra
di

o

uf
h_

m
es

sa
ge

_d
ec

od
er

_a
cc

um
ul

at
or

uf
h_

m
es

sa
ge

_d
ec

od
er

_h
as

h_
lin

ks

uf
h_

m
es

sa
ge

_e
nc

od
er

_a
cc

um
ul

at
or

uf
h_

m
es

sa
ge

_e
nc

od
er

_h
as

h_
lin

ks

Figure 8.2: Class diagram of the core UFH implementation.

58 8 Prototype Implementation

message receiver

message reassembly

usrp source

frequency selection

USRP

bit unscrambling
ECC decoding

message sender

message fragmentation

usrp sink

frequency selection

USRP

ECC encoding
bit scrambling

Figure 8.3: Schematic description of our UFH sender and receiver imple-
mentation.

been transmitted, the USRP driver switches to the new frequency channel
and waits until the switching procedure has completed. With the used
USRPs, switching a frequency channel took up to 500µs. Given this rather
long switching time, the output signal of the transceiver is set to zero
during the transition to avoid that a signal is emitted before the actual
packet transmission (what would help the attacker in detecting the trans-
mission). As a result, each frequency slot consists of a first phase in which
the actual packet transmission takes place and a second phase in which
the transmitter is reconfigured and no signal is emitted (see Figure 8.4).
The overall packet transmission time is thus tm ≈ s/R+500µs, where s
is the length of an encoded packet. Note that purpose-built frequency
hopping transceivers can provide much faster frequency switching times in
the order of one microsecond and much higher data rates of several tens
of Mb/s.

The UFH receivers switch the input channels at a rate of about 100 Hz.
If a signal is detected, they continuously try to decode the received data.
Successfully received fragments are verified and stored in the correspond-
ing message buffer. Once enough fragments are available, the message is
reassembled and the used packets are removed. If the message is further ac-
cepted by the application as being authentic (i.e., if the signature is valid),
the whole message buffer is discarded and the message gets appended to
the message history buffer.

8.3 Experimental Results 59

-1

-0.5

0

0.5

1

-200 0 200 400 600 800 1000 1200 1400

no
rm

al
iz

ed
si

gn
al

st
re

ng
th

time in µs

Figure 8.4: Sampled baseband signal of an UFH transmission. Each
frequency hop consists of two phases: In the first phase (about 720µs
in the example), the packet is transmitted whereas in the second phase
(about 480µs in the example), no signal is emitted while the transmitter is
reconfigured.

Our implementation of the Diffie-Hellman (DH) and Burmester-Desmedt
(BD) key agreement protocols uses 256-bit prime fields for the elliptic
curves and 32 bit values for identities and timestamps. This results in a
message size for the DH key agreement of 1144 bits if the certificates are
pre-shared and about 3360 bits if the certificates must be included in the
messages. For the BD key agreement, the message sizes are 1000 bit for
the first and 1512 bit for the second message.

In addition to the UFH sender and the UFH receiver, we also used
the USRP platform for implementing a reactive-sweep jammer. In this
implementation, the first of the two daughterboards is used for scanning,
the second for jamming. Unfortunately, the high channel-switching times of
the USRP platform severely limit the jamming efficiency and do not allow
high jamming probabilities. For this reason and for the sake of accuracy,
we simulated the jamming in our experiments in software by discarding a
received packet with probability p j .

8.3 Experimental Results
In our first experiment, we performed a series of message broadcasts from
a single sender to a set of up to three receivers and measured the time
after which the last receiver was able to reconstruct the message. The

60 8 Prototype Implementation

0

1

2

3

4

5

6

1 10m
es

sa
ge

di
ss

am
in

at
io

n
ti

m
e

in
se

c

probability that a packet is jammed (p j)

|M | = 1000
|M | = 2000
|M | = 3000 c = 200, cr = 2, ct = 1, s = 720 bit

R = 1 Mbps, rc = 0.5, k = 72 bit

Figure 8.5: Time to broadcast a message with our USRP-based prototype
implementation. The lines show the expected theoretical results, the points
and confidence intervals the findings of our experiments. We observe that
the message transmission time increases linearly with the message size but
only logarithmically with the number of receivers.

presented measurement results for more than three receivers were obtained
by combining multiple runs for the same parametrization; this procedure
is reasonable given the inherent randomness of the reception process (i.e.,
a sample that is obtained by combining the results of two receivers and
five measurements is statistically equivalent to a sample that is obtained
by a single measurement with ten receivers). In our second experiment,
we evaluated the performance of the DH and BD key agreement protocols.
We performed several DH and BD key establishments and measured the
time after which the last participant was able to compute the shared key.

The average time to broadcast a message with our USRP-based proto-
type implementation is shown in Figure 8.5, the average time to establish
a shared key in Figure 8.6. We observe from Figure 8.5 that the message
transmission time increases linearly with the message size but only loga-
rithmically with the number of receivers. The results depicted in Figure 8.6
further show that even if the processing gain of 23 dB allows the attacker
to jam up to 50% of the packets, a key can be established between two
devices in less than 4 s and among a group of 10 devices in less than
7 s (assuming that certificates have been pre-shared). We point out that
purpose-built frequency hopping transceivers can provide frequency switch-
ing times in the order of one microsecond and bit-rates of several tens
of Mb/s. Realistic times of purpose-built UFH transceivers are thus likely

8.3 Experimental Results 61

to be 10 to 100 times lower than what we achieve with the presented
implementation. Nevertheless, our results clearly show that the proposed
UFH-based communication is feasible in practice.

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5

ti
m

e
to

es
ta

bl
is

h
a

D
H

ke
y

in
se

c

probability that a packet is jammed (p j)

certificates pre-shared
certificates in the message

c = 200, cr = 2, ct = 1, s = 720 bit
R = 1 Mbps, rc = 0.5, k = 72 bit

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5ti
m

e
to

es
ta

bl
is

h
a

B
D

gr
ou

p
ke

y
in

se
c

probability that a packet is jammed (p j)

group size g = 3
group size g = 10
group size g = 50

c = 200, cr = 2, ct = 1, s = 720 bit
R = 1 Mbps, rc = 0.5, k = 72 bit

Figure 8.6: Time to establish a shared key with our USRP-based prototype
implementation of the Diffie-Hellman and the Burmester-Desmedt key-
agreement protocols. The lines show the expected theoretical results, the
points and confidence intervals the findings of our experiments. We point
out that purpose-built UFH transceivers enable to decrease these times
significantly.

Chapter 9

Related Work

In this chapter, we discuss the work that is related to Part I of this thesis. For
the most part, we focus on work that addresses the impact and mitigation
of jamming and refer to Chapter 15 for a discussion of related work that
reviews the detection of jamming.

9.1 Impact of Jamming
Due to the fact that communication jamming is not a novel threat, the
impact of jammers according to their capabilities (e.g., broadband or
narrowband) and behavior (e.g., constant, random, reactive) has been
widely studied [4,5,13,21,22,25,31,47,56,60,61].

Commander et al. investigated the so-called wireless network jamming
problem, that is, the minimum number of required jamming devices and
their optimal placement to suppress all communication in a network [21,
22]. In their work, they present several optimization formulations for
covering the communicating nodes with jamming devices and for limiting
the connectivity index of the network nodes (i.e., the probability that there
exists a path between two nodes). They further incorporate percentile
constraints to develop formulations which provide solutions that require
less jamming devices at the cost of a reduced solution quality.

The impact of jamming on the connectivity in ad-hoc networks was
studied by Noubir [56]. He investigated both the case where the jammers
can be optimally placed by the attacker and the case where the jammers
are randomly located within the deployment area. His findings show
that even a small number of jammers can drastically reduce the network
connectivity when the nodes communicate using omnidirectional antennas.
They also show that directional antennas significantly improve the network
connectivity at the expense of an increased average number of hops and
that mobility allows further resiliency to jamming.

A class of jamming attacks, referred to as flow-jamming attacks, in
which an adversary with multiple jammers in the network jams packets
to reduce traffic flow were analyzed by Tague et al. [73, 74]. In their
work, they propose the evaluation metrics jamming impact (i.e., average
fraction of jammed flow rate over all flows), jamming efficiency (i.e., ratio
of jamming impact to the average jamming resource expenditure), and
jamming resource variation (i.e., relative difference between the maximum

64 9 Related Work

and minimum jamming resource expenditure) and formulate optimal flow-
jamming attacks with respect to these metrics using linear programming.
They further show that even in the absence of a centralized jammer coordi-
nation, efficient flow-jamming attacks can be performed using distributed
algorithms.

A second jamming-related problem considered by Tague et al. is
jamming-aware source routing in which the source node performs traffic
allocation based on empirical jamming statistics at individual network
nodes [72]. They formulate the traffic allocation as a network flow opti-
mization problem and show that in multi-source networks, this centralized
optimization problem can be solved using a distributed algorithm.

Gilbert et al. established bounds for several classical multiplayer prob-
lems such as leader election or binary consensus under the influence of
malicious interference [31]. Specifically, they show that a jammer that is
allowed to block up to β messages can delay the communication of two
players for 2β + lg |V |/2 rounds, where V is the set of possible values that
the players communicate. Via reduction to this bound they further derive a
lower bound of 2β +Θ(lg |V |) rounds for reliable broadcast, 2β +Ω(log n

k
)

rounds for leader election, and 2β+Ω(k lg |V |
k
) rounds for static k-selection.

In the latter two bounds, k represents the number of participants which
contend to become leader and to transmit their initial value, respectively.

The performance of IEEE 802.11 under jamming was evaluated by
Thuente and Acharya [76] and Bayraktaroglu et al. [13]. In their studies
they consider proactive (periodic) jammers as well as reactive jammers
that jam only non-colliding transmissions and might optimally adjusts their
strategy according to the current states of the participating nodes. The
evaluations by Thuente and Acharya are solely based on OPTNET simu-
lations whereas the study by Bayraktaroglu et al. comprises a theoretical
analysis of the saturation throughput of 802.11 based on discrete-time
Markov chains, extensive Qualnet simulations, and real world experiments
using GNU Radio and the USRP platform. Their findings show that even a
simple periodic jammer is highly damaging when the network is saturated
and that reactive jammers can drastically reduce the throughput of IEEE
802.11 networks with only a limited energy cost for the attacker.

9.2 Jamming Mitigation
Spread-spectrum (SS) techniques such as FHSS, DSSS, and chirp SS [5,
60,61] achieve frequency diversity over the communication channel and
are well-studied countermeasures against communication jamming attacks.

9.2 Jamming Mitigation 65

Jamming and (unintentional) interference are further thwarted by highly
directional antennas [5] and by the application of forward error-correcting
codes and special coding strategies [47, 79]. Over the last years, vari-
ous additional countermeasures have been proposed [19,23,71,77,82]:
Desmedt et al. and Tague et al. studied the problem of compromised in-
siders and proposed efficient methods to assign channels to receivers in
a way such that the capability of colluding groups to jam the reception of
other receivers is minimized [23,71]; Tague et al. additionally proposed
an algorithm for the identification of compromised users [71]; Xu et al. ex-
amined the ability of sensor networks to cope with radio interference and
proposed a scheme called channel surfing, whereby (groups of) sensor
nodes successively switch their communication to a backup channel if they
assume that the current channel is jammed [82]; Čagalj et al. showed how
wormholes based on wires or on channel hopping can be used to establish
communication out of a jammed area [77]; and Chiang et al. proposed a
scheme for broadcast jamming mitigation in which the spreading codes are
organized in a binary tree and which enables the detection of compromised
nodes with redundant transmissions using test codes (i.e., codes at the
leaves of the tree that belong to a single node) [19]. However, all these
countermeasures rely on secrets that were pre-established between the
sender and the receiver(s) or are very specific regarding the attacker’s
capabilities and can thus not be applied in the considered scenarios.

Recently, the theory and systems community became aware of the
shortcoming of non-existing methods for jamming-resistant communication
without shared secrets and started to propose solutions for this problem.

Dolev et al. presented f-AME [25], a round-based, randomized protocol
to set up group keys in the presence of message collisions and insertions.
In f-AME, nodes recruit surrogates that relay messages on their behalf
and in each round t + 1 honest nodes simultaneously broadcast on t + 1
channels, where t is the number of channels that the attacker can jam, so
that at least one transmission succeeds. A major limitation of f-AME is its
requirement of a (fully connected) group of size > 3(t + 1)2 + 2(t + 1);
usually t is in the order of tens or even hundreds of channels, requiring a
group of hundreds or even thousands of nodes.

The solution proposed by Baird et al. [10] uses concurrent codes in
combination with UWB pulse transmissions. A concurrent code is a set of
bit vectors such that no vector is a subset of a bitwise or of a small number
of other vectors. To send a vector, each bit of a vector is assigned to a times-
lot and an UWB pulse is transmitted if the bit is set. The receiver records
the received pulses and tries to identify the sent vector by eliminating those

66 9 Related Work

vectors from the set of possible vectors for which an expected pulse was not
received. The basic assumption behind this approach is that the attacker
cannot remove UWB pulses from the radio channel but only insert addi-
tional ones. The jamming resistance achieved by this scheme is, however,
not one-to-one comparable to common spread-spectrum-based techniques:
While the successful jamming of a spread-spectrum communication re-
quires that the attacker has enough transmission power to overcome the
processing gain, with concurrent codes the limiting factor is the number of
pulses that the attacker can insert, that is, the energy of the attacker.

Jin et al. introduced intractable forward-decoding along with efficient
backward-decoding as a new concept to enable DSSS communication
without shared keys [40]. Their solution is based on the observation
that if a seed of size k is large enough to ensure that the attacker cannot
identify the therefrom generated spreading sequence on time (i.e., before
the message has been transmitted), then the scheme remains secure even
if we use a seed of size k for the first half of the message an a seed of size
k− 1 for the second half of the message (although the attacker must try
only half as many keys for the second half of the message as for the first
half, she also has only has half as much time left). In the proposed scheme,
the sender first selects a random seed of size k and divides the message
into l parts. To generate the spreading sequence for the transmission of the
i-th part, the i most significant bits of the seed are replaced with the i most
significant bits of the receiver’s MAC address, thereby reducing the entropy
in the seed to k− i bits. The receiver exploits this fact by first recording
the entire message transmission and then decoding the message in reverse
order, starting with the last part. Once the k− l + 1 bits that were used to
spread the last part have been identified, only one additional bit must be
guessed for each additional part. The presented approach is very efficient
in terms of energy costs but targets at pairwise communication.

Pöpper et al. proposed Uncoordinated DSSS (UDSSS) as an alternative
approach to enable DSSS-based (broadcast) communication without a
shared key [63]. UDSSS follows the principle of DSSS in that the trans-
mitted data is spread using spreading sequences. However, as opposed
to DSSS, where the spreading sequence is known to the sender and the
receiver, in UDSSS the sender uses a randomly chosen spreading sequence
from a publicly known code set. The receivers—unaware of the right
spreading sequence—first record the entire message transmission and then
decode the message by trying all sequences from the code set. The required
decoding time therefore depends on the size of the code set and on the
receivers’ computing power. The size of the code set must further be large

9.3 Secure Erasure Coding and Hash Links 67

enough to prevent that the attacker can identify the right sequence before
the message has been transmitted. As a result, the jamming resistance
of UDSSS depends not only on the achieved processing gain (i.e., on the
attacker’s transmission power) but also on the attacker’s computing power.

From a conceptual point of view, the two main advantages of UDSSS
over UFH are that in UDSSS messages must not be fragmented and that
UDSSS usually provides the better LPI characteristics. The two main
advantages of UFH over UDSSS are that UFH achieves the same jamming
resistance as the related coordinated scheme and that UFH does not impose
additional requirements on the FH transceivers (and thus can easily be
applied to existing systems). The absolute performance of the two schemes
heavily depends on the capabilities of the employed hardware; that is, on
whether FH or DSSS is better supported.

9.3 Secure Erasure Coding and Hash Links
The distillation codes introduced by Karlof et al. [41] have a similar goal
as the verification techniques presented in this thesis. However, because
UFH communication relies on short packets, the distillation codes based on
Merkle trees proposed in their work are not well suited for our purposes.

In the context of distributed data storage, Hendricks et al. proposed
the application of homomorphic fingerprinting [37,38] to ensure that all
erasure code fragments belong to the same file. The presented fingerprints
preserve the structure of the erasure code and allow that each fragment can
be verified independently. However, unlike in the data storage setting, the
(comparatively large) size of the fingerprints can no longer be neglected in
the considered anti-jamming scenario and severely limits their application
to our schemes.

Independent of our work, Slater et al. [67] proposed two additional
packet verification techniques (Hashcluster and Merkleleaf) and one similar
to our scheme based on cryptographic accumulators (Witnesscode). Their
results confirm our finding that cryptographic accumulators are an excellent
building block for creating efficient message coding schemes.

The concept of hash chains was fist proposed by Lamport [44] and has
since been extensively used in various cryptographic systems. In particular,
the use of hash chains as an efficient means to protect lossy packet streams
was proposed by Perrig et al. [59] and extended to bidirectional, multiply-
linked hash graphs by Golle and Modadugu [32] and Miner and Staddon
[54]. As opposed to our work, these works focus on authentication and
assume the availability of shared keys.

Part II

Detection of Reactive
Jamming in Wireless

Sensor Networks

Chapter 10

Introduction

Initially motivated by battlefield intelligence, wireless sensor networks
(WSNs) have expanded into a number of security and safety critical civilian
applications including emergency response support, fire and burglar alarm
systems, and the protection of critical infrastructures. Common to these
applications is that they rely on dependable and timely delivery of alarm
notifications. These alarms are typically raised by sensor nodes upon the
detection of a sensed event (e.g., presence of an intruder) and must subse-
quently be forwarded to the network authority in a hop-by-hop manner. A
sensor network that supports these applications must therefore guarantee
the timely delivery of alarms even under jamming attacks.

The expected lifespan of such sensor network applications ranges from
months to years and, given the limited power supply of sensor nodes,
places high demands on the energy efficiency of the running algorithms.
To meet these demands, existing surveillance applications [26,34,36,69]
combine low duty-cycling with reactive notification. Here, alarms are only
transmitted upon detection of an event (i.e., for the network authority “no
news is good news”). While such behavior is highly desirable in energy-
constraint sensor networks, in conjunction with the low output power and
limited spectral diversity of sensor node transceivers, it makes the alarm
forwarding highly vulnerable to jamming-based denial-of-service attacks
(i.e., alarm masking); these attacks have been shown to come at a low cost
for the attacker while being particularly harmful to the timely delivery of
critical information [77,80,83].

In principle, there are two solutions to counter jamming attacks on
alarm forwarding: jamming mitigation and jamming detection. However,
common spread-spectrum-based jamming mitigation techniques such as
FHSS or DSSS are beyond the capabilities of current sensor nodes and
existing jamming detection techniques for sensor networks do not suffice
to protect the considered reactive message forwarding. Existing jamming
detection techniques rely on the packet-delivery-ratio (PDR) and/or the
received ambient signal strength as their main decision criteria [46,57,60,
83] and have been shown to be well-suited for the detection of proactive
mid- or long-term jamming [46,83]. They are, however, not designed to
detect reactive (packet or single-bit) jamming: Firstly, existing jamming
detection techniques rely only on the CRC of a packet to decide whether

72 10 Introduction

it was received correctly and therefore can (in general) not distinguish
between packet failures due to weak radio links and interference. Secondly,
assessing an accurate PDR is not practical in a reactive forwarding scheme
for messages are sent very rarely. Thirdly, jamming does not necessarily
cause a steady and high received signal strength (RSS) value, as only a
small fraction of a packet has to be interfered with in order for the packet
to be invalid [5, 57, 60]. A reactive jammer can thus keep the increase
in the effective RSS value very low and hence avoid being detected with
current approaches.

In this work, we propose a novel jamming detection scheme as a
solution to these problems. Our scheme is able to identify the cause
of bit errors for individual packets with high probability by looking at
the received signal strength (RSS) during the reception of these bits;
bit errors are detected either based on predetermined knowledge, error
correcting/detecting codes, or limited node wiring in the form of wired
node chains (n-tuples). The intuition behind this process is that if there
was a bit error although the RSS value was high, this indicates external
interference (intentional or unintentional); if the bit error was due to a
weak signal (e.g., due to fast fading or shadowing), the RSS value should
be low. This additional information allows an accurate differentiation of
packet errors due to intentional interference from errors due to weak links,
even in the case of a sophisticated (reactive) attacker that jams only a
small portion of a packet.

We discuss the strengths and weaknesses of the proposed bit-error iden-
tification techniques and evaluate their jamming-detection performance
analytically, by simulations, and experimentally with an implementation
on BTnodes [1]. The evaluation results confirm that our solution meets
the performance and accuracy requirements of (reactive) alarm forward-
ing protocols and enables the detection of advanced jamming attacks in
which the attacker can freely choose the duration, strength, and beam
width of the jamming signal. To the best of our knowledge, this work is
the first to present a jamming detection scheme for sensor networks that
enables the detection of reactive (single bit) jamming or overshadowing
on a per-packet basis. We further believe that this work provides useful
insights into the utility of limited wiring as a means for securing wireless
sensor networks. In particular, our work shows how the combination of
limited node wiring and low-power wire integrity verification enables the
formation of robust sensor networks for the timely and dependable delivery
of alarm notifications.

10.1 Contributions 73

10.1 Contributions
In summary, the three main contributions of this part are:

• We demonstrate the susceptibility to jamming attacks of current
state-of-the-art forwarding schemes for WSNs.

• We discuss possible techniques for the mitigation of jamming based
on forward error correction and limited node wiring (n-tuples).

• We present a novel jamming detection scheme for countering ad-
vanced (reactive single bit) jamming attacks in wireless sensor net-
works and develop three different techniques for the identification
of bit errors based on: predetermined knowledge, error correcting
codes, and limited node wiring (n-tuples).

10.2 Outline
The remainder of this part is organized as follows: In Chapter 11 and 12 we
motivate our work by demonstrating the severe impact of reactive jamming
on (safety-critical) alarm forwarding in WSNs. We present our novel
jamming detection scheme in Chapter 13 and evaluate it in Chapter 14.
Finally, we discuss related work in Chapter 15.

Chapter 11

Motivating Example: Alarm Forwarding
in Safety-critical Sensor Networks

In this chapter, we present a state-of-the-art alarm forwarding protocol for
safety-critical wireless sensor network (WSN) applications, such as fire and
burglar alarm systems. Using WSN technology for implementing safety-
critical surveillance applications is a challenging task: Alarms detected by
sensor nodes have to be reported reliably and within a few seconds to at
least one sink node, even in case that some of the nodes and communication
links fail. A complicating factor is that maintenance costs have to be very
low should the application be economically feasible. This requires an
energy-efficient operation of the sensor network for batteries should not
be replaced more often than once every two to three years.

With current generation sensor node hardware built out of COTS com-
ponents, the radio consumes the most power, and the above lifetime
requirement translates into a duty cycle of less than 1% and asks for a
reactive forwarding scheme where no notifications are sent in the absence
of a noteworthy event. The three fundamental requirements associated
with safety-critical applications are thus: reliable data delivery, low latency,
and low energy consumption. To jointly address these three requirements,
we present Dwarf, a Delay-aWAre Robust Forwarding algorithm that is
based on the following observations and assumptions:

a) One of the most robust, yet simple forwarding algorithms is flooding
because it ensures that a message will eventually reach its destination
as long as the network remains connected.

b) Traditional flooding is very expensive (with regard to energy con-
sumption and transfer costs) and does not consider the message
delivery time.

c) Nodes duty-cycle their radio to increase network lifetime and spend
most of their time in sleep mode. Moreover, to minimize overheads
and reduce protocol complexity, nodes do not synchronize globally
and wake up independently of each other.

d) The (worst-case) node-to-sink notification time is determined by the
relatively long sleep periods of the forwarding nodes along the path.

76 11 Motivating Example

The fundamental idea of Dwarf is to perform a unicast-based par-
tial flooding towards the sink in combination with a (greedy) delay-aware
node selection strategy to overcome the drawbacks mentioned above. More
precisely, the number of neighbors k to which an alarm is forwarded de-
termines the degree of introduced redundancy, thus making the algorithm
more robust at the expense of an increase in the number of messages and
the associated complexity in handling peak loads (e.g., collisions). The
selection of the destination nodes according to their wake-up times and
relative positions aims at reducing the overall alarm notification time. That
is, neighbors that wake up first and are closer to a sink are favored over
nodes that wake up later or are not on the shortest path towards the sink.

11.1 Application Scenario and Requirements
The concrete application scenario for which Dwarf was designed is a
distributed indoor wireless alarm system. Each sensor node consists of a
micro controller (e.g., an ATMEL ATMega128), a communication unit (e.g.,
a CC1000 transceiver), a power supply (in the order of 2 AA batteries) and
a sensor for detecting a specific alarm condition. All nodes are manually
deployed at fixed locations in a building as with ordinary, wired sensors. In
addition, there is at least one mains-powered sink node that is connected
to a central control station. Domain specific regulations [28] require
that an alarm raised by a sensor is reported at the control station (sink)
within 10 seconds, which leaves little room for per-hop delays in typical
office buildings with long corridors and one control station per floor. It is
also strongly advised that wireless alarm systems use the frequency band
from 868.6-868.7 MHz, which is exclusively to be used for wireless alarm
systems.

Further requirements are that failed nodes must be replaced and that
the integrity of the restored system is asserted by a qualified technician.
The latter is a costly operation and for financial reasons it therefore makes
sense to replace the batteries of all nodes as soon as the first one runs out of
energy. To reduce operational costs, such a grand replacement procedure
should, however, not occur more often than every two to three years. This
consideration requires that the proposed Dwarf protocol minimizes and
equalizes the power consumption of all sensor nodes and that it operates
with a very low duty cycle.

In order to achieve such a low duty cycle, the employed MAC protocol
has to be carefully chosen. One class of MAC protocols that achieve very

11.1 Application Scenario and Requirements 77

low duty cycles, are the low-power listening (LPL) protocols, of which B-
MAC [62] is the best-known exponent. A big advantage of these protocols
is that they do not require a central synchronization, and hence do not
burden the communication budget with an extra synchronization overhead.
As a basis for our alarm forwarding protocol, we chose WiseMAC [27], an
elaborate member of the class of LPL protocols.

Similar to the operation of B-MAC, with WiseMAC a node wakes up
periodically and checks if there is any activity on the radio channel. If no
activity is detected, the node goes right back to sleep, otherwise it keeps
on listening to receive a potential message. To ensure that messages are
not missed, each message is prepended with a wake-up preamble that
is slightly longer than the wake-up period so that the intended receiver
will sense an active channel and receive the entire transmission. A major
advantage of WiseMAC over other LPL protocols is its ability to learn the
receiver’s wake-up schedule with every message exchange. Specifically, the
receiver tells the sender in the acknowledgment for how long it has been
receiving the preamble before the actual message transmission started. This
additional knowledge allows the sender to shorten the preambles and to
start a transmission right before the intended receivers wake up. The gain
of this procedure is not only a significantly reduced energy consumption
but also a lower utilization of the wireless channel. The exact length of
a preamble depends on the estimated clock drift of the intended receiver
and the time that passed since it was last contacted.

11.1.1 Definitions
Throughout this chapter, we represent the sensor network by the graph
G := (V, E) consisting of the set of sink nodes S ⊂ V , the set of sensor
nodes V \S, and the set of edges E. All communication links are considered
to be bidirectional and two nodes u, v ∈ V can directly communicate with
each other (i.e., are neighbors) if and only if {u, v} ∈ E. All sensor nodes
are organized according to their distance to the nearest sink; nodes with
the same distance are said to be on the same level:

Definition 1. Let d(u, v) be the distance (i.e., the length of the shortest path)
between two nodes u and v. A node u is said to be on level l(u) = i with
respect to the set of sink nodes S if and only if min{d(u, s) : s ∈ S}= i. The
set Li := {u : u ∈ V ∧ l(u) = i} contains all nodes on level i and the maximal
level is denoted by l̂ :=max{l(u) : u ∈ V}.

Based on Definition 1, the neighbors of a node are divided into parents,
siblings, and children:

78 11 Motivating Example

Definition 2. We denote the set N P
u := {v : {u, v} ∈ E ∧ l(v) = l(u)− 1} as

the parents of a node u, the set NS
u := {v : {u, v} ∈ E ∧ l(v) = l(u)} as its

siblings, and the set N C
u := {v : {u, v} ∈ E ∧ l(v) = l(u) + 1} as its children,

respectively.

As already mentioned, we assume that all nodes but the sinks sleep
most of the time in order to save energy, and only wake up periodically.
The wake-up period of the nodes is denoted by Tw , 0< Tw(u)<∞.

Definition 3. Let τu,i , u ∈ V \ S, i ∈ {0,1,2, . . .} be the wake-up times of
node u and τu,i+1 = τu,i+Tw . The duration until the upcoming wake-up time
relative to the current time t is denoted by τ(u) :=min{τu,i : τu,i > t} − t.
Sink nodes are assumed to be always listening, hence, ∀s ∈ S : τ(s) = 0.

Finally, we assume that there exists a constant upper bound tm ∈ O(1)
on the transmission time of any message m, and use k to denote the
(constant) upper bound on the number of neighbors to which a message is
forwarded.

11.2 Delay-aware Alarm Forwarding
The objectives of the Dwarf algorithm are to ensure that (i) an alarm
message finally reaches a sink node and that (ii) it does so as quick as
possible. To this end, each node keeps track of the (estimated) wake-up
times of its parents and siblings and forwards a message to the k parents
and siblings that wake up next; neighbors which are known to have already
received the alarm are not considered in this process. Forwarding the
message to the parent that is the first to wake up minimizes the local
forwarding delay, whereas sending the message to more than one neighbor
decreases the probability that the alarm is lost. In detail, the forwarding
algorithm works as follows (see Algorithm 1):

For each newly created or received alarm message m, the node main-
tains a set of parent and sibling candidates, denoted as C P

m and CS
m, respec-

tively. These sets contain all the parents and siblings which are assumed
to have not yet received the message m (i.e., from which neither an ac-
knowledgment of m nor the message m itself has been received). As long
as the parent candidate set is not empty, the parent that wakes up first
is chosen as the next forwarding destination and subsequently removed
from the candidate set. If there are no more parents to chose from (i.e.,
if C P

m = ;), the sibling that wakes up next is used instead. Once both sets
are empty, they are reinitialized with N P

u \ Bm and NS
u \ Bm, respectively,

11.2 Delay-aware Alarm Forwarding 79

Algorithm 1 Alarm forwarding for node u

1: var H ← ;
2:

3: function INITCANDIDATES(m)
4: C P

m← N P
u \ Bm

5: CS
m← NS

u \ Bm
6: end function
7:

8: function GETNEXTHOP(m)
9: if C P

m = ; and CS
m = ; then

10: INITCANDIDATES(m)
11: end if
12: if C P

m 6= ; then
13: select v ∈ C P

m such that τ(v) =min{τ(v) : v ∈ C P
m}

14: C P
m← C P

m \ {v}
15: return v
16: else if CS

m 6= ; then
17: select v ∈ CS

m such that τ(v) =min{τ(v) : v ∈ CS
m}

18: CS
m← CS

m \ {v}
19: return v
20: else
21: return ⊥
22: end if
23: end function
24:

25: function SENDALARM(m)
26: if rm < ra then
27: rm← rm + 1
28: v← GETNEXTHOP(m)
29: if v 6=⊥ then
30: send alarm message m to node v
31: end if
32: end if
33: end function

80 11 Motivating Example

Algorithm 1 (continued) Alarm forwarding for node u

34: function FORWARDALARM(m)
35: INITCANDIDATES(m)
36: rm← 0
37: am← 0
38: SENDALARM(m)
39: end function
40:

41: upon acknowledgment of alarm message m sent to w
42: am← am + 1
43: Bm← Bm ∪ {w}
44: if am < k and w is not a sink then
45: SENDALARM(m)
46: end if
47: end upon
48:

49: upon drop of alarm message m sent to w
50: SENDALARM(m)
51: end upon
52:

53: upon reception of alarm message m from v
54: if m 6∈ H then
55: Bm← {v}
56: H ← H ∪ {m}
57: FORWARDALARM(m)
58: else if v 6∈ Bm then
59: Bm← Bm ∪ {v}
60: end if
61: end upon
62:

63: upon detection of an alarm
64: create alarm message m
65: Bm← {}
66: H ← H ∪ {m}
67: FORWARDALARM(m)
68: end upon

11.2 Delay-aware Alarm Forwarding 81

v1

v2

v3

u

u1

u2

w1

estimated wake-up time

t

pa
re

nt
s

N
P u

si
bl

in
gs

N
S u

Figure 11.1: Dwarf forwarding example for k = 3. Node u receives an
alarm from its child w1 and subsequently forwards the alarm to k of its
parents N P

u := {v1, v2, v3} and siblings NS
u := {u1, u2}. The destination

nodes are selected according to their distance from the sink (parents come
first) and their estimated wake-up times.

where Bm is the set of neighbors that have already received the message
m. A node aborts the forwarding process as soon as the message has been
successfully forwarded to k neighbors or to a sink node. The forwarding
process is also aborted if there are no more parents and siblings to forward
the message to (i.e., if (|N P

u | ∪ |NS
u |) \ Bm = ;). In any case, overall at

most ra ≥ k attempts are made to forward the message. Consequently,
an alarm is dropped without having been forwarded after ra unsuccessful
transmission attempts.

Upon reception of an alarm message m, a node first verifies that the
alarm has not already been forwarded (i.e., that m is not in the message
history H). New messages are appended to the message history and then
forwarded in the same manner as a newly generated alarm.

A forwarding example for k = 3 is shown in Figure 11.1. In this
example, node u receives an alarm message from its child w1 which it then
forwards to the parents v2, v3, and v1 according to their estimated wake-up
times. After the unsuccessful transmission to parent v1, the parent set is
empty and the message is forwarded to the sibling u2.

82 11 Motivating Example

11.3 Robustness Properties
In the following, we analyze the maximal number of link and node failures
that can be tolerated by our algorithm, compute an upper bound on
the required hop count, and show that the proposed (greedy) destination
selection algorithm is only a constant factor worse than an optimal solution.

Lemma 7. The proposed alarm forwarding algorithm (Algorithm 1) can
tolerate up to t l :=min(k,δ)− 1 link failures, where δ =min{|N P

u |+ |NS
u | :

u ∈ V} and k is the number of forwarding destinations.

Proof. Let us assume that u is the first node on level i > 0 to receive
or create an alarm which cannot be forwarded to a node on level i − 1.
Consequently, all links to u’s parents must be broken. In addition, for
≥ min(k, |NS

u |) of u’s siblings either the links from u to these siblings or
from these siblings to their parents must be broken. Per definition, each
node has at least one parent. Thus, in total ≥ |N P

u | + min(k, |NS
u |) ≥

min(k,δ)> t l links must be down, contradicting the assumption that there
are at most t l link failures. The threshold is tight for k ≥ δ as a node u
with |N P

u |+ |NS
u |= δ, which exists per definition, can be isolated from all

its parents and siblings if ≥ δ = t l + 1 links fail.

Lemma 8. If at most t l links fail (see Lemma 7), an alarm initiated by node
u on level l(u) will reach the nearest sink after at most l(u)+min(t l , l(u))≤
2l(u) hops.

Proof. In order to extend the number of required hops by one, the links
to all parents of a node v must be broken. However, as a message is
forwarded to min(k, |NS

v |) siblings, at least min(k, |NS
v |)− (t l − |N P

v |) =
min(k+ |N P

v |, |NS
v |+ |N P

v |)− t l ≥ min(k,δ)− t l = 1 of them are able to
forward it to one of their parents. As a result, the number of required
hops can be extended by only one for each level and requires that at
least one link is down. The maximal number of additional hops is thus
min(t l , l(u)).

Definition 4. For a node u, we denote by |N Z
u | the maximal number of siblings

such that: (i) for each sibling there exists a path to a node on level l(u)− 1
that is not a parent of u; (ii) on each path, all but the last node are on level
l(u); and (iii) all paths are mutually node-disjoint. More formally, |N Z

u | =
max{|a| | a ⊆ NS

u ∧ ∀v ∈ a : ∃ path (v, v1, v2, v3, . . . , vq) such that ∀vi , 1≤
i < q : vi ∈ Ll(u) and vq ∈ Ll(u)−1 \N P

u ∧ ∀v, w ∈ a, v 6= w : ∀i, j : vi 6= w j}

11.3 Robustness Properties 83

Lemma 9. The proposed alarm forwarding algorithm (Algorithm 1) can
tolerate up to tp :=min(k,γ)−1 node failures, where γ =min{|N P

u |+ |N Z
u | :

u ∈ V} and k is the number of forwarding destinations.

Proof. Let us assume that u is the first node on level i > 0 to receive
or create an alarm which cannot be forwarded to a node on level i −
1. Consequently, all parents of u must have failed. In addition, for ≥
min(k, |N Z

u |) of u’s siblings, they, a node on the corresponding node disjoint
path, or the corresponding node in the next level must have failed. Thus,
in total ≥ |N P

u | + min(k, |N Z
u |) ≥ min(k,γ) > tp nodes must be down,

contradicting the assumption that there are at most tp node failures. The
threshold is tight for k ≥ γ as a node u with |N P

u |+ |N Z
u |= γ, which exists

per definition, can be isolated from all nodes in the next level if we allow
≥ γ= tp + 1 node failures.

Lemma 10. If at most tp nodes fail (see Lemma 9), an alarm initiated by
node u on level l(u) will reach the nearest sink after at most l(u) + β tp hops,
where β =max{|N C

u | : u ∈ V}.
Proof. Given that at most tp nodes fail, there exists a path (u, u1, u2, . . . , um)
which connects a node u with a node um in the next lower level. A node
v that fails has at most |N C

v | children and thus can prevent at most |N C
v |

nodes on level i from forwarding an alarm to level i − 1. Consequently,
after at least |N C

v | hops in the same level, a node with a different parent is
reached. As a result, each failed node v can extend the number of required
hops by at most |N C

v | ≤ β and the maximal number of additional hops is
bounded by β tp.

Lemma 11. The presented (greedy) destination selection algorithm selects a
route that is at most 1+ Tw

tm
∈ O(1) times slower than the optimal route.

Proof. If there are no link failures, an alarm m initiated by node u on level
l(u) will reach the nearest sink in time tb = l(u)tm in the best case and in
time tw = l(u)(Tw + tm) in the worst case. Thus, if the algorithm prefers
parent v over w because τ(v, t0) = T < τ(w, t0) = T + ε we get a worst
case ratio of

c =
T + (l(u)− 1)(Tw + tm)

T + ε+ (l(u)− 1)tm
≤ Tw + tm

tm
= 1+

Tw

tm
.

84 11 Motivating Example

11.4 Experimental Evaluation
To evaluate the proposed forwarding algorithm under real conditions
we developed a prototype implementation for a sensor node platform
based on the MSP 430F148 microprocessor and the Chipcon CC1000 radio
transceiver and conducted a series of experiments in two different testbeds:

The first testbed was a typical office environment in which 16 sensor
nodes and one sink node were deployed on one floor of an office building.
The nodes were mounted on the ceiling at positions at which wired fire
detectors would be placed. Due to the distributed nature of the deployment,
the signal quality was degraded by walls and other obstacles, resulting in
an increased chance for random packet losses.

The second testbed was a dense tabletop setting and represented an
open-space scenario that can be encountered in factories and airport halls
where nodes are typically in line of sight to each other and where the
number of neighbors is rather high. In this setting, 32 nodes were arranged
in a 8 x 4 grid and each node was assigned to a specific level (i.e., distance
to the sink): Five nodes were assigned to level 1 and were allowed to
directly communicate with the sink, 10 nodes were assigned to level 2, and
16 nodes to level 3.

In both settings, all nodes were wired to a central control station
collecting performance data for the various tests. It was possible to trigger
fire alarms at specific nodes and to trace the path and delay of the alarm
message to the sink. The two main metrics that were evaluated are alarm
latency and energy consumption.

11.4.1 Alarm Latency
The alarm forwarding performance of the Dwarf algorithm was evaluated
by triggering a sequence of alarms on different nodes and by measuring
the time until the alarms reached the sink node. In the office setting, a
total of 4950 alarms was triggered on all nodes in a round robin fashion.
Altogether, all but three alarm messages reached the sink, resulting in
delivery rate of 99.94%. We later identified that two out of the three lost
messages were dropped due to an implementation error and cannot be
attributed to the alarm-forwarding algorithm. In the tabletop setting, we
triggered 4609 alarms and achieved a delivery rate of 99.98%, with only
one alarm being lost.

The latency distribution of the measured alarms for the office and
tabletop scenario are depicted in Figure 11.2 and 11.3, respectively. We

11.4 Experimental Evaluation 85

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10

nu
m

be
r

of
al

ar
m

s

latency in seconds

alarms triggered on level 1
alarms triggered on level 2
alarms triggered on level 3

Figure 11.2: Alarm latency for the office testbed.

0

100

200

300

400

500

0 2 4 6 8 10

nu
m

be
r

of
al

ar
m

s

latency in seconds

alarms triggered on level 1
alarms triggered on level 2
alarms triggered on level 3

Figure 11.3: Alarm latency for the tabletop testbed.

observe that although there is clear correlation between higher levels and
increased message latencies, no alarm was delayed beyond the 10 s limit.

11.4.2 Energy Consumption
Given the rare occurrence of alarms, energy is mainly consumed by the
status monitoring and by the network initialization and maintenance. The
nodes’ average current consumptions in the steady state in the office and
tabletop setting are depicted in Figure 11.4 and 11.5. The results show a
fairly low average current consumption of at most 130µA, which—even
more important—is very well balanced.

86 11 Motivating Example

0

20

40

60

80

100

120

140

160

1 4 8 12 16

av
er

ag
e

cu
rr

en
t

co
ns

um
pt

io
n

in
µ

A

node id

sleeping
carrier sensing

overhearing
receiving sending

Figure 11.4: Energy consumption without alarms for the office testbed.

0

20

40

60

80

100

120

140

160

1 8 16 24 31

av
er

ag
e

cu
rr

en
t

co
ns

um
pt

io
n

in
µ

A

node id

sleeping
carrier sensing

overhearing
receiving sending

Figure 11.5: Energy consumption without alarms for the tabletop testbed.

In the tabletop setting, we additionally measured the energy demands
for sending alarm messages. In these experiments, each node sent 42
alarm messages in a round robin fashion so that a total of 1302 alarms
were forwarded. This number corresponds to approximately one alarm
per day over a period of over three years and is clearly above the rate at
which alarms are expected to be triggered. It is worth mentioning that all
triggered alarms were received at the sink.

Figure 11.6 shows the obtained results, normalized to 1000 alarms and
after the subtraction of the steady energy consumption. Most notably, the

11.5 Summary 87

0

0.5

1

1.5

2

1 8 16 24 31

en
er

gy
fo

r
10

00
al

ar
m

s
in

m
A

h

node id

overhearing
receiving
sending

Figure 11.6: Energy consumption in the tabletop testbed for sending 1000
alarms. The nodes are sorted according to their distance to the sink: nodes
1 to 5 are on the first level, nodes 6 to 15 on the second, and nodes 7 to 31
on the third level.

1000 alarm messages reduced the battery capacity by at most 1.76 mAh,
which is less than 0.1% of the capacity of a single alkaline AA battery.

Based on these results, a battery capacity of about 3400 mAh is required
to achieve the targeted network lifetime of three years. Two alkaline
batteries with a capacity of 2800 mAh each would therefore be more than
enough and leave an ample surplus for the sensor readings and the network
initialization.

11.5 Summary
In conclusion, we identify five main characteristics that are typical for
current alarm forwarding schemes in WSNs:

1. Energy-efficient operation of the sensor nodes. For economic
reasons, batteries should typically not be replaced more often than
once every two to three years. The energy consumption of the
nodes should additionally be as balanced as possible, for usually all
batteries are replaced as soon as the first node runs out of energy.

2. Nodes duty-cycle their radio. To minimize the energy consumption
of the radio transceiver, the nodes turn their radio only on when
necessary (i.e., if they want to send a message or expect one).

88 11 Motivating Example

3. Reactive alarm notification. To minimize communication, mes-
sages are only transmitted if a specific event is detected. With respect
to alarm messages, this usually means that “no news is good news”.

4. Narrow band, single channel receivers. Due to existing regula-
tions and economic considerations, wireless alarm systems use nar-
row band, single channel radio transceivers. Even if multiple chan-
nels are supported, the nodes change them very infrequently and
never during the transmission of a message.

5. Focus on random, non-malicious errors. The employed techniques
to ensure fault-tolerance and robustness such as multicast, forward
error correction, and automatic repeat-request are parametrized for
random, non-malicious errors.

In the next chapter, we will show that these characteristics make current
alarm forwarding schemes highly vulnerable to (targeted) jamming attacks
and discuss possible countermeasures and mitigation strategies.

Chapter 12

Impact of Reactive Jamming and
Mitigation Strategies

Before we present our solution for the detection of reactive jamming,
we first want to highlight the importance of such a detection scheme by
demonstrating how a reactive jammer can block communication in current
wireless sensor networks with minimal exposure. We additionally present
two techniques based on forward error correction and limited node wiring,
respectively, that help to alleviate the impact of jamming attacks but do
not suffice to adequately counter them in practice.

12.1 System and Attacker Model
The scenario that we consider in the remainder of Part II is a generalization
of the indoor fire alarm detection system presented in Chapter 11: A
wireless sensor network system is deployed in area A for the surveillance
of this area and the infrastructure therein. The main purpose of the
network is to, upon the detection of an exceptional event (e.g., presence of
an intruder), raise an alarm and forward it to the network authority. The
network behavior is reactive, that is, alarms are sent when an (exceptional)
event is sensed, and they are resent if they are not acknowledged by the
intended receivers. We assume that the node deployment is dense enough
to ensure that alarm messages reach several neighbors and that, for security
reasons, all traffic is encrypted and authenticated.

In this system, the attacker’s goal is to interrupt or delay the alarm
notification process by means of jamming. We assume that the attacker is
in control of one/several static/mobile jamming devices but is unable to
destroy or deactivate nodes without being noticed (e.g., tamper-responsive
packaging triggers alarm upon misuse); otherwise she could simply disable
all nodes. To achieve her goal, the attacker can either proactively jam
the intrusion area (Figure 12.1(b)) or reactively jam an alarm message
once it is sent (Figure 12.1(c) and (d)). More specifically, we consider an
attacker J that can freely choose its jamming location, frequency, rate, and
strategy. We further assume that the maximal transmission power PJ of the
attacker is finite, but we do not impose any restrictions on the attacker’s
energy supply. At each point in time, the attacker can freely choose the
power Pj and beam width θ j for a set {(P1

j ,θ 1
j), (P

2
j ,θ 2

j), . . . , (Pk
j ,θ k

j)} of

90 12 Impact of Reactive Jamming and Mitigation Strategies

CRCpayloadheaderpreamble
tsy

nc

(a) Packet transmission

(b) Proactive jamming

t

t

(c) Reactive packet jamming

t

(d) Reactive bit jamming

Figure 12.1: Jamming types. (b) Proactive jammers keep the channel per-
manently occupied so that no transmissions are possible, whereas reactive
jammers only jam once an ongoing transmission has been detected. (c)
With reactive packet jamming, the attacker emits the jamming signal as
soon as the transmission is detected and typically jams for an entire packet
length. (d) With reactive bit jamming, the attacker targets its jamming
signal at a specific part of the packet and keeps the jamming duration to a
minimum.

emitted jamming signals, provided that 1
2π

∑k
i=1 P i

jθ
i
j ≤ PJ . The jammer

can either be proactive or reactive [60, 83]: Proactive jammers do not
sense for ongoing transmissions but jam the channel permanently, whereas
reactive jammers initially solely sense for ongoing transmissions and start
jamming only when a packet transfer has been detected. In order to remain
undetected for as long as possible, the attacker might decide to jam only
a certain fraction λ j of all packets, to vary the beam direction and width,
and/or to move between individual attacks.

12.2 Impact of Reactive Jamming
The reason for the weak jamming resistance of current MAC protocols for
WSNs roots in the their dependency on a preamble/sync-byte header to
mark the start of the packet header [45]. This dependency makes the
protocols extremely vulnerable to bit errors in the preamble, sync-byte, or
packet header.

12.3 Robust Packet Detection 91

To demonstrate this vulnerability, we investigated the impact of reactive
bit jamming on the performance of the above introduced alarm forwarding
scheme (or, more precisely, on the WiseMAC and B-MAC protocols). The
experiments were conducted with BTnode sensor nodes that use an Atmel
ATmega 128L microcontroller running at 8 MHz and a Chipcon CC1000
radio [1], the preamble and header length were set to 96 and 8 bytes,
respectively. In order to enable the jamming of single bits without having
to use expensive hardware, the transmission rate of the sender and receiver
was reduced to 2.4 kBaud. We then implemented the jammer using an
additional BTnode sending random data at a rate of 38.4 kBaud.

Our results clearly show that reactive bit jamming can efficiently block
communication that uses current sensor network protocols with very low
exposure for the attacker (i.e., a very short time during which the attacker
has to send a jamming signal). Specifically, in our experiments, we were
able to achieve a jamming success rate of 90% by jamming only three bits
in the packet header or in the sync byte (see Figure 12.2). Even more
importantly, if the jamming was targeted at the sync-byte, the jammed
packet transmissions were not even recognized as such by the network
stack and were thus completely ignored by the nodes and not counted as
packet losses.

As a first step towards a better jamming resistance, we therefore intro-
duce a more robust packet header detection technique that significantly
increases the minimal duration during which the jammer must interfere
with a packet to block it. In addition, we discuss a jamming mitigation
technique that harnesses limited node wiring in the form of wired node
chains to forward messages out of the jammed region. We show that even
though both schemes help to diminish the impact of the jammer, they
cannot entirely counter jamming attacks. In the absence of (broadband)
anti-jamming communication, an effective jamming detection thus remains
an essential countermeasure against such attacks.

12.3 Robust Packet Detection
With our header detection technique, before a packet is transmitted, the
sender applies error correcting codes to the header and shuffles the encoded
bits according to a pseudo random sequence based on a secret key shared
by the sender and the receiver. As we shall see, this process ensures that
a substantial part of the packet header must be jammed to prevent being
decoded. Note that otherwise the MAC protocol in use is not modified;
in particular a possibly required preamble—for example to account for

92 12 Impact of Reactive Jamming and Mitigation Strategies

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

he
ad

er
de

liv
er

y
ra

te

number of jammed bits

header encoding
preamble and sync byte

Figure 12.2: Header delivery rate for our coding-based header detection
algorithm and a common preamble/sync-byte-based approach. The lines
show the expected theoretical results, the points the measured results;
for each transmission the bit shuffling was based on a new (secret) seed.
According to these results, a jammer that wants to mask a packet trans-
mission with a probability of > 90% would have to jam only 3 bits if the
common preamble/sync-byte method is used and more than 21 bits if our
coding-based detection is used. Hence, the coding-based header detection
is not only much more robust than common approaches, but also facilitates
the detection of a jammer as it enforces a longer jamming duration.

imprecision in the nodes synchronization or to announce a transmission if
low power listening is used—is still transmitted.

The receiver (periodically) samples the channel according to the sched-
ule of the employed MAC protocol and uses the received signal strength to
assess whether a transmission is taking place. If a transmission is detected,
the sender starts receiving it. However, as opposed to common practices,
the sender will not wait for a predefined sync-byte to mark the start of the
packet but will try do decode the header itself. Specifically, the receiver will
receive a complete header length, unscramble the data, and try to decode
it. Upon success, he receives the remainder of the packet; otherwise, he
drops the first (i.e., oldest) bit, appends the newest received bit, and tries
to decode the new input. This process is repeated until a packet is detected
or the transmission ends (i.e., the received signal strength drops to the
noise level for some time).

The main drawback of this packet detection algorithm is that the error
correcting codes increase the header length and thus the required energy

12.4 Limited Node Wiring 93

for a packet transmission. Whether this increase has a noticeable impact
on the overall energy consumption of the sender and/or receiver depends
on the application and the MAC protocol in use. The well-known B-MAC
protocol, for instance, uses preamble lengths which are several times longer
than the packet header [62]. A coding rate of up to 0.5 (i.e., an encoded
header length that is twice as long as the unencoded header) has thus only
a small impact on the duty-cycle and can usually be neglected.

We evaluated the performance of our proposed header detection scheme
experimentally with the aforementioned setup based on BTnode sensor
nodes. For the header encoding we used a Hamming (8,4) code that allows
for correcting single bit errors, detecting all two bit errors, and detect-
ing some three bit errors; the bit shuffling was performed with a linear
feedback shift register.

The efficiency of our coding-based header detection algorithm com-
pared to a preamble/sync-byte-based approach is shown in Figure 12.2.
Assuming a flipping probability of 0.5 for the jammed bits and a jamming
duration of x bits, in theory, the expected header delivery rate is 2−x for
the preamble/sync-byte method and about

∑x
i=0

�x
i

�

2−x(1− 8−1
8·16
)(

i
2) for

the coding-based approach. This has been confirmed by our experiments:
A jammer that wants to block a packet transmission with a probability of
> 90% has to jam only 3 bits if the common preamble/sync-byte method
is used but more than 21 bits if our coding-based detection is used. The
results thus show that the coding-based header detection is not only much
more robust than a preamble/sync-byte-based detection, but also increases
the detection probability of a potential jammer as it enforces a longer
jamming duration. However, as we shall see in Chapter 13, even such a sig-
nificantly longer jamming duration does not suffice to recognize jamming
with current jamming detection schemes.

12.4 Limited Node Wiring
Limited node wiring as an alternative jamming mitigation technique in
sensor networks was initially proposed by Čagalj et al. [77]. In their
solution, a regular wireless sensor network is augmented with a number
of wired node pairs. The purpose of these wired pairs is to establish a
jamming-resistant link from a jammed to an unjammed node in order to
forward alarm messages out of a jammed region (see Figure 12.3(a)). The
authors analyze the probability that such a forwarding link exists (i.e.,
that at least for one wired node pair the first node is inside the jammed
area while the second node is outside) as a function of the wire length

94 12 Impact of Reactive Jamming and Mitigation Strategies

(a) (b)

J J

Figure 12.3: Limited node wiring (a) in the form of node pairs and (b) its
generalization to wired node chains (n-tuples).

and the total number of wired pairs, but do not further evaluate whether
the therefore required wiring is feasible and ignore possible attacks on
the wires. In this section, we generalize the proposed pair-wise wiring
to limited (short-range) node wiring in the form of wired node chains
(n-tuples) that link n ≥ 2 nodes (see Figure 12.3(b)). We present an
analytical model for the random, manual, and airdrop-based deployment
of such n-tuples and evaluate the forwarding performance of the resulting
hybrid network analytically and with simulations. In this evaluation, we
focus on jamming attacks and assume that the wires in the n-tuples are
protected against attackers that have physical access to the network by
means of a low-power wire compromise detection protocol [68]; typical
physical attacks that must be detected by this protocol are disconnection
(node unplugging or wire cutting) and bridging (insertion of a rogue node
between two wired nodes).

12.4.1 Deployment of Pre-wired n-tuples
One of the objections that could be risen against the proposed limited
sensor wiring is the seemingly difficult node deployment. In this section,
we argue that the introduced wired n-tuples can be efficiently deployed in
a number of scenarios, and we present an analytical model for the three
most popular deployment techniques: random, manual, and airdrop-based
deployment.

For our purposes (i.e., to escape the jammed region), a desirable prop-
erty of an n-tuple is that its wired nodes do not cluster at a single point,
but are spread over a large area, preferably in a straight line (the deploy-
ment direction φ). In order to see to what extent this can be achieved,
we conducted some rudimentary experiments using a dummy 3-tuple of

12.4 Limited Node Wiring 95

20 m length. Not surprisingly, our experiments showed that in a manual
deployment, arranging the nodes in a (almost) straight line can easily be
achieved by unrolling the n-tuple (e.g., from a cable reel carried by a per-
son or mounted on a vehicle). For simulating airdrop-based deployment,
we dragged the n-tuple through the air and then released it from a small
ropeway at a low altitude (∼3 m). We observed that the expected length
of the deployed n-tuple was about 16-19 m and that its nodes deviated
from the straight line less than 2 m; this deviation depends of course on
the rigidity and length of the wires. We admit that these findings are
not conclusive and that additional, more extensive studies are required
in order to obtain statistically significant results. However, they illustrate
that pre-wired n-tuples can be deployed in a low-cost manner and with an
effort that is comparable to the one needed for the (manual) deployment
of wireless sensor nodes.

12.4.2 Deployment Model
Let ui := (ui,1, ui,2, . . . , ui,n) denote a n-tuple that is deployed in the de-
ployment area A. The order of the nodes in a tuple also determines their
wiring: that is, for a n-tuple ui and 1 ≤ j < n, node ui, j is connected to
node ui, j+1. For simplicity, we assume that all nodes are connected with
wires of the same length lw . The position of a node ui, j in the deployment
area is denoted by qi, j ∈A.

Given the deployment direction φ and the position qi,1 of the first node
of the n-tuple ui , the deployment of the remaining nodes ui,2 to ui,n can be
modeled as follows: For each node ui, j , 2≤ j ≤ n, imagine a disc D j−1 ⊂A
centered at ui, j−1 and of radius lw . The position of ui, j is then chosen
from D j−1 according to a random distribution defined by the (conditional)
probability density function fD(qi, j |φ, qi, j−1). More formal, let ri, j be the
euclidean distance between node ui, j−1 and ui, j , and αi, j be the deviation
of ui, j ’s position with respect to the deployment direction φ. To each n-
tuple ui = (ui,1, ui,2, . . . , ui,n) we can then associate a (2n− 1)-dimensional
(continuous) random variable Q i := (Q i,1, Ri,2,Λi,2, . . . , Ri,n,Λi,n) taking
values from the set {(qi,1, ri,2,αi,2, . . . , ri,n,αi,n) |qi,1 ∈ A ∧ ∀ j, 2 ≤ j ≤
n : 0 < ri, j ≤ lw ∧ ∀ j, 2 ≤ j < n : −π ≤ αi, j ≤ π} according to a
random distribution defined by the (joint) probability density function
fi(qi,1, ri,2,αi,2, . . . , ri,n,αi,n) = fQ(q1) fΦ(φ) fR,Λ(r2,α2) fR,Λ(r3,α3) · · ·
fR,Λ(rn,αn). Here, fQ(q1) and fΦ(φ) represent the distributions on A and
the interval [0,2π), respectively, and fR,Λ(r j ,α j) is the (joint) probability
density function for the distance ri, j between node ui, j−1 and node ui, j as
well as the deviation α j of ui, j from the deployment direction φ.

96 12 Impact of Reactive Jamming and Mitigation Strategies

The probability density function fR,Λ(r j ,α j) reflects the actual deploy-
ment conditions and depends on the kind of deployment (random, manual,
or airdrop-based) and on several physical parameters (e.g., the local ter-
rain conditions or the rigidity of the wires). It can be approximated with
appropriately parametrized (two-dimensional) Beta distributions (scaled
to the interval [0, lw] and [−π,+π]). If fQ(·), fΦ(·), and fR,Λ(·) represent
uniform distributions on A, the interval [0,2π), and a disc of radius lw ,
respectively, the resulting deployment is truly random. In any case, once
the probability density functions are determined, the deployment of any set
of n-tuples {u1, u2, . . . , um} can be formally described by the set of random
variables {Q1,Q2, . . . ,Qm}.

Simulation Parameters

In our simulations, the deployment area A is a square with a side length of
a = 500 m. The position of the nodes in the tuples is chosen according to
the probability density function fR,Λ(r j ,α j) = fR(r) fΛ(α), where fR(r) =
B(ar , br)−1(r

lw
)ar−1(1− (r

lw
))br−1 and fΛ(α) = B(aα, bα)−1(α+π

2π
)aα−1(1−

(α+π
2π
))bα−1 are two beta distributions and B(a, b) =

∫ 1

0
ta−1(1− t)b−1 dt.

Based on our (admittedly limited) experimental results, we chose the
parameters ar = 10, br = 1.76 and aα = bα = 124. For a given wire
length lw , this results in an expected n-tuple length of 0.85(n − 1)lw ,
σ ≈ 0.1(n− 1)lw and an expected deviation of α= 0, σ ≈ 0.14π.

12.4.3 Forwarding Performance
Once an alarm has escaped the jammed area, any (alarm) forwarding
scheme (which, in turn, might again leverage on the wired links) can be
used to inform the sink about the jamming. In this analysis, we therefore
focus on computing the probability that there exists an n-tuple that con-
nects the jammed with the non-jammed area. We first consider the case
of an omnidirectional jammer and afterwards generalize this result for an
arbitrary jammer. For simplicity, we assume that all nodes of an n-tuple lie
on a straight line and that any two consecutive nodes in a tuple have the
same distance.

Let X denote the event that at least one node of an n-tuple lies inside
a disc of radius r that is centered at the jammer, and by Y the event that
at least one node of an n-tuple lies outside the disc. Let further l be the
expected length of a tuple and z be the distance between the first node of
the n-tuple and the center of the disc. The probability that one node of a

12.4 Limited Node Wiring 97

(a)

r

(b) (c)

(f)

x

α

s
di

α

di

x
r

(d)

r
di
α

x

(e)

Figure 12.4: Geometric relations between the position/orientation of an
n-tuple and its possible intersections with a disc or a circular sector of
radius r; the figures are not true to scale. Drawings (a) and (d) show the
situation where the i-th node of the n-tuple lies inside a disc, drawings
(b) and (e) where it lies outside. Drawings (c) and (f) show the situation
where the n-tuple crosses a radius of a circular sector.

tuple lies inside the disc while another one lies outside is then

pX Y (r, l) =

∞
∫

x=0

P[X ∧ Y |z = x]P[z = x] (12.1)

=

r
∫

x=0

P[Y |z = x]
2xπdx

|A| +
r+l
∫

x=r

P[X |z = x]
2xπdx

|A| .

The probabilities P[Y |z = x] and P[Y |z = x] can be computed as
follows: Let di =

i−1
n−1

l be the distance between the first and the i-th node
in the n-tuple. Now imagine a circle of radius di centered at the first node in
the tuple. Given that the direction of a tuple is chosen uniformly at random,
the probability that the i-th node lies within the disc is proportional to
the central angle subtended by the two intersection points of this circle

98 12 Impact of Reactive Jamming and Mitigation Strategies

with the perimeter of the disc to the first node (see Figure 12.4(a)). As
illustrated in Figure 12.4(d), this angle is

αX (di , x) :=

0 if x < 0 or x > r + di or x + r < di ,

2π if 0≤ x + di ≤ r,

2 arccos
�

x2+d2
i −r2

2di x

�

otherwise.

(12.2)

Likewise, the probability that the i-th node lies outside of the disc
is proportional to the central angle subtended by the two intersection
points of the circle with the perimeter of the disc to the first node (see
Figure 12.4(b)). According to Figure 12.4(e), this angle is

αY (di , x) :=

0 if x < 0 or di + x < r,
2π if x > r + di or x + r > di ,

2π− 2arccos
�

x2+d2
i −r2

2di x

�

otherwise.

(12.3)

Hence, we obtain

P[X |z = x] = max
1≤i<n

αX

�

i
n−1

l, x
� 1

2π
, (12.4)

P[Y |z = x] = max
1≤i<n

αY

�

i
n−1

l, x
� 1

2π
, (12.5)

and thus

pX Y (r, l) =

r
∫

x=0

max
1≤i<n

αY

�

i
n−1

l, x
�

2π

2xπdx

|A| + (12.6)

r+l
∫

x=r

max
1≤i<n

αX

�

i
n−1

l, x
�

2π

2xπdx

|A| .

For the general case, in which the attacker does not emit a single
omnidirectional jamming signal but several directed signals specified by
the set {(θ 1

j , P1
j), (θ

2
j , P2

j), . . . , (θ k
j , Pk

j)} (see Section 12.1), we also have to
consider the possibility that a tuple does not cross the arc but the two radii
of the circular sector (Figure 12.4(c)). Let

s(x) :=min(lw , x sin(min(2π− θ i
j ,π/2))) (12.7)

12.4 Limited Node Wiring 99

be the (upper bounded) distance from the first node in the tuple to a radius
of the circular sector and

αX Y (di , y) :=

¨

0 if y < 0 or y > di ,

2 arccos(y/di) otherwise
(12.8)

be the central angle subtended by the two intersection points of the circle
centered at the first node of the n-tuple with this radius to the first node
(see Figure 12.4(f)). The probability that an n-tuple crosses the radii of a
circular sector can then be approximated as

p′X Y (r, l)§ 2

r
∫

x=0

s(x)
∫

y=0

max
1≤i<n

αX Y

�

i
n−1

l, y
�

2π

dydx

|A| . (12.9)

For a general attacker, the probability that there exists at least one
n-tuple that connects the jammed with the non-jammed area can thus be
lower bounded by

pl § 1−
k
∏

i=1

1−

1−
θ i

j

2π
pX Y (R(P

i
j), l)− p′X Y (R(P

i
j), l)

!m!

, (12.10)

where m is the number of deployed n-tuples and R(P1
j) is the radius of the

jammed area.
The influence of the number of nodes n per tuple, the wire length lw ,

the number of deployed tuples m, and of the size of the jammed area
(i.e., R(P i

j) and θ i
j) on the probability pl that there exists a wired link out

of the jammed area is depicted in Figure 12.5. We observe that longer
n-tuples can significantly increase this probability, whereas even very long
tuples cannot benefit from more than three wired nodes per tuple. As
the probability pl is proportional to the perimeter of the jammed area, it
increases approximately linear with the jamming range and beam width.
However, our results also show that for a practical tuple length of 20 m,
over 400 n-tuples must be deployed per km2 to ensure that a message can
be forwarded out of the jammed region in at least 95% of the cases. This
rather high number clearly limits the application of limited wiring as a
means to mitigate jamming attacks.

100 12 Impact of Reactive Jamming and Mitigation Strategies

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

length of the outstretched n-tuple in m

n = 2
n = 5
n = 10

a = 500
m = 1
R(Pj) = 100
θ j = 2π

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

number of deployed n-tuples

n = 3, l = 20
n = 3, l = 100
n = 3, l = 200

a = 500
R(Pj) = 100
θ j = 2π

0

0.02

0.04

0.06

0.08

0.1

0 50 100 150 200

jamming range r j in meters

n = 3, l = 10
a = 500
m = 1
θ j = 2π

0.00

0.01

0.02

0.03

0.04

0.05

0 π/2 π 3π/2 2π

beam width θ j

n = 3, l = 20
a = 500
m = 1
R(Pj) = 100

Figure 12.5: Probability pl that there exists a wired link out of the jammed
area. The lines show the expected result according to our analysis, the
points and confidence intervals the simulation results. We observe that
even very long tuples with a length of over hundred meters cannot benefit
from more than three wired nodes per tuple. Increasing the length of
a tuple, on the other hand, results in a linear increase of pl . As the
probability pl is proportional to the perimeter of the jammed area, it
increases approximately linear with the jamming range and beam width;
the offset for 0 and 2π is due to the change from a closed circle to a circular
sector.

Chapter 13

Detection of Reactive Jamming

Traditional approaches for the detection of jamming in wireless sensor
networks use the packet-delivery-ratio (PDR) and the received ambient
signal strength as the main decision criteria. Jamming is detected as
soon as the (averaged) PDR and/or the ambient signal strength exceeds
a pre-defined threshold (see Chapter 15). Although these approaches
are well-suited for the detection of proactive (long-term) jamming, they
are not sufficient to protect the considered applications against targeted
reactive jamming. To begin with, existing schemes rely only on the CRC
of a packet to decide whether it was received correctly and thus can
(in general) not distinguish between packet failures due to weak radio
links and interference. Furthermore, assessing an accurate PDR is not
practical in a reactive forwarding scheme as messages are sent very rarely.
Finally, jamming does not necessarily cause a steady and high received
signal strength (RSS) value, as only a small fraction of a packet has to be
interfered with in order for the packet to be invalid [5,57,60]. A (reactive)
jammer can thus keep the increase in the effective RSS value very low and
can hence avoid being detected with current approaches.

Our novel jamming detection scheme does not suffer from these limita-
tions. The central idea of our approach is to identify the cause of individual
bit errors within a packet and to deduce therefrom whether the packet
was jammed or just sent over a weak link. This is achieved as follows:
Whenever a node receives a packet transmission, it not only receives the
packet, but also records the RSS for each received bit of the packet1. Given
a bit error, a node then deduces the root cause of this error by looking at
the respective RSS value that was sampled during the reception of this bit.
The intuition behind this process is that if there was a bit error although
the RSS value was high, this indicates external interference (intentional
or unintentional); if the error was due to a weak signal (e.g., due to fast
fading or shadowing), the RSS value should be low. This additional infor-
mation allows an accurate differentiation of packet errors that are caused
by (un)intentional interference from errors that are caused by weak links,

1Some radios do not provide this accuracy but compute the averaged RSS value over
a sequence of k bits (e.g. one byte). In these cases the algorithm as described might not
detected jamming that affects less than k bits. This issue and possible mitigation strategies
are further discussed in Chapter 14.

102 13 Detection of Reactive Jamming

wait for transmission

try do decode header

raise jamming suspicion

are related RSS values high?

any bit errors?

packet found? raise jamming suspicion

packet ok

conclude link was weak

no

no

no

yes

yes

yes

Figure 13.1: Packet reception and jamming detection. Once a transmission
signal is detected, the receiver tries to decode the presumed packet header.
If it fails (i.e., if there is no transmission although the channel is busy) this
can indicate proactive jamming, and the sequential jamming test is updated.
If the received packet contains bit errors, the root cause of these errors is
analyzed and either the jamming test updated or the packet ignored.

even in the case of a sophisticated (reactive) attacker that jams only a
small portion of a packet.

Our jamming detection algorithm comprises three steps (see Algo-
rithm 2): (A) error sample acquisition (i.e., packet reception with RSS
recording and identification of bit errors), (B) interference detection (i.e.,
error cause analysis), and (C) sequential jamming test. The function of the
last step is to decide whether a detected interference was malicious or due
to an unintentional packet collision and is only required if the probability
of such a collision cannot be neglected. Next, we describe each of these
steps in detail; the overall packet reception and jamming detection process
that also considers proactive jamming is outlined in Figure 13.1.

13.1 Error Sample Acquisition
Whenever a node receives a packet transmission by radio, it receives the
packet (even if it is not the intended receiver) and also records the RSS
value for each received bit of the packet. That is, a node associates to each
packet m a sequence s of RSS values corresponding to packet bits. Hence,

13.1 Error Sample Acquisition 103

Algorithm 2 Jamming detection algorithm

1: RESETJAMMINGTEST()
2: while true do
3: (e, s) := GETERRORSAMPLE() (A)
4: x := DETECTINTERFERENCE(e, s) (B)
5: y := UPDATEJAMMINGTEST(x) (C)
6: if y = jamming then
7: raise jamming suspicion
8: else if y = no jamming then
9: RESETJAMMINGTEST()

10: else
11: do nothing as we need more evidence
12: end if
13: end while

for each bit in a packet the RSS at the time of its reception is also known;
we denote by m[i] and s[i] the i-th bit in the packet m and the i-th RSS
value in the RSS sequence s, respectively.

The next and generally more challenging task is the identification of bit
errors. In the simplest case, the content of m is predetermined (at least to a
large extent) and known by the receiver. Finding bit errors thus reduces to
comparing m with the reference packet m̂. More formally, the error vector
e can be computed as e[i] := m[i]⊕ m̂[i], where ⊕ is the exclusive or and
e[i] = 1 if and only if the i-th bit is false. This error vector and the RSS
sequence are combined to an error sample (e, s) which is then used as the
base for the interference detection. The main drawback of this approach
is that, because the packet content must be known to the receiver, the
information conveyed by the packet is virtually limited to at best a few bits.

This limitation can be overcome by means of error detecting/correcting
codes. These codes allow for detecting or even correcting bit errors in
arbitrary messages. Where the original data can be recovered, the bit errors
can be precisely detected by comparing the received and recovered data.
If, however, a code word can be identified as being faulty but cannot be
corrected, all bits in the word might equally be wrong and are thus marked
as false. In addition to this possible loss of precision, the second drawback
of using error correcting codes is the overhead that the codes introduce.
Depending on the strength of the code, the packet length (and thus the
energy required for its transmission) might be several times higher than
the length of the original packet.

104 13 Detection of Reactive Jamming

A third, more elaborate way to acquire error samples is based on
limited, short-range sensor node wiring in the form of wired node chains
(n-tuples), as introduced in Section 12.4. This method leverages the link
redundancy (wired/wireless) provided by these n-tuples. In what follows,
we assume for simplicity that errors on the wired links can be neglected or
are corrected (e.g., by forward error correction). If two nodes of a n-tuple
are in the transmission range of a sending node, they will both receive
the same packet transmission and record the corresponding RSS values.
Two such independently received packet/RSS-sequence pairs (m1, s1) and
(m2, s2) from the same packet transmission are then combined into an error
sample (e, s), where e[i] := m1[i]⊕m2[i] and s[i] :=min{s1[i], s2[i]}. In
general, error samples can be obtained in two ways:

In active monitoring, a node in an n-tuple sends a packet first over the
wired and then over the wireless channel. The other nodes in the tuple
receive both packets and record the RSS values of the packet received by
radio; the RSS values of the (faultless) packet received by wire are set to
infinity. Note that here the nodes in the tuple know when a packet is being
transmitted and thus can still try to receive and compare its (payload)
data, even if they fail to decode (part of) the header or payload. In passive
monitoring, whenever a node in an n-tuple receives a packet that does
not originate from a node in the tuple and that has not yet been received
by wire, the node broadcasts the packet over the wire together with its
respective RSS value sequence to all the nodes in the tuple. Each node
in the n-tuple that receives a packet over the wired and over the wireless
channel can then combine them to an error sample. Note that since the
algorithm does not make any assumptions regarding the content of the
packets, any regular application packet can be used to form a sample.

Being able to work with passive and active monitoring, our scheme
allows to trade off n-tuple deployment density against energy consumption:
In a passive system where the n-tuples do not introduce any additional
network traffic, at least two nodes of an n-tuple must be in the transmission
range of the sending node to detect jamming. In a (partially) active system
where (some of) the wired nodes periodically exchange probe messages2,
only one node of such an n-tuple must be included in the jammed region.
Moreover, as opposed to existing solutions, signal overshadowing or cases
where the packet transmission is not (or only partially) recognized by the
receiver’s radio can also be detected.

2Since all traffic is encrypted, the attacker cannot distinguish probe from regular messages.

13.2 Interference Detection 105

Algorithm 3 Error Sample Acquisition

1: function GETERRORSAMPLE()
2: while true do
3: receive (m1, s1) by wire
4: if the related packet (m2, s2) has already been received then
5: ∀i : e[i] := m1[i]⊕m2[i]
6: ∀i : s[i] :=min{s1[i], s2[i]}
7: return (e, s)
8: else if neighbor in the tuple will send it next then
9: receive m2 by radio and record RSS into s2

10: ∀i : e[i] := m1[i]⊕m2[i]
11: ∀i : s[i] :=min{s1[i], s2[i]}
12: return (e, s)
13: end if
14: end while
15: end function

13.2 Interference Detection
If a received packet contains at least one bit error, a node uses the measured
RSS values to decide whether the identified errors are due to interference
or due to a weak signal. If there was a bit error although the respective
RSS value was high (i.e., although the link appeared to be strong), we
conclude that the error must have been caused by external (intentional
or unintentional) interference. If, on the other hand, the respective RSS
value was low, we conclude that the error was most likely due to a low
signal-to-noise ratio.

Here, we present a simple threshold-based mechanism to decide whether
a packet error is due to interference. Let q be the counter for the number
of recently observed packet errors due to interference. For each bit error in
a packet, the respective RSS value is compared with a threshold S. If for at
least one such case the RSS value is above the threshold S, q is increased,
otherwise it is left unchanged. More formally, given an error sample (e, s),
if ∃i : e[i] = 1∧ s[i]> S then q := q+ 1. The choice of (an optimal) S de-
pends on the used radio and modulation scheme; it can be predefined (e.g.,
as the result of experiments) or be computed on-the-fly (e.g., as a function
of the RSS values of correctly received bits). If only links of poor quality are
available, more sophisticated (but also more expensive) decision methods
such as likelihood-ratio tests or Bayes factors can also be used [12]. In

106 13 Detection of Reactive Jamming

our experiments we achieved good results by adaptively changing S to the
average signal strength of the last 10 successfully received packets.

Algorithm 4 Interference Detection

1: function DETECTINTERFERENCE(e, s)
2: if ∃i : e[i] = 1 and s[i]> S then
3: return 1
4: else
5: return 0
6: end if
7: end function

13.3 Sequential Jamming Test
If the probability of packet collisions can be neglected, a node rises an
alarm whenever it detects bit errors that were caused by interference.
Otherwise, the result of the interference detection is taken as an input to
a sequential probability ratio test (SPRT) [85] which is used to decide
whether the recent packet errors (if any) were due to unintentional packet
collisions or due to jamming. We assume that the nodes can assess the
expected local interference (which is supposed to be low if the MAC works
properly), either based on their knowledge about the used MAC and
neighborhood or by using more sophisticated procedures such as those
proposed in [86]. Let pc be an upper-bound on the expected collision
probability, τF P (τFN) be the targeted probability for a false alarm (missed
attack), and q be the number of identified packet errors that were due
to interference during the last k error samples. Given the probability p
that the transmission of a packet fails, the probability that q out of k
transmissions fail is

�k
q

�

pq(1 − p)k−q. The marginal likelihood that the
observed packet errors were solely due to unintentional collisions (i.e.,
0≤ p ≤ pc , hypothesis H0) is then pH0

(k) :=
∫ pc

p=0

�k
q

�

pq(1− p)k−q dp; the
marginal likelihood that there was jamming (i.e., pc ≤ p ≤ 1, hypothesis

H1) is pH1
(k) :=

∫ 1

p=pc

�k
q

�

pq(1− p)k−q dp. Hence, the log-likelihood ratio
for H0 and H1 after k samples is

η(k) = log
pH1
(k)

pH0
(k)
= log

∫ 1

p=pc
pq(1− p)k−q dp

∫ pc

p=0
pq(1− p)k−q dp

. (13.1)

13.3 Sequential Jamming Test 107

Now, if η(k) ≤ log τFN

1−τF P
the nodes decide that there is no jamming and

reset the sequence (i.e., set k and q to zero), if η(k)≥ log 1−τFN

τF P
jamming

is detected and the nodes raise an alarm, finally if log τFN

1−τF P
< η(k) <

log 1−τFN

τF P
no conclusive decision can be made yet and is deferred until

there is more conclusive evidence available.

Algorithm 5 Jamming Test

1: function RESETJAMMINGTEST

2: k := 0; q := 0
3: end function
4:

5: function UPDATEJAMMINGTEST(x)
6: k := k+ 1; q := q+ x;
7: η(k) := SPRT(k, q)
8: if η(k)≥ log 1−τFN

τF P
then

9: return jamming
10: else if η(k)≤ log τFN

1−τF P
then

11: return no jamming
12: else
13: return undefined
14: end if
15: end function

Chapter 14

Performance Evaluation

In this chapter, we evaluate the performance of the proposed jamming
detection techniques. To that end, we implemented them and conducted
a series of experiments using COTS BTnodes (Atmel ATmega 128L micro-
controller @ 8 MHz, Chipcon CC1000 radio) and Tmote Sky sensor nodes
(TI MSP430F1611 microcontroller @ 8 MHz, Chipcon CC2420 radio). The
experimental setup consisted of four nodes: one sender (node A), two
receivers (node B and C), and one jammer (node J). For the wire-aided
jamming detection, node B and C were connected over the I2C bus, forming
a two-tuple.

A compilation of exemplary measurements for an undisturbed, jammed,
and weak link between A and C is shown in Figure 14.1. The results
confirm the validity or our approach and show that decoding errors caused
by jamming can clearly be distinguished from errors caused by a weak
radio signal by looking at the corresponding RSS values. However, these
initial experiments also revealed some hardware constraints that limit
the accuracy of the proposed detection techniques: In cases where the
used radios do not provide an RSS value per bit but instead provide
an averaged RSS value for a set of k bits, the algorithm might not be
able to detected jamming that affects less than k bits. To overcome this
limitation, error correcting codes that enforce a minimal required jamming
duration of > k bits can be applied (see Section 12.3). Furthermore,
packet based radio transceivers such as the Chipcon CC2420 typically rely
on a particular synchronization preamble or training sequence to detect
packet transmissions. If this preamble or training sequence is jammed,
the corresponding transmission is simply ignored (the automatic CRC
verification is usually not an issue as it can mostly be disabled). Simple
bit or byte oriented radio transceivers such as the Chipcon CC1000 that
provide a continuous data demodulation and RSS estimation are thus
better suited for our purposes. Therefore, the remainder of this section
focuses on bit or byte oriented radios and presents the results obtained
with our implementation for the CC1000 radio (i.e., the BTnodes) only.
Nevertheless, we would like to point out that our basic considerations
apply in general and thus our detection techniques in principle also work
with packet-based radios.

110 14 Performance Evaluation

-90

-80

-70

-60

-50

-40

re
ce

iv
ed

si
gn

al
st

re
ng

th
in

dB
m

I: correct II: weak link III: jammed

=

6=

di
ff

er
en

ce
in

th
e

re
ce

iv
ed

da
ta

time

Figure 14.1: Sample results obtained with our implementation and a
CC1000 radio for three cases. I (adequate links and no jamming): both
receivers are able to decode the packets and the packets do not differ. II
(weak link from A to C): node C receives incorrect bits and thus the packets
do not match; however, since the RSS of node C associated with the bit
errors is low, the errors are correctly identified as non jamming related. III
(with jamming): the RSS values for the observed bit errors are high for
both receivers and thus the interference is correctly detected.

The BTnode implementation uses our advanced header detection in-
troduced in Section 12.3. To allow for the jamming of single bits with
the jammer node J , the transmission rate of the sender and receiver was
reduced to 2.4 kBaud, whereas the jammer was sending random data at a
rate of 38.4 kBaud.

We performed our experiments in two different scenarios: In the fist
scenario the wireless connection between the sender and the receivers was
fairly good, that is, the RSS of A’s signal at B and C was about -55 dBm;
in the second scenario the connection between A and B was rather weak,
that is, the RSS of A’s signal at B and C was about -70 dBm. To make
the jamming detection most challenging, the transmission power of the
jammer was set to the lowest possible value for which the jamming was
still effective (i.e., >1%), which was 3 dBm for the scenario with the strong
links and -5 dBm for the scenario with the weak link.

In both scenarios, we measured the performance of the four bit error
detection techniques introduced in Section 13.1. Each technique was eval-
uated with a series of 1000 undisturbed packet transmissions, five times
2000 packet transmissions where a fraction of 2, 4, 8, 16, or 24 bit was

111

number of jammed bits message known or predetermined

2 100% / 0% — 0% / 100%

4 100% / 0% — 0% / 100%

8 100% / 0% — 0% / 100%

≥16 100% / 0% — 0% / 100%

number of jammed bits message encoded with ECCs

2 100% / 0% — 0% / 100%

4 100% / 0% — 0% / 100%

8 99.9% / 0.1% — 0% / 100%

≥16 100% / 0% — 0% / 100%

number of jammed bits comparison of two receptions

2 84.9% / 15.1% — 0% / 100%

4 94.1% / 5.9% — 0% / 100%

8 98.8% / 1.2% — 0% / 100%

≥16 100% / 0% — 0% / 100%

Table 14.1: Jamming detection performance for a strong link: true posi-
tives / false negatives — false positives / true negatives

jammed, and three times 2000 transmissions where a fraction of 8, 16,
or 24 bit was suppressed (i.e., the transmission power at the sender was
reduced to the minimum during their transmission in order to simulate
a temporarily weak signal). The obtained results are summarized in Ta-
ble 14.1 and 14.2. The second column shows the results for the case where
the received packet is already known by the receiver, that is, the two tech-
niques where the content of a packet is either predetermined or was first
transmitted over the wire (active probing). The results in the third column
represent the bit error location technique based error correcting codes and
were obtained with a Hamming (8,4) code that allows for correcting single
bit errors, detecting all two bit errors, and detecting some three bit errors.
The results in the fourth column, finally, show the results for the case in
which two wired nodes exchange their individual receptions.

First of all we notice that throughout our extensive experiments, no
single false positive occurred (i.e., no bit error was erroneously identified as
being caused by jamming). Furthermore, all false negatives (i.e., jamming-
caused errors that were not identified as such) were due to inaccuracies

112 14 Performance Evaluation

number of jammed bits message known or predetermined

2 100% / 0% — 0% / 100%

4 100% / 0% — 0% / 100%

8 100% / 0% — 0% / 100%

≥16 100% / 0% — 0% / 100%

number of jammed bits message encoded with ECCs

2 100% / 0% — 0% / 100%

4 100% / 0% — 0% / 100%

8 99.9% / 0.1% — 0% / 100%

≥16 100% / 0% — 0% / 100%

number of jammed bits comparison of two receptions

2 85.2% / 14.8% — 0% / 100%

4 94.1% / 5.9% — 0% / 100%

8 98.7% / 1.3% — 0% / 100%

≥16 100% / 0% — 0% / 100%

Table 14.2: Jamming detection performance for a weak link: true positives
/ false negatives — false positives / true negatives

in the bit error localization. More precisely, with some small probability it
happens that the bit errors result again in a valid code word or that the
two wired nodes observe exactly the same bit flips, respectively. We point
out that in this respective, the measured results for the 2-tuple are actually
worst case results because the more nodes are connected by wire, the less
likely it is that all observe exactly the same bit flips.

14.1 Sequential Jamming Test
We next analyze the performance of the sequential testing which is required
in cases where unintentional packet collisions cannot be neglected. Let λ j
be the fraction of all transmissions within the attacker’s jamming range
that she actually jams (i.e., the aggressiveness of the attacker) and pc
be the expected collision that a node observes. The expected number of
channel samples that is faulty due to interference after k samples is thus
q = (1− (1−λ j)(1− pc))k. Inserting this expression into Equation (13.1)
and solving the equation η(k) = log 1−σFN

σF P
for k then yields the expected

14.2 Impact of the Node Density 113

1

10

100

0 0.2 0.4 0.6 0.8 1nu
m

be
r

of
tr

an
sm

is
si

on
ob

se
rv

at
io

ns
to

di
st

in
gu

is
h

ja
m

m
in

g
fr

om
co

lli
si

on
s

fraction of jammed packets λ j

σFP = 0.005
σFN = 0.005

pc = 0.1
pc = 0.2
pc = 0.4

Figure 14.2: Performance of the sequential jamming test. We observe that
the larger the collision probability pc and the lower the fraction of packets
λ j that the jammer jams, the longer it takes to detect the jammer; however,
the lesser is also the impact of the jammer. If the attacker blocks an
alarm (i.e., if λ j = 1) the jamming will be detected after only five channel
samples (for pc ≤ 0.4). Since alarm packets are immediately repeated if
not acknowledged and because the attacker has to jam all alarms, this
number will usually be reached after only a few seconds.

number of channel samples that must be processed before the jamming is
detected. The resulting jamming detection performance as a function of
pc and λ j is shown in Figure 14.2. The lines show the theoretical value,
the points and confidence intervals the results of our experiments. In a
typical alarm forwarding scenario, the most relevant situation is one where
the attacker intends to mask an alarm (i.e., λ j = 1). We observe that in
this case the jamming will be detected after only five channel samples (for
reasonable collision probabilities pc ≤ 0.4). Due to the fact that alarm
packets are repeated if not acknowledged and because the attacker has to
jam all alarms, we argue that this number will usually be reached after
only a few seconds.

14.2 Impact of the Node Density
Having evaluated the detection performance of our scheme if run on a node
or n-tuple, we finally analyze the probability that the attacker’s jamming
activities are observed by a node or by an n-tuple in her proximity. We
assume that at least a fraction of all deployed nodes runs our detection

114 14 Performance Evaluation

algorithm and participates in the jamming detection. Upon the detection
of a jamming attack, the nodes raise a jamming alert which is then either
locally stored (e.g., as evidence for later investigations) or reported to the
network authority by means of the existing alarm forwarding scheme. In
the latter case, the attacker might extend the jammed region during her
attack in order to also block these new alarms caused by her jamming.
Consequently, if the jamming alarms raised by the initial set of nodes
cannot escape the jammed area, these blocked jamming alarms must in
turn also be detected by neighboring nodes, and so forth. This means
that the entire jamming notification process can be composed of several
iterative detection steps. However, since the same rules and conditions
apply to all these steps, we focus on one such detection step and not further
discuss the jamming alarm reporting in the following.

14.2.1 Monitoring by Unwired Nodes
Ideally, a node would receive and analyze every packet it overhears. How-
ever, given the stringent energy constraint of current sensor nodes, not all
nodes in the transmission range of a sender usually receive a packet, but
only the set of intended receivers.

Let Na be the average number of neighbors of a node, pr be the prob-
ability that a neighbor which is not an intended receiver of a packet still
receives and analyzes it, and pd be the probability that potential jam-
ming is correctly detected. As each packet has at least one receiver, the
probability that the jammer is detected by the neighbors of the sender
is ≥ 1− (1− pd)1+(Na−1)pr . Let further N be the total number of nodes
deployed in the deployment area A and R(·) be a function that maps trans-
mission power levels to distances. The function R(·) depends on the nodes’
radios and the environment they are deployed in. For the well-known

physical communication model [35], for instance, we have R(P) := α

q

P
βN0

,

where α, 2< α≤ 6, is the so-called path-loss exponent, N0 is the ambient
noise power level, and β is the minimal required signal-to-noise-ratio to
receive a packet. Given the transmission power Pa of a node and assuming
(roughly) uniform node density, the node’s expected number of neighbors
Na can then be estimated as Na ≈ N R(Pa)2π

A .
Figure 14.3 depicts the probability that the jammer is detected by the

neighbors as a function of pd , Na and pr . We observe that given the fairly
high accuracy of typically pd § 0.9 for the nodes’ jamming detection (see
above) an overall detection probability of ≥ 0.99 is already achieved with
a single additional receiver (i.e., if (Na − 1)pr ≥ 1). Note that this result

14.2 Impact of the Node Density 115

0.8

0.9

1

0 1 2 3 4 5pr
ob

ab
ili

ty
th

at
a

ja
m

m
ed

m
es

sa
ge

is
de

te
ct

ed
by

a
ne

ig
hb

or
of

th
e

se
nd

er

number of additional receivers ((Na − 1)pr)

pd = 0.80
pd = 0.85
pd = 0.90

Figure 14.3: Probability that a jammed packet is detected by at least one
of the nodes in the proximity of the sender. Since the accuracy of the local
jamming detection is already fairly high (i.e., pd § 0.9) an overall detection
probability of ≥ 0.99 is achieved with only one additional receiver (i.e., if
(Na − 1)pr ≥ 1).

applies to a single transmission. Since alarm messages are repeated if not
acknowledged, all blocked alarms will eventually be detected by at least
one neighbor in practice.

14.2.2 Monitoring by n-tuples
As mentioned in Section 13.1, the detection performance of the n-tuples
depends not only on the tuple density, but also on whether the monitoring
is passive or active. In a passive system, at least two nodes of an n-tuple
must be in the transmission range of the sending node for a minimum of two
independent packet receptions are required. In an active system, the sender
is part of the n-tuple and thus only one (additional) node of an n-tuple
must be included in the jammed region. We next evaluate both scenarios
for the node deployment models and simulation parameters introduced in
Section 12.4.1.

Active Monitoring

In order to determine the probability pa that the jammed area is monitored
by an n-tuple, we first compute the probability of the event X that at least
one node of an n-tuple lies within a disc of radius r that is centered at
the jammer. In a second step, this result is then generalized to the case

116 14 Performance Evaluation

(b)

α

di

x
r

x
r

di

θ j

α

r

(a) (c) (d)

Figure 14.4: Geometric relations between the position/orientation of an
n-tuple and its possible intersections with a disc or a circular sector of
radius r; the figures are not true to scale. Drawings (a) and (b) show the
situation where the i-th node of the n-tuple lies inside a disc, drawings (c)
and (d) where it lies inside a circular sector.

where the attacker does not emit a single, omnidirectional signal but a set
of directional signals. For simplicity, we assume that all nodes of an n-tuple
lie on a straight line and that any two consecutive nodes in a tuple have
the same distance.

Given the disc with radius r around the jammer, let z be the distance
between the first node of an n-tuple and the center of the disc. The
probability that at least one node of the tuple lies within the disc is then

pX (r, l) =

∞
∫

x=0

P[X |z = x]P[z = x] =

r+l
∫

x=0

P[X |z = x]
2xπdx

|A| . (14.1)

Let di =
i−1
n−1

l be the distance between the first and the i-th node in the
n-tuple. Now imagine a circle of radius di centered at the first node in the
tuple. Given that the direction of a tuple is chosen uniformly at random,
the probability that the i-th node lies within the disc is then proportional
to the central angle subtended by the two intersection points of this circle
with the perimeter of the disc to the first node (see Figure 14.4(a)). As
illustrated in Figure 14.4(b), this angle is

αX (di , x) :=

0 if x < 0 or x > r + di or x + r < di ,

2π if 0≤ x + di ≤ r,

2 arccos
�

x2+d2
i −r2

2di x

�

otherwise.

(14.2)

14.2 Impact of the Node Density 117

Hence,

P[X |z = x] = max
1≤i<n

αX

�

i
n−1

l, x
� 1

2π
(14.3)

and thus

pX (r, l) =
r2π

|A| +
r+l
∫

x=r

max
1≤i<n

αX

�

i
n−1

l, x
�

2π

2xπdx

|A| . (14.4)

For an omnidirectional jammer the probability that the jammed area is
monitored by a wired node is

pa ≥ 1−
�

1− pX (R(P
1
j), l)

�m
, (14.5)

where m is the number of deployed n-tuples and R(P1
j) is the radius of the

jammed area (i.e., the area in which jamming is effective and thus also
detectable).

In the case of a general attacker that emits several directional signals
specified by the set {(θ 1

j , P1
j), (θ

2
j , P2

j), . . . , (θ k
j , Pk

j)} (see Section 12.1), the
probability that the jammed area is monitored by a wired node is equal to
the probability that at least one node of an n-tuple lies within one of the
respective circular sectors of central angle θ i

j and radius R(P i
j). Considering

only those n-tuples whose first node is enclosed by one of these sectors
or their extension to a radius of length R(P i

j) + l, this probability can be
approximated as

pw § 1−
k
∏

i=1

1−

1−
θ i

j

2π
pX (R(P

i
j), l)

!m!

. (14.6)

In order to account for those cases where the intersection of the (virtual)
circles with radii di and r are outside of the circular sector given by θ i

j (i.e.,
if θ i

j < π, see Figure 14.4(c))) the function αX (di , x) has additionally to
be substituted with min(αX (di , x),α′X (di , x)), where

α′X (di , x) := 4 arcsin(
p

y/(2di)), (14.7)

y = r2 + (x − di)
2 − 2cos(θ i

j/2)r(x − di)

is the angle subtended by the two intersection points of the circle with
radius di and the radii of the circular sector to the first node (see Fig-
ure 14.4(d)).

118 14 Performance Evaluation

Passive Monitoring

Recall that with passive monitoring at least two nodes of an n-tuple must be
in the transmission range of the sending node to detect a jamming attack.
Let Z denote the event that at least two nodes of an n-tuple lie within a disc
of radius r centered at the sender and let z denote the distance between
the first node of an n-tuple and the center of this disc. The probability that
at least two nodes of the tuple lie within the disc is then

pZ(r, l) =

∞
∫

x=0

P[Z |z = x]P[z = x] =

r+l
∫

x=0

P[Z |z = x]
2xπdx

|A| . (14.8)

The probability that two nodes lie within the disc is proportional to

the smaller of the two respective center angels. Let
2

max be a function that
returns the second largest value. We obtain

P[Z |z = x] =
2

max
0≤i<n

αX

�

i
n−1

l, x
� 1

2π
(14.9)

and thus

pZ(r, l) =

r+l
∫

x=0

2
max
0≤i<n

αX

�

i
n−1

l, x
�

2π

2xπdx

|A| . (14.10)

The probability that the neighborhood of a node is (passively) moni-
tored by an n-tuple is

pp ≥ 1− �1− pZ(R(Pa), l)
�m , (14.11)

where m is the number of deployed n-tuples and R(Pa) the nodes’ trans-
mission range.

The influence of the number of nodes n per tuple, the wire length lw ,
the number of deployed tuples m, the node’s transmission power Pa, and
the size of the jammed area (i.e., P i

j and θ i
j) on the jamming detection

performance of active and passive monitoring is depicted in Figure 14.5
and 14.6, respectively. The results show that even for short wires of about
3 m and a moderate jamming range of 100 m, only 80 3-tuples must be
deployed per 1 km2 in order that the jamming is (actively) monitored by at
least one wired node with pa > 95%. In a purely passive scenario, about
(R(Pj)/R(Pa))2 times as many n-tuples have to be deployed to achieve the
same protection as in an active scenario.

14.2 Impact of the Node Density 119

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

length of the outstretched n-tuple in m

n = 2
n = 5
n = 10

a = 500
m = 1
R(Pj) = 100
θ j = 2π

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

number of deployed n-tuples

n = 3, l = 10
n = 3, l = 50

n = 3, l = 100

a = 500
R(Pj) = 100
θ j = 2π

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

jamming range (R(Pj)) in meters

n = 3, l = 20
a = 500
m = 1
θ j = 2π

0.00

0.05

0.10

0.15

0 π/2 π 3π/2 2π

beam width (θ j)

n = 3, l = 20
a = 500
m = 1
R(Pj) = 100

Figure 14.5: Probability pa that the jammed area contains at least one
wired node. The lines show the expected result according to our analysis,
the points and confidence intervals the simulation results. We observe that
even very long tuples cannot benefit from more than 3 wired nodes per
tuple, whereas increasing the length of a tuple results in a linear increase
of pa. As pa is proportional to the size of the jammed area, it increases
exponentially with the jamming range and approximately linear with the
beam width. Our findings also show that even for short wires with a length
of about 3 m and a moderate jamming range of 100 m, only 80 3-tuples
must be deployed per km2 in order that the jamming is monitored by at
least one wired node with pa >95%.

120 14 Performance Evaluation

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

node distance in a n-tuple in m

n = 2
n = 5
n = 6

a = 500m
R(Pa) = 50 m
m = 1

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

number of deployed n-tuples

n = 3, l = 10
n = 3, l = 50

n = 3, l = 100

a = 500m
R(Pa) = 50 m

0

0.05

0.1

0.15

0 20 40 60 80 100

transmission range R(Pa) in meters

n = 3, l = 20
a = 500m
m = 1

Figure 14.6: Probability pp that the neighborhood of a node is monitored
by an n-tuple. We observe that for 2-tuples pp decreases for longer wires
and becomes zero if lw > twice the transmission range R(Pa), whereas
for n > 2 the probability pp becomes maximal if the distance between
two wired nodes in a tuple is ≈ r. As pp is proportional to the size of
a node’s neighborhood, it increases exponentially with the transmission
range. Also, for R(Pa) = R(Pj)/k, in a passive scenario about k2 times as
many n-tuples have to be deployed than in an active scenario to achieve
the same protection (e.g., pp >95%).

Chapter 15

Related Work

In this chapter, we discuss work that is related to Part II of this thesis,
focusing on sensor networks. We refer to Chapter 9 for a discussion of
related work that reviews the impact and mitigation of jamming at large.

15.1 Jamming detection
The detection and mapping of jammed areas in the realm of wireless sensor
networks was studied by Wood, Stankovic, and Son [81]. They propose to
use the utility of a link for jamming detection but do not further evaluate
its performance as a detection metric. Instead, they focus on the problem
of mapping the jammed area by identifying and grouping nodes with at
least one jammed neighbor.

Xu et al. advocate the usage of packet delivery ratio (PDR) along with
either signal strength at the receiver (RSS) or location information as a
consistency check for jamming detection [83]. In the former case, jamming
is detected if the PDR is low although the RSS value is high, in the latter
case if the PDR is low although the senders are close. We point out that
unlike our work, their scheme does not correlate the RSS measurements
on a per-bit basis, but compares an averaged RSS value with a threshold
once the PDR drops below a specified level.

Çakiroǧlu and Özcerit proposed two jamming detection schemes based
on the PDR, the bad packet ratio (BPR), and the energy consumption
amount (ECA) of the radio [18]. In the basic scheme, jamming is detected
if the PDR, BPR, or ECA values rise above or fall below specified thresholds.
Altogether, five rules are specified, each focusing on a different set of
jammer types. In the extended scheme, the nodes base their decision not
only on their local view but exchange query and alarm messages with their
neighbors in order to reduce the number of false positives at the expense
of an increased communication overhead.

A major drawback shared by the aforementioned schemes is that as-
sessing an accurate PDR is not practical for a reactive forwarding scheme,
as messages are sent very rarely. Moreover, as argued in this and previous
work [5, 60, 76], jamming does not necessarily cause a steady and high
RSS value, as only a small fraction of a packet has to be interfered with in
order for the packet to be invalid [57]. A (reactive) jammer can thus keep
the increase in the effective RSS value very low and can hence avoid being

122 15 Related Work

detected by these schemes. Also, the proposed detection algorithms cannot
distinguish between intentional and unintentional interference, and timely
delivery of alarm notifications is not considered.

A sequential jamming detection technique based on the number of
erroneously received messages was presented by Li, Koutsopoulos, and
Poovendran [46]. The key idea of the proposed algorithm is that an
increased number of observed message collisions during an observation
window compared to the learned long-term average indicates a jamming
attack. Using Wald’s Sequential Probability Ratio Test, they identify op-
timal jamming attacks as well as network defense policies with respect
to detection and notification time. Unlike our algorithm, that approach
cannot distinguish between packet failures due to weak links and collisions.
Thus, it is sensitive to changes in nodes’ environment that influence the
observed PDR and to (temporary) link failures or unanticipated changes in
the traffic pattern which are likely to cause false alarms. Finally, none of
the above mentioned schemes considers overshadowing, where the original
packet is covered by a (maliciously inserted) second message.

15.2 Wired Infrastructure
The application of additional infrastructure in the form of wired short-
cuts was proposed before by Chitradurga and Helmy [20] and by Sharma
and Mazumdar [65]. The objective of these works is to improve the
energy efficiency of wireless networks by identifying optimal wirings;
the dependability and jamming resistance of the hybrid network is not
considered. Čagalj at al. show how wired node pairs can be used to build
wormholes in order to establish communication out of a jammed area [77].
The two main differences between their and our work are that they do not
consider the use of wired tuples for jamming detection but exclusively for
alarm forwarding and that they focus on wired node pairs, whereas we also
investigate wired node chains of more than two nodes. Furthermore, their
work does neither consider the security of the wired links nor evaluate to
what extent the proposed wirings are feasible.

15.3 Alarm Forwarding
Resilience to message failure is an important functionality required by
safety critical systems. However, most transport protocols for sensor net-
works that do address link failures (e.g., ESRT [6] and PSFQ [78]) only
raise the reliability, for example by utilizing path diversity to overcome

15.3 Alarm Forwarding 123

errors on individual links, but do not provide end-to-end guarantees. At
best, advanced protocols like MMSPEED [29] provide probabilistic bounds
on end-to-end delivery ratios but ignore energy consumption. End-to-end
acknowledgment-based schemes such as [24], Flush [42], or RCRT [58] in-
crease the reliability, but suffer greatly from high costs and long (multi-hop)
latencies, making them unsuitable for time-critical applications.

An effective, but expensive, approach to handle communication errors
is to use (partial) flooding [75]. The GRAB protocol [84], for instance, uses
a credit mechanism to specify how many additional hops may be made
to reach the destination, effectively creating a “wide-path”. The DFRF
framework [52] generalizes this idea and allows for easy creation of tailor-
made partial-flooding. Unfortunately, DFRF and GRAB do not integrate
well with the MAC layer below, making it hard to control latency and
energy consumption. Like Dwarf [69], Dynamic Switch-based Forwarding
(DSF) [34] is based on the observation that the (end-to-end) latency can be
significantly reduced by forwarding a message to the neighbor that wakes
up next instead of waiting until a specific, predetermined node becomes
active. The main difference between the two schemes is that Dwarf selects
the next hop in an ad-hoc manner, whereas DSF proactively computes the
forwarding sequence at regular intervals.

Chapter 16

Conclusions

A steadily growing number of wireless devices that penetrate our everyday
life and environment brings about a multitude of new applications and
services that need to be appropriately secured. A major challenge in
reaching this goal is the inherent vulnerability of wireless communication
to communication jamming DoS attacks. The problem becomes even more
significant the more one takes the ubiquity of these emerging applications
and services for granted. In this thesis, we addressed this problem, focusing
on scenarios where common anti-jamming techniques (such as FHSS and
DSSS) cannot be applied.

More specifically, in the first part of this thesis, we tackled the problem
of how devices that do not share any secrets can establish jamming-resistant
communication over a wireless radio channel in the presence of a com-
munication jammer. We addressed the dependency between anti-jamming
spread-spectrum communication and pre-shared keys that is inherent to
this problem, and proposed a novel anti-jamming technique called Uncoor-
dinated Frequency Hopping (UFH) as a solution to break this dependency.
We presented a number of UFH-based communication schemes and showed
their use in several applications. In particular, we illustrated on the exam-
ples of the authenticated Diffie-Hellman and the Burmester-Desmedt key
agreement protocols how our schemes can be used to establish a shared
secret (group) key to bootstrap common (coordinated) frequency hopping.

We performed a detailed analysis of our UFH-based schemes and
showed their feasibility by means of a prototype implementation. Our
evaluation results show that even with our simple prototype, the average
time to establish a pairwise or group key is in the order of a few seconds
(for a processing gain of 23 dB). This time is reasonably short, given that
the much shorter channel switching times and the higher data rates of
purpose-built hardware allow to decrease this time significantly, and that
with common anti-jamming techniques the devices would not be able to
communicate and thus could not execute a key establishment protocol. We
modeled and analyzed the impact of different attacker types and strategies
on UFH communication and presented optimal channel selection strategies
to counter these attacks. Our analysis also showed that, although our UFH
scheme has lower communication throughput, it achieves the same level
of anti-jamming protection as common frequency hopping.

126 16 Conclusions

In the second part of this thesis, we addressed the problem of jamming
attacks on alarm forwarding in sensor networks. We demonstrated the
susceptibility to jamming attacks of current state-of-the-art forwarding
schemes for WSNs and discussed possible techniques to mitigate the im-
pact of jamming. We further presented a novel jamming detection scheme
for countering advanced (reactive single bit) jamming attacks in sensor
networks. Our detection scheme is able to identify the root cause of bit
errors for individual packets by looking at the received signal strength
during the reception of these bits. The scheme is thus well-suited for the
protection of reactive alarm systems with very low network traffic. We
presented and discussed three different techniques for the detection and
localization of bit errors based on: predetermined knowledge, error cor-
recting/detecting codes, and limited node wiring in the form of wired node
chains (n-tuples). The presented protocols and algorithm were evaluated
analytically, by simulations, and experimentally on COTS BTnodes. The
results showed that our solution effectively detects sophisticated jamming
attacks that cannot be detected with existing techniques and enables the
formation of robust sensor networks for the dependable delivery of alarm
notifications. Since our scheme can operate without introducing additional
wireless network traffic, it also meets the high energy efficiency demand of
reactive surveillance applications.

16.1 Contributions
In summary, the main contributions of this thesis are:

Part I: Anti-jamming Communication without Pre-shared Secrets

• the identification of the problem of how to achieve anti-jamming
communication without shared secrets and the introduction of the
anti-jamming/key-establishment circular dependency problem;

• UFH as a novel anti-jamming technique along with several UFH-
based communication schemes that support the transmission of mes-
sages of arbitrary length in a jammed environment without relying
on shared secrets;

• a comprehensive jammer model for reactive and non-reactive jam-
ming which allows the computation of the number of blocked chan-
nels and the probability that a packet is jammed as a function of the
packet length and the packet encoding;

16.2 Remaining Issues and Future Work 127

• the description of several applications that strongly benefit from the
UFH communication schemes, as they could so far not be protected
with common spread spectrum techniques, notably the execution of
(group) key establishment protocols in the presence of a jammer;

Part II: Detection of Reactive Jamming in Sensor Networks

• the demonstration of the susceptibility of current state-of-the-art
forwarding schemes for WSNs to jamming attacks;

• jamming mitigation techniques for sensor networks based on forward
error correction and limited node wiring;

• a novel jamming detection scheme for countering advanced (reactive
single bit) jamming attacks in sensor networks along with three
different techniques for the identification of bit errors based on:
predetermined knowledge, error correcting codes, and limited node
wiring.

16.2 Remaining Issues and Future Work
An unavoidable constraint of UFH is that the frequency hops (i.e., packets)
cannot be arbitrarily small but comprehend at least a message and packet
id, one data bit, and the packet verification data. Altogether, this results
in a minimum hop length of roughly 80-100 bit; so-called fast frequency
hopping, where the frequency channel is switched for each bit, is thus
not possible. A second drawback of UFH is that the jamming resistance
and the achievable throughput are tightly linked to each other: the more
channels are used, the lower is the probability that the receiver is listening
on the right one. With other spread-spectrum techniques this might not
necessarily be the case. A promising direction for future work is thus the
investigation of alternative uncoordinated (spread-spectrum) techniques
as well as combinations thereof. Another topic for future work would be
to identify additional applications for the introduced packet verification
techniques which provide message integrity without the need for shared
secrets or sender authentication. These techniques might, to give an
example, help in countering DoS attacks on the fragment assembly process
of distributed file sharing applications or application level firewalls. Related
to this, it would further be interesting to find additional, more efficient
packet verification techniques.

What might be criticized concerning the work presented in Part II of this
thesis is that detecting a jamming attack is not equally helpful in different

128 16 Conclusions

WSN surveillance applications. In a burglar alarm system, for example,
there is no difference in the response to a jamming or intrusion alert, and
thus no relevant information is lost if an intrusion alert is replaced with a
jamming alert as consequence of a jamming attack. In a fire alarm system,
on the other hand, the alarm messages carry important information (e.g.,
about the smoke density and whether there was only smoke or also fire) and
a jamming alert, although still better than nothing, is less informative than
the original alert. In other words, detecting jamming cannot always make
up for a message loss, that is, for the lack of anti-jamming communication.

Regarding the second part of this thesis, future work includes the
development of additional techniques for the detection of bit errors and
the evaluation of alternative methods to distinguish unintentional from
intentional interference. We further believe that this work provides useful
insights into the utility of limited wiring as a means for securing wireless
sensor networks, but future work is required to identify additional fields of
application.

A more general direction for future work consists in exploring the im-
pact of jamming, not only on the physical layer but on all layers of the
network stack. Above all, one needs a better understanding of (distributed)
jamming attacks that target particular, application-specific traffic character-
istics and exploit the distributed nature of most applications. Future work
is also required to get more insight into what kind of attacks are feasible
on the physical layer, under which conditions, and at which costs, in order
to improve existing attacker and jammer models.

16.3 Publications
The work presented in this thesis is based on the following publications:

P1 Mario Strasser, Andreas F. Meier, Koen Langendoen, and Philipp Blum.
Dwarf: Delay-aWAre Robust Forwarding for Energy-Constrained
Wireless Sensor Networks. In Proceedings of the IEEE Conference on
Distributed Computing in Sensor Systems (DCOSS), 2007

P2 Mario Strasser, Christina Pöpper, Srdjan Čapkun, and Mario Ča-
galj. Jamming-resistant Key Establishment using Uncoordinated Fre-
quency Hopping. In Proceedings of the IEEE Symposium on Security
and Privacy, 2008.

P3 Mario Strasser, Christina Pöpper, and Srdjan Čapkun. Efficient Un-
coordinated FHSS Communication. In Proceedings of the ACM Inter-

16.3 Publications 129

national Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), 2009.

P4 Christina Pöpper, Mario Strasser, and Srdjan Čapkun. Jamming-
resistant Broadcast Communication without Shared Keys. In Proceed-
ings of the USENIX Security Symposium, 2009.

P5 Christina Pöpper, Mario Strasser, and Srdjan Čapkun. Anti-jamming
Broadcast Communication using Uncoordinated Spread Spectrum
Techniques. To appear in IEEE Journal on Selected Areas in Communi-
cations (J-SAC), Special Issue Mission Critical Networking, 2010.

P6 Mario Strasser, Boris Danev, and Srdjan Čapkun. Detection of Reac-
tive Jamming in Sensor Networks. To appear in ACM Transactions on
Sensor Networks (TOSN), 2010.

P7 Andreas Meier, Mario Strasser, Simon Künzli, and Severin Hafner.
Safety-Critical Event Monitoring with Wireless Sensor Networks.
Under submission.

P8 Mario Strasser, Christina Pöpper, and Srdjan Čapkun. Anti-jamming
Communication without Shared Keys using Uncoordinated Frequency
Hopping. Under submission.

Bibliography

[1] BTnodes – A Distributed Environment for Prototyping Ad Hoc Net-
works. http://www.btnode.ethz.ch/.

[2] GNU Radio Software. http://gnuradio.org/trac.

[3] ECRYPT Yearly Report on Algorithms and Keysize. D.SPA.28, July
2008. IST-2002-507932.

[4] Imad Aad, Jean-Pierre Hubaux, and Edward W. Knightly. Denial
of Service Resilience in Ad hoc Networks. In Proceedings of the
ACM International Conference on Mobile Computing and Networking
(MobiCom), pages 202–215. ACM, 2004.

[5] David Adamy. A First Course in Electronic Warfare. Artech House,
2001.

[6] Özgür B. Akan and Ian F. Akyildiz. Event-to-sink Reliable Transport
in Wireless Sensor Networks. IEEE/ACM Transaction on Networking,
13(5):1003–1016, 2005.

[7] ANSI. X9.63-2001: Key Agreement and Key Transport Using Elliptical
Curve Cryptography. American National Standards Institute, 2001.

[8] International Loran Association. LORAN: LOng Range Aid to Naviga-
tion. http://www.loran.org.

[9] Paramvir Bahl and Venkata N. Padmanabhan. RADAR: An In-building
RF-based User Location and Tracking System. In Proceedings of the
IEEE Conference on Computer Communications (INFOCOM), pages
775–784. IEEE Communications Society, 2000.

[10] Leemon C. Baird, William L. Bahn, Michael D. Collins, Martin C.
Carlisle, and Sean Butler. Keyless Jam Resistance. In Proceedings of
the IEEE Information Assurance and Security Workshop (IAW), pages
143–150. IEEE, 2007.

[11] Niko Bari and Birgit Pfitzmann. Collision-Free Accumulators and
Fail-Stop Signature Schemes Without Trees. In Advances in Cryptology
EUROCRYPT, volume 1233/1997 of Lecture Notes in Computer Science,
pages 480–494. Springer Berlin / Heidelberg, 1997.

132 Bibliography

[12] Michael Baron. Probability and Statistics for Computer Scientists.
Chapman & Hall/CRC, 2007.

[13] Emrah Bayraktaroglu, Christopher King, Xin Liu, Guevara Noubir,
Rajmohan Rajaraman, and Bishal Thapa. On the Performance of
IEEE 802.11 under Jamming. In Proceedings of the IEEE Conference
on Computer Communications (INFOCOM), pages 1265–1273. IEEE
Communications Society, 2008.

[14] Josh Benaloh and Michael de Mare. One-Way Accumulators: A Decen-
tralized Alternative to Digital Signatures. In Advances in Cryptology
EUROCRYPT, volume 765/1994 of Lecture Notes in Computer Science,
pages 274–285. Springer Berlin / Heidelberg, 1994.

[15] Alan Bensky. Wireless Positioning Technologies and Applications. Artech
House, 2008.

[16] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from
the Weil Pairing. Journal of Cryptology, 17(4):297–319, 2004.

[17] Mike Burmester and Yvo Desmedt. A Secure and Efficient Conference
Key Distribution System. In Advances in Cryptology EUROCRYPT,
volume 950 of Lecture Notes in Computer Science, pages 275–286.
Springer Berlin / Heidelberg, 1995.

[18] Murat Çakiroǧlu and Ahmet Turan Özcerit. Jamming Detection
Mechanisms for Wireless Sensor Networks. In Proceedings of the
International Conference on Scalable Information Systems (InfoScale),
pages 1–8. ICST, 2008.

[19] J.T. Chiang and Yih-Chun Hu. Dynamic Jamming Mitigation for
Wireless Broadcast Networks. In Proceedings of the IEEE Conference
on Computer Communications (INFOCOM), pages 1211–1219. IEEE
Communications Society, 2008.

[20] Rohan Chitradurga and Ahmed Helmy. Analysis of Wired Short
Cuts in Wireless Sensor Networks. In Proceedings of the IEEE/ACS
International Conference on Pervasive Services (ICPS), pages 167–176.
IEEE Computer Society, 2004.

[21] Clayton W. Commander, Panos M. Pardalos, Valeriy Ryabchenko, Oleg
Shylo, Stan Uryasev, and Grigoriy Zrazhevsky. Jamming Communi-
cation Networks under Complete Uncertainty. Optimization Letters,
2(1):53–70, 2008.

Bibliography 133

[22] Clayton W. Commander, Panos M. Pardalos, Valeriy Ryabchenko, Stan
Uryasev, and Grigoriy Zrazhevsky. The Wireless Network Jamming
Problem. Journal of Combinatorial Optimization, 14(4):481–498,
2007.

[23] Yvo Desmedt, Rei Safavi-Naini, Huaxiong Wang, Lynn Batten, Chris
Charnes, and Josef Pieprzyk. Broadcast Anti-Jamming Systems. In
Proceedings of the IEEE International Conference on Networks (ICON),
pages 349–355. IEEE Computer Society, 1999.

[24] Tuan Le Dinh, Wen Hu, Pavan Sikka, Peter Corke, Leslie Overs, and
Stephen Brosnan. Design and Deployment of a Remote Robust Sensor
Network: Experiences from an Outdoor Water Quality Monitoring
Network. In Proceedings of the IEEE Conference on Local Computer
Networks (LCN), pages 799–806. IEEE Computer Society, 2007.

[25] Shlomi Dolev, Seth Gilbert, Rachid Guerraoui, and Calvin Newport.
Secure Communication over Radio Channels. In Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC), pages
105–114. ACM, 2008.

[26] Prabal Dutta, Mike Grimmer, Anish Arora, Steven Bibyk, and David
Culler. Design of a Wireless Sensor Network Platform for Detecting
Rare, Random, and Ephemeral Events. In Proceedings of the IEEE
International Conference on Information Processing in Sensor Networks
(IPSN), pages 70–75. IEEE, 2005.

[27] Amre El-Hoiydi and Jean-Dominique Decotignie. WiseMAC: An Ultra
Low Power MAC Protocol for Multi-hop Wireless Sensor Networks.
In Algorithmic Aspects of Wireless Sensor Networks, volume 3121 of
Lecture Notes in Computer Science, pages 18–31. Springer Berlin /
Heidelberg, 2004.

[28] Fire detection and fire alarm systems – Part 25: Components using
radio links. European Norm (EN) 54-25:2008-06, 2008.

[29] Emad Felemban, Chang-Gun Lee, and Eylem Ekici. MMSPEED: Mul-
tipath Multi-SPEED Protocol for QoS Guarantee of Reliability and
Timeliness in Wireless Sensor Networks. IEEE Transactions on Mobile
Computing, 5(6):738–754, 2006.

[30] Anna Lisa Ferrara, Matthew Green, Susan Hohenberger, and
Michael Østergaard Pedersen. Practical Short Signature Batch Verifi-
cation. 5473:309–324, 2009.

134 Bibliography

[31] Seth Gilbert, Rachid Guerraoui, and Calvin Newport. Of Malicious
Motes and Suspicious Sensors. Theoretical Computer Science, 410(6-
7):546–569, 2009.

[32] Philippe Golle and Nagendra Modadugu. Authenticating Streamed
Data in the Presence of Random Packet Loss. In Proceedings of the
Symposium on Network and Distributed Systems Security (NDSS),
pages 13–22. Internet Society, 2001.

[33] U.S. Government. Global positioning system. http://www.gps.gov,
2009.

[34] Yu Gu and Tian He. Data Forwarding in Extremely Low Duty-cycle
Sensor Networks with Unreliable Communication Links. In Proceed-
ings of the ACM International Conference on Embedded Networked
Sensor Systems (SenSys), pages 321–334. ACM, 2007.

[35] Piyush Gupta and P. R. Kumar. The Capacity of Wireless Networks.
IEEE Transactions on Information Theory, 46(2):388–404, 2000.

[36] Tian He, Sudha Krishnamurthy, Liqian Luo, Ting Yan, Lin Gu, Radu
Stoleru, Gang Zhou, Qing Cao, Pascal Vicaire, John A. Stankovic,
Tarek F. Abdelzaher, Jonathan Hui, and Bruce Krogh. VigilNet: An
Integrated Sensor Network System for Energy-efficient Surveillance.
ACM Transactions on Sensor Networks, 2(1):1–38, 2006.

[37] James Hendricks, Gregory R. Ganger, and Michael K. Reiter. Low-
overhead Byzantine Fault-tolerant Storage. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), pages 73–86.
ACM, 2007.

[38] James Hendricks, Gregory R. Ganger, and Michael K. Reiter. Verifying
Distributed Erasure-coded Data. In Proceedings of the ACM Symposium
on Principles of Distributed Computing (PODC), pages 139–146. ACM,
2007.

[39] Esa Hyytiä, Tuomas Tirronen, and Jorma T. Virtamo. Optimal Degree
Distribution for LT Codes with Small Message Length. In Proceedings
of the IEEE Conference on Computer Communications (INFOCOM),
pages 2576–2580. IEEE Communications Society, 2007.

[40] Tao Jin, Guevara Noubir, and Bishal Thapa. Zero Pre-shared Secret
Key Establishment in the Presence of Jammers. In Proceedings of

Bibliography 135

the ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), pages 219–228. ACM, 2009.

[41] Chris Karlof, Naveen Sastry, Yaping Li, Adrian Perrig, and J. D. Ty-
gar. Distillation Codes and Applications to DoS Resistant Multicast
Authentication. In Proceedings of the Symposium on Network and
Distributed Systems Security (NDSS). The Internet Society, 2004.

[42] Sukun Kim, Rodrigo Fonseca, Prabal Dutta, Arsalan Tavakoli, David
Culler, Philip Levis, Scott Shenker, and Ion Stoica. Flush: A Reliable
Bulk Transport Protocol for Multihop Wireless Networks. In Pro-
ceedings of the ACM International Conference on Embedded Networked
Sensor Systems (SenSys), pages 351–365. ACM, 2007.

[43] Markus Kuhn. An asymmetric security mechanism for navigation sig-
nals. In Information Hiding, volume 3200 of Lecture Notes in Computer
Science, pages 239–252. Springer Berlin / Heidelberg, 2005.

[44] Leslie Lamport. Password Authentication with Insecure Communica-
tion. Communications of the ACM, 24(11):770–772, 1981.

[45] Koen Langendoen. Medium Access Control in Wireless Networks, chap-
ter Medium Access Control in Wireless Sensor Networks. Nova
Science Publishers, 2008.

[46] Mingyan Li, I. Koutsopoulos, and R. Poovendran. Optimal Jamming
Attacks and Network Defense Policies in Wireless Sensor Networks.
In Proceedings of the IEEE Conference on Computer Communications
(INFOCOM), pages 1307–1315. IEEE Communications Society, 2007.

[47] Guolong Lin and Guevara Noubir. On link layer denial of service in
data wireless LANs. Wireless Communications & Mobile Computing,
5(3):273–284, 2005.

[48] Ettus Research LLC. Universal Software Radio Peripheral (USRP).
http://www.ettus.com.

[49] Michael Luby. LT Codes. In Proceedings of the IEEE Symposium on
Foundations of Computer Science (FOCS), pages 271–280. IEEE, 2002.

[50] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi,
Daniel A. Spielman, and Volker Stemann. Practical Loss-resilient
Codes. In Proceedings of the ACM Symposium on Theory of Computing
(STOC), pages 150–159. ACM, 1997.

136 Bibliography

[51] Frosso S. Makri, Andreas N. Philippou, and Zaharias M. Psillakis.
Success Run Statistics Defined on an Urn Model. Advances in Applied
Probability, 39(4):991–1019, 2007.

[52] Miklós Maróti. Directed Flood-Routing Framework for Wireless Sen-
sor Networks. In Middleware, volume 3231 of Lecture Notes in Com-
puter Science, pages 99–114. Springer Berlin / Heidelberg, 2004.

[53] Petar Maymounkov. Online Codes. Technical Report TR2002-833,
New York Univeristy, 2002.

[54] Sara Miner and Jessica Staddon. Graph-Based Authentication of
Digital Streams. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 232–246. IEEE Computer Society, 2001.

[55] Lan Nguyen. Accumulators from Bilinear Pairings and Applications.
In Topics in Cryptology CT-RSA, volume 3376 of Lecture Notes in Com-
puter Science, pages 275–292. Springer Berlin / Heidelberg, 2005.

[56] Guevara Noubir. On Connectivity in Ad Hoc Networks under Jamming
Using Directional Antennas and Mobility. In Wired/Wireless Internet
Communications, volume 2957 of Lecture Notes in Computer Science,
pages 521–532. Springer Berlin / Heidelberg, 2004.

[57] Guevara Noubir and Guolong Lin. Low-power DoS Attacks in Data
Wireless LANs and Countermeasures. Mobile Computing and Commu-
nications Review, 7(3):29–30, 2003.

[58] Jeongyeup Paek and Ramesh Govindan. RCRT: Rate-controlled Reli-
able Transport for Wireless Sensor Networks. In Proceedings of the
ACM International Conference on Embedded Networked Sensor Systems
(SenSys), pages 305–319. ACM, 2007.

[59] Adrian Perrig, J. D. Tygar, Dawn Song, and Ran Canetti. Efficient
Authentication and Signing of Multicast Streams over Lossy Channels.
In Proceedings of the IEEE Symposium on Security and Privacy, pages
56–73. IEEE Computer Society, 2000.

[60] Richard A. Poisel. Modern Communications Jamming Principles and
Techniques. Artech House, 2004.

[61] Richard A. Poisel. Foundations of Communications Electronic Warfare.
Artech House, 2008.

Bibliography 137

[62] Joseph Polastre, Jason Hill, and David Culler. Versatile Low Power
Media Access for Wireless Sensor Networks. In Proceedings of the
ACM International Conference on Embedded Networked Sensor Systems
(SenSys), pages 95–107. ACM, 2004.

[63] Christina Pöpper, Mario Strasser, and Srdjan Čapkun. Jamming-
resistant Broadcast Communication without Shared Keys. In Pro-
ceedings of the USENIX Security Symposium, pages 231–247. USENIX
Association, 2009.

[64] Kasper B. Rasmussen, Srdjan Capkun, and Mario Cagalj. Extended
Abstract: SecNav: Secure Broadcast Localization and Time Synchro-
nization in Wireless Networks. In Proceedings of the ACM International
Conference on Mobile Computing and Networking (MobiCom), pages
310–313. ACM, 2007.

[65] Gaurav Sharma and Ravi Mazumdar. Hybrid Sensor Networks: A
Small World. In Proceedings of the ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc), pages 366–377.
ACM, 2005.

[66] A. Shokrollahi. Raptor Codes. IEEE Transactions on Information
Theory, 52(6):2551–2567, 2006.

[67] David Slater, Patrick Tague, Radha Poovendran, and Brian J. Matt. A
Coding-Theoretic Approach for Efficient Message Verification Over
Insecure Channels. In Proceedings of the ACM Conference on Wireless
Network Security (WiSec), pages 151–160. ACM, 2009.

[68] Mario Strasser, Boris Danev, and Srdjan Čapkun. Detection of Re-
active Jamming in Sensor Networks. Technical Report D-INFK 634,
ETH Zurich, 2009.

[69] Mario Strasser, Andreas Meier, Koen Langendoen, and Philipp Blum.
Dwarf: Delay-aWAre Robust Forwarding for Energy-Constrained
Wireless Sensor Networks. In Distributed Computing in Sensor Systems,
volume 4549 of Lecture Notes in Computer Science, pages 64–81.
Springer Berlin / Heidelberg, 2007.

[70] Symantec. Securing Enterprise Wireless Networks. White Paper,
2003.

138 Bibliography

[71] Patrick Tague, Mingyan Li, and Radha Poovendran. Mitigation of Con-
trol Channel Jamming under Node Capture Attacks. IEEE Transactions
on Mobile Computing, 8(9):1221–1234, 2009.

[72] Patrick Tague, Sidharth Nabar, Jim Ritcey, and Radha Poovendran.
Jamming-Aware Traffic Allocation for Multiple Path Routing using
Portfolio Selection. Technical Report NSL 004, University of Wash-
ington, 2009.

[73] Patrick Tague, David Slater, Guevara Noubir, and Radha Poovendran.
Linear Programming Models for Jamming Attacks on Network Traffic
Flows. In Proceedings of the International Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
pages 207–216. IEEE, 2008.

[74] Patrick Tague, David Slater, Guevara Noubir, and Radha Poovendran.
Quantifying the Impact of Efficient Cross-Layer Jamming Attacks
via Network Traffic Flows. Technical Report NSL 005, University of
Washington, 2009.

[75] Ken Tang and Mario Gerla. MAC Reliable Broadcast in Ad Hoc
Networks. In Proceedings of the IEEE International Military Commu-
nications Conference (MILCOM), volume 2, pages 1008–1013. IEEE,
2001.

[76] David Thuente and Mithun Acharya. Intelligent Jamming in Wireless
Networks with Applications to 802.11b and Other Networks. In Pro-
ceedings of the IEEE International Military Communications Conference
(MILCOM). IEEE Communications Society, 2006.

[77] Mario Čagalj, Srdjan Čapkun, and Jean-Pierre Hubaux. Wormhole-
Based Antijamming Techniques in Sensor Networks. IEEE Transactions
on Mobile Computing, 6(1):100–114, 2007.

[78] Chieh-Yih Wan, Andrew T. Campbell, and Lakshman Krishnamurthy.
PSFQ: A Reliable Transport Protocol for Wireless Sensor Networks.
In Proceedings of the ACM International Workshop on Wireless Sensor
Networks and Applications (WSNA), pages 1–11. ACM, 2002.

[79] Stephen G. Wilson. Digital Modulation and Coding. Prentice-Hall,
1996.

Bibliography 139

[80] Anthony D. Wood and John A. Stankovic. Denial of Service in Sensor
Networks. IEEE Computer, 35(10):54–62, 2002.

[81] Anthony D. Wood, John A. Stankovic, and Sang Son. JAM: A Jammed-
area Mapping Service for Sensor Networks. In Proceedings of the IEEE
Real-Time Systems Symposium (RTSS), pages 286–297. IEEE, 2003.

[82] Wenyuan Xu, Wade Trappe, and Yanyong Zhang. Channel Surfing:
Defending Wireless Sensor Networks from Interference. In Proceed-
ings of the IEEE International Conference on Information Processing in
Sensor Networks (IPSN), pages 499–508. ACM, 2007.

[83] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood. The
Feasibility of Launching and Detecting Jamming Attacks in Wireless
Networks. In Proceedings of the ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc), pages 46–57.
ACM, 2005.

[84] Fan Ye, Gary Zhong, Songwu Lu, and Lixia Zhang. GRAdient Broad-
cast: A Robust Data Delivery Protocol for Large Scale Sensor Net-
works. Wireless Networks, 11(3):285–298, 2005.

[85] X. J. Zhang. Auxiliary Signal Design in Fault Detection and Diagnosis.
Springer-Verlag, 1989.

[86] G. Zhou, T. He, J.A. Stankovic, and T. Abdelzaher. RID: Radio In-
terference Detection in Wireless Sensor Networks. In Proceedings of
the IEEE Conference on Computer Communications (INFOCOM), pages
891–901. IEEE Communications Society, 2005.

Resume

MARIO STRASSER

Born in Münsterlingen, TG, Switzerland on April 1, 1978
Citizen of Hüttwilen, TG, Switzerland

Educational Curriculum Vitae
2005 – 2009 Doctor of Sciences

Swiss Federal Institute of Technology (ETH) Zurich
Advisors: Prof. Bernhard Plattner, Prof. Srdjan Čapkun

2003 – 2005 Master of Science in Computer Science
Swiss Federal Institute of Technology (ETH) Zurich

2002 Postgraduate Course: Advanced Mathematics
Zurich University of Applied Sciences (ZHW)

1998 – 2001 Bachelor of Science in Information Technology
Zurich University of Applied Sciences (ZHW)

1994 – 1998 Advanced Technical College Entrance Qualification
Berufsmittelschule St. Gallen (GBSG)

1994 – 1998 Eid. Dipl. Elektroniker
Metrohm AG, Herisau

Working and Teaching Experience
2007 – present Freelance security and strategy consultant/engineer

2005 – 2009 Teaching assistant at ETH Zurich

9 – 12, 2006 Internship at the NEC Lab, Princeton, US

2004 – present Founder and project leader of the TPM Emulator
project

2001 – 2003 Research associate with the Network Security Group
of Prof. A. Steffen at ZHW

1994 – 1998 Apprenticeship as an electronics technician at
Methrohm AG, Herisau

